|
Publications sur Contour actif d'ordre supérieur
Résultat de la recherche dans la liste des publications :
Thèse de Doctorat et Habilitation |
1 - New higher-order active contour models, shape priors, and multiscale analysis: their application to road network extraction from very high resolution satellite images. T. Peng. Thèse de Doctorat, Universite de Nice Sophia Antipolis, novembre 2008. Mots-clés : Contour actif d'ordre supérieur, Champ de Phase, A priori, Multiresolution, Reseaux routiers, Very high resolution. Copyright :
@PHDTHESIS{Peng08d,
|
author |
= |
{Peng, T.}, |
title |
= |
{New higher-order active contour models, shape priors, and multiscale analysis: their application to road network extraction from very high resolution satellite images}, |
year |
= |
{2008}, |
month |
= |
{novembre}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
pdf |
= |
{http://tel.archives-ouvertes.fr/tel-00349768/fr/}, |
keyword |
= |
{Contour actif d'ordre supérieur, Champ de Phase, A priori, Multiresolution, Reseaux routiers, Very high resolution} |
} |
Résumé :
L'objectif de cette thèse est de développer et de valider des approches robustes d'extraction semi-automatique de réseaux routiers en zone urbaine dense à partir d'images satellitaires optiques à très haute résolution (THR). Nos modèles sont fondés sur une modélisation par champs de phase des contours actifs d'ordre supérieur (CAOS). Le probléme est difficile pour deux raisons principales : les images THR sont intrinsèquement complexes, et certaines zones des réseaux peuvent prendre une topologie arbitraire. Pour remédier à la complexité de l'information contenue dans les images THR, nous proposons une modélisation statistique multi-résolution des données ainsi qu'un modèle multi-résolution contraint a priori. Ces derniers permettent l'intégration des résultats de segmentation de résolution brute et de résolution fine. De plus, dans le cadre particulier de la mise à jour de réseaux routiers, nous présentons un modèle de forme a priori spécifique, dérivé d'une ancienne carte numérique issue d'un SIG. Ce terme spécifique a priori équilibre l'effet de la connaissance a priori générique apportée par le modèle de CAOS, qui décrit la forme géométrique générale des réseaux routiers. Cependant, le modèle classique de CAOS souffre d'une limitation importante : la largeur des branches du réseau est contrainte à d'être similaire au maximum du rayon de courbure des branches du réseau, fournissant ainsi un modèle non satisfaisant dans le cas de réseaux aux branches droites et étroites ou aux branches fortement incurvées et larges. Nous résolvons ce problème en proposant deux nouveaux modèles : l'un contenant un terme additionnel, nonlocal, non-linéaire de CAOS, et l'autre contenant un terme additionnel, nonlocal, linéaire de CAOS. Ces deux termes permettent le contrôle séparé de la largeur et de la courbure des branches, et fournissent une meilleure prolongation pour une même largeur. Le terme linéaire a plusieurs avantages : d'une part il se calcule plus efficacement, d'autre part il peut modéliser plusieurs largeurs de branche simultanément. Afin de remédier à la difficulté du choix des paramètres de ces modèles, nous analysons les conditions de stabilité pour une longue barre d'une largeur donnée décrite par ces énergies, et montrons ainsi comment choisir rigoureusement les paramètres des fonctions d'énergie. Des expériences sur des images satellitaires THR et la comparaison avec d'autres modèles démontrent la supériorité de nos modèles. |
Abstract :
The objective of this thesis is to develop and validate robust approaches for the semi-automatic extraction of road networks in dense urban areas from very high resolution (VHR) optical satellite images. Our models are based on the recently developed higher-order active contour (HOAC) phase field framework. The problem is difficult for two main reasons: VHR images are intrinsically complex and network regions may have arbitrary topology. To tackle the complexity of the information contained in VHR images, we propose a multiresolution statistical data model and a multiresolution constrained prior model. They enable the integration of segmentation results from coarse resolution and fine resolution. Subsequently, for the particular case of road map updating, we present a specific shape prior model derived from an outdated GIS digital map. This specific prior term balances the effect of the generic prior knowledge carried by the HOAC model, which describes the geometric shape of road networks in general. However, the classical HOAC model suffers from a severe limitation: network branch width is constrained to be similar to maximum network branch radius of curvature, thereby providing a poor model of networks with straight narrow branches or highly curved, wide branches. We solve this problem by introducing two new models: one with an additional nonlinear nonlocal HOAC term, and one with an additional linear nonlocal HOAC term. Both terms allow separate control of branch width and branch curvature, and furnish better prolongation for the same width, but the linear term has several advantages: it is more efficient from a computational standpoint, and it is able to model multiple widths simultaneously. To cope with the difficulty of parameter selection of these models, we analyze the stability conditions for a long bar with a given width described by these energies, and hence show how to choose rigorously the parameters of the energy functions. Experiments on VHR satellite images and comparisons with other approaches demonstrate the superiority of our models. |
|
haut de la page
Article de conférence |
1 - Inflection point model under phase field higher-order active contours for network extraction from VHR satellite images. A. El Ghoul et I. H. Jermyn et J. Zerubia. Dans Proc. European Signal Processing Conference (EUSIPCO), Glasgow, Scotland, août 2009. Mots-clés : Geometric prior, Forme, Contour actif d'ordre supérieur, Champ de Phase, remote sensing. Copyright : EURASIP
@INPROCEEDINGS{ElGhoul09a,
|
author |
= |
{El Ghoul, A. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Inflection point model under phase field higher-order active contours for network extraction from VHR satellite images}, |
year |
= |
{2009}, |
month |
= |
{août}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{Glasgow, Scotland}, |
url |
= |
{http://hal.inria.fr/inria-00390446/fr/}, |
pdf |
= |
{http://hal.inria.fr/docs/00/39/04/46/PDF/eusipco09aymenelghoul.pdf}, |
keyword |
= |
{Geometric prior, Forme, Contour actif d'ordre supérieur, Champ de Phase, remote sensing} |
} |
Abstract :
The segmentation of networks is important in several imaging domains, and models incorporating prior shape knowledge are often essential for the automatic performance of this task. We incorporate such knowledge via phase fields and higher-order active contours (HOACs). In this paper: we introduce an improved prior model, the phase field HOAC ‘inflection point’ model of a network; we present an improved data term for the segmentation of road networks; we confirm the robustness of the resulting model to choice of gradient descent initialization; and we illustrate these points via road network extraction results on VHR satellite images. |
|
haut de la page
Ces pages sont générées par
|