|
Publications sur Restauration
Résultat de la recherche dans la liste des publications :
Article |
1 - fMRI Signal Restoration Using an Edge Preserving Spatio-temporal Markov Random Field. X. Descombes et F. Kruggel et Y. von Cramon. NeuroImage, 8: pages 340-349, 1998. Mots-clés : fMRI, Restauration, Champs de Markov. Copyright : published in NeuroIMage by Elsevier
||http://www.elsevier.com/wps/find/homepage.cws_home
@ARTICLE{descombes98d,
|
author |
= |
{Descombes, X. and Kruggel, F. and von Cramon, Y.}, |
title |
= |
{fMRI Signal Restoration Using an Edge Preserving Spatio-temporal Markov Random Field}, |
year |
= |
{1998}, |
journal |
= |
{NeuroImage}, |
volume |
= |
{8}, |
pages |
= |
{340-349}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/1998_descombes98d.pdf}, |
keyword |
= |
{fMRI, Restauration, Champs de Markov} |
} |
|
haut de la page
3 Thèses de Doctorat et Habilitations |
1 - Contribution à l'Analyse de Textures en Traitement d'Images par Méthodes Variationnelles et Equations aux Dérivées Partielles. J.F. Aujol. Thèse de Doctorat, Universite de Nice Sophia Antipolis, juin 2004. Mots-clés : Decomposition d'images, Classification, Restauration, Analyse fonctionnelle, Espace Variations Bornees, Espaces de Sobolev.
@PHDTHESIS{JFAujol,
|
author |
= |
{Aujol, J.F.}, |
title |
= |
{Contribution à l'Analyse de Textures en Traitement d'Images par Méthodes Variationnelles et Equations aux Dérivées Partielles}, |
year |
= |
{2004}, |
month |
= |
{juin}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
url |
= |
{https://hal.inria.fr/tel-00006303}, |
pdf |
= |
{http://hal.inria.fr/docs/00/04/68/89/PDF/tel-00006303.pdf}, |
keyword |
= |
{Decomposition d'images, Classification, Restauration, Analyse fonctionnelle, Espace Variations Bornees, Espaces de Sobolev} |
} |
Résumé :
Cette thèse est un travail en mathématiques appliquées. Elle aborde quelques problèmes en analyse d'images et utilise des outils mathématiques spécifiques.
L'objectif des deux premières parties de cette thèse est de proposer un modèle pour décomposer une image f'en trois composantes : f=u+v+w. Notre approche repose sur l'utilisation d'espaces mathématiques adaptés à chaque composante: l'espace BV des fonctions à variations bornées pour u, un espace G'proche du dual de BV pour les textures, et un espace de Besov d'exposant négatif E'pour le bruit. Nous effectuons l'étude mathématique complète des différents modèles que nous proposons. Nous illustrons notre approche par de nombreux exemples.Dans la troisième et dernière partie de cette thèse, nous nous intéressons spécifiquement à la composante texturée. Nous proposons un algorithme de classification supervisée pour les images texturées. |
Abstract :
This Ph.D. thesis is a work in applied mathematics. It deals with image processing problems, and uses specific mathematical tools.
The aim of the two first parts is to propose a model for decomposing an image f'into three components : f=u+v+w. Our approach relies on the use of mathematical spaces adapted to each component : the space BV of functions with bounded variations for u, a space G'close to the dual space of BV for v, and a negative Besov space E'for w. We carry out the complete mathematical analysis of the different models we propose. We illustrate our approach with many numerical examples. In the third and last part, we only deal with the texture component of an image. We propose a supervised classification algorithm for textured images. |
|
2 - Contribution à la classification d'images satellitaires par approche variationnelle et équations aux dérivées partielles. C. Samson. Thèse de Doctorat, Universite de Nice Sophia Antipolis, septembre 2000. Mots-clés : Classification, Restauration, Courbes de niveaux, Contour actif.
