|
Publications sur Zones urbaines
Résultat de la recherche dans la liste des publications :
Article |
1 - Modèle Paramétrique pour la Reconstruction Automatique en 3D de Zones Urbaines Denses à partir d'Images Satellitaires Haute Résolution. F. Lafarge et X. Descombes et J. Zerubia et M. Pierrot-Deseilligny. Revue Française de Photogrammétrie et de Télédétection (SFPT), 180: pages 4--12, 2005. Mots-clés : Reconstruction en 3D, Zones urbaines, Approche bayésienne, MCMC, Imagerie satellitaire. Copyright : SFPT
@ARTICLE{lafarge_sfpt05,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{Modèle Paramétrique pour la Reconstruction Automatique en 3D de Zones Urbaines Denses à partir d'Images Satellitaires Haute Résolution}, |
year |
= |
{2005}, |
journal |
= |
{Revue Française de Photogrammétrie et de Télédétection (SFPT)}, |
volume |
= |
{180}, |
pages |
= |
{4--12}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2005_lafarge_sfpt05.pdf}, |
keyword |
= |
{Reconstruction en 3D, Zones urbaines, Approche bayésienne, MCMC, Imagerie satellitaire} |
} |
|
haut de la page
3 Thèses de Doctorat et Habilitations |
1 - Détection et classification de changements sur des scènes urbaines en télédétection. A. Fournier. Thèse de Doctorat, Institut Supérieur de l'Aéronautique et de l'Espace, octobre 2008. Mots-clés : détection de changements, Imagerie satellitaire, lignes de niveau, Classification, Zones urbaines, statistiques directionnelles.
@PHDTHESIS{Fournier08,
|
author |
= |
{Fournier, A.}, |
title |
= |
{Détection et classification de changements sur des scènes urbaines en télédétection}, |
year |
= |
{2008}, |
month |
= |
{octobre}, |
school |
= |
{Institut Supérieur de l'Aéronautique et de l'Espace}, |
url |
= |
{http://tel.archives-ouvertes.fr/tel-00463593/fr/}, |
keyword |
= |
{détection de changements, Imagerie satellitaire, lignes de niveau, Classification, Zones urbaines, statistiques directionnelles} |
} |
Résumé :
Cette thèse aborde le problème de la détection de changements sur des images de scènes urbaines en télédétection. Les expériences ont été menées sur des couples d'images satellitaires panchromatiques haute résolution (< 1 m). À travers ce thème général, plusieurs problématiques, correspondant aux divers niveaux d'une chaîne de traitement, sont abordés, depuis la création d'un masque de changements jusqu'au raisonnement à un niveau objet. Dans ce manuscrit, nous abordons premièrement le problème de la détermination d'un masque de changements. Après avoir étudié les limites d'un algorithme de détection de changements, fondé sur l'analyse en composantes principales, nous proposons un algorithme tirant parti de l'invariance des lignes de niveau, fondé sur un modèle d'illumination et des hypothèses sur la régularité de la scène. Par la suite, nous abordons la classification des zones détectées comme changées au cours de l'étape précédente. D'abord, nous nous fondons uniquement sur les radiométries des couples de pixels. Enfin, nous étudions l'intérêt d'une composante géométrique dans la classification. Plus précisément, nous appliquons un algorithme d'approximation polygonale sur les zones connexes issues de la classification précédentes, puis nous classifions les formes obtenues compte tenu des orientations des côtés des polygones obtenus. |
Abstract :
This thesis addresses the problem of change detection on remotely sensed urban scenes. experiences were run on couples of high resolution (<1m) panchromatic satellite images. Through this general theme, different problems, corresponding to different levels of a processing chain were addressed, from the determination of a change mask to an object level reasoning. In this work, we first address the problem of determining a change mask. We study the assets and limits of a change detection algorithm based on a Principal Component Analysis. We then propose a new algorithm that relies on the invariance of the level lines. It is based on a simple illumination model and some hypotheses on the scene regularity. Then we address the classification of the zones detected as changed during our first step. This is done by only considering the radiometries of each pixel couple. Finally, we study the interest of a geometric component in our classification. More precisely, we apply a polygonal approximation algorithm on the connected zones generated by the first classification, then we classify the obtained shapes according to the orientations of the polygon edges. |
|
2 - Modèles stochastiques pour la reconstruction tridimensionnelle d'environnements urbains. F. Lafarge. Thèse de Doctorat, Ecole des Mines de Paris, octobre 2007. Mots-clés : Reconstruction en 3D, Zones urbaines, Imagerie satellitaire, Approche structurelle, Recuit Simule, MCMC.
@PHDTHESIS{lafarge_phd07,
|
author |
= |
{Lafarge, F.}, |
title |
= |
{Modèles stochastiques pour la reconstruction tridimensionnelle d'environnements urbains}, |
year |
= |
{2007}, |
month |
= |
{octobre}, |
school |
= |
{Ecole des Mines de Paris}, |
url |
= |
{http://tel.archives-ouvertes.fr/tel-00179695/en/}, |
keyword |
= |
{Reconstruction en 3D, Zones urbaines, Imagerie satellitaire, Approche structurelle, Recuit Simule, MCMC} |
} |
Résumé :
Cette thèse aborde le problème de la reconstruction tridimensionnelle de zones urbaines à partir d'images satellitaires très haute résolution. Le contenu informatif de ce type de données est insuffisant pour permettre une utilisation efficace des nombreux algorithmes développés pour des données aériennes. Dans ce contexte, l'introduction de connaissances a priori fortes sur les zones urbaines est nécessaire. Les outils stochastiques sont particulièrement bien adaptés pour traiter cette problématique.
Nous proposons une approche structurelle pour aborder ce sujet. Cela consiste à modéliser un bâtiment comme un assemblage de modules urbains élémentaires extraits d'une bibliothèque de modèles 3D paramétriques. Dans un premier temps, nous extrayons les supports 2D de ces modules à partir d'un Modèle Numérique d' Elévation (MNE). Le résultat est un agencement de quadrilatères dont les éléments voisins sont connectés entre eux. Ensuite, nous reconstruisons les bâtiments en recherchant la configuration optimale de modèles 3D se fixant sur les supports précédemment extraits. Cette configuration correspond à la réalisation qui maximise une densité mesurant la cohérence entre la réalisation et le MNE, mais également prenant en compte des connaissances a priori telles que des lois d'assemblage des modules. Nous discutons enfin de la pertinence de cette approche en analysant les résultats obtenus à partir de données satellitaires (simulations PLEIADES). Des expérimentations sont également réalisées à partir d'images aériennes mieux résolues. |
|
3 - Analyse de Texture par Méthodes Markoviennes et par Morphologie Mathématique : Application à l'Analyse des Zones Urbaines sur des Images Satellitales. A. Lorette. Thèse de Doctorat, Universite de Nice Sophia Antipolis, septembre 1999. Mots-clés : Texture, Segmentation, Champs de Markov, Morphologie mathematique, Zones urbaines.