@PHDTHESIS{cs,
|
author |
= |
{Samson, C.}, |
title |
= |
{Contribution à la classification d'images satellitaires par approche variationnelle et équations aux dérivées partielles}, |
year |
= |
{2000}, |
month |
= |
{septembre}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
url |
= |
{https://tel.archives-ouvertes.fr/tel-00319709}, |
pdf |
= |
{http://tel.archives-ouvertes.fr/docs/00/31/97/09/PDF/SAMSONthesis.pdf}, |
keyword |
= |
{Classification, Restauration, Courbes de niveaux, Contour actif} |
} |
Résumé :
Ce travail est consacré au développement ainsi qu'à l'implantation de deux modèles variationnels pour la classification d'images. La classification d'images, consistant à attribuer une étiquette à chaque pixel d'une image, concerne de nombreuses applications à partir du moment où cette opération intervient très souvent à la base des chaînes de traitement et d'interprétation d'images. De nombreux modèles de classification ont déjà été développés dans un cadre stochastique ou à travers des approches structurales, mais rarement dans un contexte variationnel qui a déjà montré son efficacité dans divers domaines tels que la reconstruction ou la restauration d'images. Le premier modèle que nous proposons repose sur la minimisation d'une famille de critères dont la suite de solutions converge vers une partition des données composée de classes homogènes séparées par des contours réguliers. Cette approche entre dans le cadre des problèmes à discontinuité libre (it free discontinuity problems) et fait appel à des notions de convergence variationnelle telle que la théorie de la Gamma-convergence. La famille de fonctionnelles que nous proposons de minimiser contient un terme de régularisation, ainsi qu'un terme de classification. Lors de la convergence de cette suite de critères, le modèle change progressivement de comportement en commençant par restaurer l'image avant d'entamer le processus d'étiquetage des pixels. Parallèlement à cette approche, nous avons développé un second modèle de classification mettant en jeu un ensemble de régions et contours actifs. Nous utilisons une approche par ensembles de niveaux pour définir le critère à minimiser, cette approche ayant déjà suscité de nombreux travaux dans le cadre de la segmentation d'images. Chaque classe, et son ensemble de régions et contours associé, est défini à travers une fonction d'ensemble de niveaux. Le critère contient des termes reliés à l'information sur les régions ainsi qu'à l'information sur les contours. Nous aboutissons à la résolution d'un système d'équations aux dérivées partielles couplées et plongées dans un schéma dynamique. L'évolution de chaque région est guidée par un jeu de forces permettant d'obtenir une partition de l'image composée de classes homogènes et dont les frontières sont lisses. Nous avons mené des expériences sur de nombreuses données synthétiques ainsi que sur des images satellitaires SPOT. Nous avons également étendu ces deux modèles au cas de données multispectrales et obtenu des résultats sur des données SPOT XS que nous avons comparé à ceux obtenus par différents modèles. |
Abstract :
This work is devoted to the development and the implementation of variational models for image classification.\ Image classification, which consists in assiging a label to each pixel of a given image, concerns many applications since it is often the basic processing for many image interpretation systems. Many models have been developed within a stochastic framework or using structural approaches, but rarely within a variational framework whose efficiency has largely been proved for a wide variety of problems such as image reconstruction or restoration. The first model we propose herein is based on the minimization of a criterion family whose set of solutions in converging to a partition of the data set composed of homogeneous regions with regularized boundaries. This approach takes place within the context of free boundary problems and we use the Gamma-convergence theory for the theoretical study. The set of functionals we minimize contains a regularization term and a classification one. As the set of functionals is converging, the behavior of the model is progressively changing: the restoration process is vanishing while the labeling one is rising. The second model we propose is based on a set of active regions and contours. We use a level set formulation to define the criterion we want to minimize, this formulation allows a change of topology of the evolving sets. Each class and its associated set of regions and boundaries is defined thanks to a level set function. From the Euler equations, we solve a system of coupled partial differential equations through a dynamical scheme. The evolution of each region is governed by forces constraining the partition to be composed of homogeneous classes with smooth boundaries.\ We have conducted many experiments on both synthetic and real images. We have extended these models to the multispectral case for which the data are a set of images, and we show some results and comparisons on SPOT XS images. |
|
3 - Sur quelques Problèmes Inverses en Traitement d'Image. L. Blanc-Féraud. Habilitation à diriger des Recherches, Universite de Nice Sophia Antipolis, juillet 2000. Mots-clés : Equation aux derivees partielles, Restauration, Regularisation, Gamma Convergence, Methodes variationnelles.