@PHDTHESIS{lorette99,
|
author |
= |
{Lorette, A.}, |
title |
= |
{Analyse de Texture par Méthodes Markoviennes et par Morphologie Mathématique : Application à l'Analyse des Zones Urbaines sur des Images Satellitales}, |
year |
= |
{1999}, |
month |
= |
{septembre}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
pdf |
= |
{Theses/these-lorette.pdf}, |
keyword |
= |
{Texture, Segmentation, Champs de Markov, Morphologie mathematique, Zones urbaines} |
} |
Résumé :
Dans cette thèse, nous nous intéressons au problème de l'analyse urbaine à partir d'images satellitales par des méthodes automatiques ou semi-automatiques issues du traitement d'image. Dans le premier chapitre, nous présentons le contexte dans lequel le travail a été effectué. Nous exposons les types de données utilisées, les approches statistiques considérées. Nous donnons également quelques exemples d'applications qui justifient une telle étude. Enfin, un état de l'art des diverses méthodes d'analyse des textures est présenté. Dans les deux chapitres suivants, nous développons une méthode automatique d'extraction d'un masque urbain à partir d'une analyse de la texture de l'image. Des méthodes d'extraction d'un masque urbain sont décrites. Ensuite, nous définissons plus précisemment les huit modèles markoviens gaussiens fondés sur des chaines. Ces modèles sont renormalisés par une méthode de renormalisation de groupe issue de la physique statistique afin de corriger le biais introduit par l'anisotropie du réseau de pixels. L'analyse de texture proposée est comparée avec deux méthodes classiques: les matrices de cooccurrence et les filtres de Gabor. L'image du paramètre de texture est ensuite classifiée avec un algorithme non supervisé de classification floue fondée sur la définition d'un critère entropique. Les paramètres estimés avec cet algorithme sont intégrés dans un modèle markovien de segmentation. Des résultats d'extraction de masques urbains sont finalement présentés sur des images satellitales optiques SPOT3, des simulations SPOT5, et des images radar ERS1. Dans le quatrième chapitre, nous présentons l'analyse granulométrique utilisée pour analyser le paysage urbain. Les outils et définitions de base de la morphologie mathématique sont exposés. Nous nous intéressons plus particulièrement à l'ouverture par reconstruction qui est utilisée comme transformation de base de la granulométrie. L'étape de quantification qui suit tout étape de transformation nous permet d'estimer en chaque pixel une distribution locale de taille qui est intégrée dans le terme d'attache aux données d'un modèle markovien de segmentation. Des tests sont effectués sur des simulations SPOT5. |
Abstract :
In this thesis, we investigate the problem of urban areas analysis from satellite images by automatic or semi-automatic methods coming from image processing. In the first chapter, we describe the context of this work, i.e. the type of used data, the statistical applied methods. We also give some examples of the applications which require such an analysis. Finally, a study of the existing methods of texture analysis is presented. In the second and third chapter, we develop a non supervised method based on texture analysis in order to extract an urban mask. First a study of the existing methods of urban mask extraction is presented. Second we precisely describe the eight chain-based Gaussian Markovian models used to characterize urban texture. These models are normalized through a renormalization group technique derived from statistical physics in order to correct the bias introduced by the anisotropy of the lattice.The above mentionned method of texture analysis is then compared with two classical ones: coocurrences matrix and Gabor filters. The image is then partitionned by an unsupervised fuzzy Cmeans algorithm based on an entropic criterion. The final segmentation is performed by the minimization of an energy derived from a Markovian model. Some results are presented that are obtained from SPOT3 images, SPOT5 simulations and radar ERS1 images. In the fourth chapter, we present the granulometric approach used to segment within the urban area itself. The basic operations and definitions of mathematical morphology are settled. We are particularly interested in opening by reconstruction operation based on geodesic dilatations. In fact this operation is used to define a granulometry. The quantification step that follows the transformation step consists in estimating a local size distribution function for each pixel. These parameters are then integrated in the data term of a Markovian model. Some results on SPOT5 simulations are presented. |
|
haut de la page
4 Articles de conférence |
1 - Classification bayésienne supervisée d’images RSO de zones urbaines à très haute résolution. A. Voisin et V. Krylov et J. Zerubia. Dans Proc. GRETSI Symposium on Signal and Image Processing, Bordeaux, septembre 2011. Mots-clés : Images SAR, Classification, Zones urbaines, Champs de Markov, Modeles hierarchiques.
@INPROCEEDINGS{VoisinGretsi2011,
|
author |
= |
{Voisin, A. and Krylov, V. and Zerubia, J.}, |
title |
= |
{Classification bayésienne supervisée d’images RSO de zones urbaines à très haute résolution}, |
year |
= |
{2011}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. GRETSI Symposium on Signal and Image Processing}, |
address |
= |
{Bordeaux}, |
url |
= |
{http://hal.inria.fr/inria-00623003/fr/}, |
keyword |
= |
{Images SAR, Classification, Zones urbaines, Champs de Markov, Modeles hierarchiques} |
} |
Résumé :
Ce papier présente un modèle de classification bayésienne supervisée d’images acquises par Radar à Synthèse d’Ouverture (RSO) très haute résolution en polarisation simple contenant des zones urbaines, particulièrement affectées par le bruit de chatoiement. Ce modèle prend en compte à la fois une représentation statistique des images RSO par modèle de mélanges finis et de copules, et une modélisation contextuelle
à partir de champs de Markov hiérarchiques. |
Abstract :
This paper deals with the Bayesian classification of single-polarized very high resolution synthetic aperture radar (SAR) images
that depict urban areas. The difficulty of such a classification relies in the significant effects of speckle noise. The model considered here takes into account both statistical modeling of images via finite mixture models and copulas, and contextual modeling thanks to hierarchical Markov random fields |
|
2 - Classification of very high resolution SAR images of urban areas by dictionary-based mixture models, copulas and Markov random fields using textural features. A. Voisin et G. Moser et V. Krylov et S.B. Serpico et J. Zerubia. Dans Proc. of SPIE (SPIE Symposium on Remote Sensing 2010), Vol. 7830, Toulouse, France, septembre 2010. Mots-clés : Images SAR, Supervised classification, Zones urbaines, Textural features, Copulas, Markov Random Fields. Copyright : SPIE
@INPROCEEDINGS{7830-23,
|
author |
= |
{Voisin, A. and Moser, G. and Krylov, V. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{Classification of very high resolution SAR images of urban areas by dictionary-based mixture models, copulas and Markov random fields using textural features}, |
year |
= |
{2010}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. of SPIE (SPIE Symposium on Remote Sensing 2010)}, |
volume |
= |
{7830}, |
address |
= |
{Toulouse, France}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00516333/en}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/51/63/33/PDF/Classification_of_VHR_SAR_SPIE_sept2010_Toulouse_Voisin.pdf}, |
keyword |
= |
{Images SAR, Supervised classification, Zones urbaines, Textural features, Copulas, Markov Random Fields} |
} |
Abstract :
This paper addresses the problem of the classification of very high resolution SAR amplitude images of urban areas. The proposed supervised method combines a finite mixture technique to estimate class-conditional probability density functions, Bayesian classification, and Markov random fields (MRFs). Textural features, such as those extracted by the grey-level co-occurrency method, are also integrated in the technique, as they allow improving the discrimination of urban areas. Copula theory is applied to estimate bivariate joint class-conditional statistics, merging the marginal distributions of both textural and SAR amplitude features. The resulting joint distribution estimates are plugged into a hidden MRF model, endowed with a modified Metropolis dynamics scheme for energy minimization. Experimental results with COSMO-SkyMed images point out the accuracy of the proposed method, also as compared with previous contextual classifiers. |
|
3 - Extraction of main and secondary roads in VHR images using a higher-order phase field model. T. Peng et I. H. Jermyn et V. Prinet et J. Zerubia. Dans Proc. XXI ISPRS Congress, Part A, pages 215-22, Beijing, China, juillet 2008. Mots-clés : Reseaux routiers, Zones urbaines, Imagerie satellitaire, Segmentation, Modelling, Methodes variationnelles. Copyright : ISPRS
@INPROCEEDINGS{Peng08a,
|
author |
= |
{Peng, T. and Jermyn, I. H. and Prinet, V. and Zerubia, J.}, |
title |
= |
{Extraction of main and secondary roads in VHR images using a higher-order phase field model}, |
year |
= |
{2008}, |
month |
= |
{juillet}, |
booktitle |
= |
{Proc. XXI ISPRS Congress, Part A}, |
pages |
= |
{215-22}, |
address |
= |
{Beijing, China}, |
pdf |
= |
{http://www.isprs.org/proceedings/XXXVII/congress/3_pdf/33.pdf}, |
keyword |
= |
{Reseaux routiers, Zones urbaines, Imagerie satellitaire, Segmentation, Modelling, Methodes variationnelles} |
} |
Abstract :
This paper addresses the issue of extracting main and secondary road networks in dense urban areas from very high resolution (VHR, ~0.61m) satellite images. The difficulty with secondary roads lies in the low discriminative power of the grey-level distributions of road regions and the background, and the greater effect of occlusions and other noise on narrower roads. To tackle this problem, we use a previously developed higher-order active contour (HOAC) phase field model and augment it with an additional non-linear nonlocal term. The additional term allows separate control of road width and road curvature; thus more precise prior knowledge can be incorporated, and better road prolongation can be achieved for the same width. Promising results on QuickBird panchromatic images at reduced resolutions and comparisons with other models demonstrate the role and the efficiency of our new model. |
|
4 - Textural Kernel for SVM Classification in Remote Sensing : Application to Forest Fire Detection and Urban Area Extraction. F. Lafarge et X. Descombes et J. Zerubia. Dans Proc. IEEE International Conference on Image Processing (ICIP), Genoa, Italy, septembre 2005. Mots-clés : Support Vector Machines, Base d'apprentissage, Champs de Markov, Feux de foret, Zones urbaines. Copyright : IEEE
@INPROCEEDINGS{lafarge_icip05,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Textural Kernel for SVM Classification in Remote Sensing : Application to Forest Fire Detection and Urban Area Extraction}, |
year |
= |
{2005}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Genoa, Italy}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2005_lafarge_icip05.pdf}, |
keyword |
= |
{Support Vector Machines, Base d'apprentissage, Champs de Markov, Feux de foret, Zones urbaines} |
} |
|
haut de la page
5 Rapports de recherche et Rapports techniques |
1 - On the illumination invariance of the level lines under directed light. Application to change detection. P. Weiss et A. Fournier et L. Blanc-Féraud et G. Aubert. Rapport de Recherche 6612, INRIA, 2008. Mots-clés : Level Lines, illumination invariance, topographic map, Change detection, remote sensing, Zones urbaines. Copyright :
@TECHREPORT{RR-6612,
|
author |
= |
{Weiss, P. and Fournier, A. and Blanc-Féraud, L. and Aubert, G.}, |
title |
= |
{On the illumination invariance of the level lines under directed light. Application to change detection}, |
year |
= |
{2008}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6612}, |
url |
= |
{https://hal.archives-ouvertes.fr/inria-00310383}, |
pdf |
= |
{http://hal.inria.fr/docs/00/31/03/83/PDF/RR-6612.pdf}, |
keyword |
= |
{Level Lines, illumination invariance, topographic map, Change detection, remote sensing, Zones urbaines} |
} |
Abstract :
We analyze the illumination invariance of the level lines of an image. We show that if the scene surface has Lambertian reflectance and the light is directed, then a necessary condition for the level lines to be illumination invariant is that the 3D scene be developable and that its albedo satisfies some geometrical constraints. We then show that the level lines are ``almost'' invariant for piecewise developable surfaces. Such surfaces fit most of the urban structures. In a second part, this allows us to devise a very fast algorithm that detects changes between pairs of remotely sensed images of urban areas, independently of the lighting conditions. We show the effectiveness of the algorithm both on synthetic OpenGL scenes and real Quickbird images. We compare the efficiency of the proposed algorithm with other classical approaches and show that it is superior both in practice and in theory. |
|
2 - An automatic building extraction method : Application to the 3D-city modeling. F. Lafarge et P. Trontin et X. Descombes et J. Zerubia et M. Pierrot-Deseilligny. Research Report 5925, INRIA, France, mai 2006. Mots-clés : Extraction d'objets, Processus ponctuels marques, Reconstruction en 3D, Zones urbaines, Imagerie satellitaire, Modele numerique d'elevation (MNE).
@TECHREPORT{lafarge_rr_may06,
|
author |
= |
{Lafarge, F. and Trontin, P. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{An automatic building extraction method : Application to the 3D-city modeling}, |
year |
= |
{2006}, |
month |
= |
{mai}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5925}, |
address |
= |
{France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_lafarge_rr_may06.pdf}, |
keyword |
= |
{Extraction d'objets, Processus ponctuels marques, Reconstruction en 3D, Zones urbaines, Imagerie satellitaire, Modele numerique d'elevation (MNE)} |
} |
|
3 - Noyaux Texturaux pour les Problèmes de Classification par SVM en Télédétection. F. Lafarge et X. Descombes et J. Zerubia. Rapport de Recherche 5370, INRIA, France, décembre 2004. Mots-clés : Support Vector Machines, Classification, Feux de foret, Zones urbaines, Base d'apprentissage, Champs de Markov.
@TECHREPORT{5370,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Noyaux Texturaux pour les Problèmes de Classification par SVM en Télédétection}, |
year |
= |
{2004}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5370}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070633}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70633/filename/RR-5370.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/06/33/PS/RR-5370.ps}, |
keyword |
= |
{Support Vector Machines, Classification, Feux de foret, Zones urbaines, Base d'apprentissage, Champs de Markov} |
} |
Résumé :
Nous détaillons dans ce rapport la construction de deux noyaux texturaux s'utilisant dans les problèmes de classification par «Support Vector Machines» en télédétection. Les SVM constituent une méthode de classification supervisée particulièrement bien adaptée pour traiter des données de grande dimension telles que les images satellitaires. Par cette méthode, nous souhaitons réaliser l'apprentissage de paramètres qui permettent la différenciation entre deux ensembles de pixels connexes non-identiques. Nous travaillons pour cela sur des fonctions noyaux, fonctions caractérisant une certaine similarité entre deux données. Dans notre cas, cette similarité sera fondée à la fois sur une notion radiométrique et sur une notion texturale. La principale difficulté rencontrée dans cette étude réside dans l'élaboration de paramètres texturaux pertinents qui modélisent au mieux l'homogénéité d'un ensemble de pixels connexes. Nous appliquons les noyaux proposés à deux problèmes de télédétection: la détection de feux de forêt et la détection de zones urbaines à partir d'images satellitaires haute résolusion. |
Abstract :
We present in this report two textural kernels for «Support Vector Machines» classification applied to remote sensing problems. SVMs constitute a method of supervised classification well adapted to deal with data of high dimension, such as images. We would like to learn parameters which allow the differentiation between two sets of connected pixels. We also introduce kernel functions which characterize a notion of similarity between two pieces of data. In our case this similarity is based on a radiometric charateristic and a textural characteristic. The main difficulty is to elaborate textural parameters which are pertinent and characterize as well as possible the homogeneity of a set of connected pixels. We apply this method to remote sensing problems : the detection of forest fires and the extraction of urban areas in high resolution satellite images. |
|
4 - Analyse Intra-urbaine à partir d'Images Satellitaires par une Approche de Fusion de Données sur la Ville de Mexico. O. Viveros-Cancino et X. Descombes et J. Zerubia. Rapport de Recherche 4578, Inria, France, octobre 2002. Mots-clés : Fusion de donnees, Champs de Markov, Texture, Zones urbaines, Matrice de confusion.
@TECHREPORT{4578,
|
author |
= |
{Viveros-Cancino, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Analyse Intra-urbaine à partir d'Images Satellitaires par une Approche de Fusion de Données sur la Ville de Mexico}, |
year |
= |
{2002}, |
month |
= |
{octobre}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4578}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00072010}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72010/filename/RR-4578.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/20/10/PS/RR-4578.ps}, |
keyword |
= |
{Fusion de donnees, Champs de Markov, Texture, Zones urbaines, Matrice de confusion} |
} |
Résumé :
Ce document présente une analyse intra-urbaine afin d'améliorer la détection des différents tissus urbains avec une application sur la ville de Mexico. La méthode de fission-fusion est proposée ainsi qu'une méthode pour fusionner les classes existantes. Les deux méthodes se composent des étapes suivantes : premièrement, une analyse de texture, nommée étape de fission, est faite pour mieux décrire l'image, ensuite, une classification supervisée, nommée étape de fusion, est faite sur les paramètres issus de l'analyse de texture à partir des valeurs de qualité, notamment la valeur Kappa calculée sur la matrice de confusion. Ces étapes sont réalisées sur des images optiques (SPOT) et radar (ERS) de la ville de Mexico et sont suivies d'un régularisation. |
Abstract :
In this research report we present an intra-urban analysis to improve urban texture extraction. Two methods are proposed : a fission-fusion method and another method which fuses already existing classes. Both methods consist of two steps. The first step, called fission, performs a texture analysis which looks for structures with different parameters. The second step, called fusion, involves a supervised classification using quality parameters, in particular the kappa value which is computed from the confusion matrix. These two steps are carried out on SPOT and radar images of Mexico city. A regularization step is then performed which completes our analysis. |
|
5 - Extraction des zones urbaines fondée sur une analyse de la texture par modélisation markovienne. A. Lorette et X. Descombes et J. Zerubia. Rapport de Recherche 3423, Inria, mai 1998. Mots-clés : Texture, Champs de Markov, Zones urbaines, Entropie.
@TECHREPORT{loretteRR98,
|
author |
= |
{Lorette, A. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Extraction des zones urbaines fondée sur une analyse de la texture par modélisation markovienne}, |
year |
= |
{1998}, |
month |
= |
{mai}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3423}, |
url |
= |
{http://hal.inria.fr/inria-00073267}, |
pdf |
= |
{http://hal.inria.fr/docs/00/07/32/67/PDF/RR-3423.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/32/67/PS/RR-3423.ps}, |
keyword |
= |
{Texture, Champs de Markov, Zones urbaines, Entropie} |
} |
Résumé :
Pour délimiter un masque urbain précis à partir d'une image satellitaire la seule information du niveau de gris est insuffisante. Laplupart des méthodes font donc appel à une analyse de la texture de l'image. Nous nous sommes placés dans ce cadre. Dans une première étape, nous avons défini un nouveau paramètre de texture à partir d'un modèle markovien gaussien. Nous obtenons ce nouveau paramètre en calculant la variance conditionnelle de l'image dans huit directions. Ainsi, nous éliminons la mauvaise classification d'objets ayant une orientation privilégiée tels que les vignes et les serres par exemple. Dans une seconde étape, nous proposons un algorithme de emphfuzzy Cmeans modifié incluant un terme d'entropie et pour lequel le nombre de classes n'est pas fixé a priori. Cet algorithme nous permet d'obtenir une première classification de l'image. Enfin, nous régularisons l'image ainsi obtenue grâce à une modélisation par champs de Markov. Des résultats obtenus sur des simulations d'images SPOT5 fournies par le CNES sont présentés. |
Abstract :
Urban areas cannot be extracted from satellite images through only grey level information. Hence most methods analyze the texture of the image to discriminate between urban areas and non urban areas. We define a new texture parameter derived from a Markovian Gaussian model. This new parameter takes into account the variance of the image in eight directions- . Consequently it copes with the misclassification of objects with a privileged orientation like vineyards or greenhouses for instance. Afterwards we develop a modified fuzzy Cmeans algorithm including an entropy term. The advantage of such an algorithm is that the number of classes does not need to be known a priori. By applying this modified fuzzy Cmeans algorithm on the parameter image we obtain a first classification. Finally we regularize the segmented image by using a Markov random field modelling. Some results on SPOT5 simulated images are presented. These images are provided by the CNES (French Space Agency). |
|
haut de la page
Ces pages sont générées par
|