@PHDTHESIS{lbf,
|
author |
= |
{Blanc-Féraud, L.}, |
title |
= |
{Sur quelques Problèmes Inverses en Traitement d'Image}, |
year |
= |
{2000}, |
month |
= |
{juillet}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
type |
= |
{Habilitation à diriger des Recherches}, |
pdf |
= |
{Theses/hdr-blancf-2000.pdf}, |
keyword |
= |
{Equation aux derivees partielles, Restauration, Regularisation, Gamma Convergence, Methodes variationnelles} |
} |
Résumé :
Après une présentation générale des problèmes inverses mal posés en imagerie, les méthodes de régularisation linéaires puis non linéaires sont présentées. La préservation des discontinuités (contours d'une image) est abordée conjointement selon 3 approches: stochastique, variationnelle et EDP. Des résultats sont montrés sur plusieurs applications dont la restauration d'image optique satellitaire, la reconstruction SPECT 2D et 3D en imagerie médicale, la diffraction inverse en imagerie microonde. Nous faisons ensuite le lien entre régularisation et segmentation dans l'approche variationnelle initialement introduite par Munford et Shah. Deux modèles ont été proposé pour approcher numériquement les discontinuités dans le cadre de la régularisation : par suite de fonctionnelles "Gamma-convergentes" et par ensemble de niveaux. Après avoir considéré l'exemple de la restauration d'image, nous avons aussi développé ces deux approches pour le problème de la classification d'image satelllitaire. Enfin, le problème de l'estimation des paramètres des fonctionnnelles est abordée et une méthode d'estimation stochastique est proposée dans le cadre de la restauration d'image floue en optique satellitaire. mots cles : methodes variationelles, diffusion (EDP), problemes inverses, regularisation, discontinuites, segmentation d'image, fonctionnelle de Mumford et Shah, Gamma-convergence, ensembles de niveaux, contours actifs, estimation de parametres, methodes MCMC, restauration d'image, classification d'image, reconstruction SPECT, diffraction inverse en imagerie micro-onde. |
Abstract :
We first describe ill-posed inverse problems in image processing, linear and nonlinear regularisation methods. Discontinuity preservation (edges of the image) is jointly presented following three approaches : stochastic, variational and by diffusion process (solving PDE's). Results are shown on several applications such as optical satellite image restoration, 2D and 3D SPECT reconstruction in medical images, inverse diffraction in microwavimages. Then we rely regularisation and segmentation problem in the variational approach as introduced by Mumford and Shah. Tow models have been proposed in order to numerically compute discontinuities in such models : by minimizing sequence of functionals which "Gamma-converge", and by using level sets models. After considering the restoration case, we have developped such methods for the problem of supervised image classification. Finally we have considered the parameter estimation problem for such fonctionnals and we describe a stochastic estimation method for the problem of satellite image restoration. Key-words : variational methods, diffusion (PDE), inverse problems, regularisation, discontinuities, image segmentation, Mumford and Shah functional, Gamma-convergence, level set methods, active contours, parameter estimation, MCMC methods, image restoration, supervised image classification, SPECT reconstruction, inverse diffraction in microwave images. |
|
haut de la page
Article de conférence |
1 - Wavelet-based restoration methods: application to 3D confocal microscopy images. C. Chaux et L. Blanc-Féraud et J. Zerubia. Dans Proc. SPIE Conference on Wavelets, 2007. Mots-clés : Restauration, Deconvolution, 3D images, Microscopie confocale, Poisson noise, Ondelettes. Copyright : Copyright 2007 Society of Photo-Optical Instrumentation Engineers.
This paper was published in Proc. SPIE Conference on Wavelets and is made available as an electronic reprint (preprint) with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
@INPROCEEDINGS{chaux2007,
|
author |
= |
{Chaux, C. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Wavelet-based restoration methods: application to 3D confocal microscopy images}, |
year |
= |
{2007}, |
booktitle |
= |
{Proc. SPIE Conference on Wavelets}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_chaux2007.pdf}, |
keyword |
= |
{Restauration, Deconvolution, 3D images, Microscopie confocale, Poisson noise, Ondelettes} |
} |
|
haut de la page
4 Rapports de recherche et Rapports techniques |
1 - Restauration d'Images Biologiques 3D en Microscopie Confocale par Transformée en Ondelettes Complexes. G. Pons Bernad et L. Blanc-Féraud et J. Zerubia. Rapport de Recherche 5507, INRIA, France, février 2005. Mots-clés : Microscopie confocale, Transformee en ondelettes complexes 3D, Restauration, Debruitage, Deconvolution.
@TECHREPORT{5507,
|
author |
= |
{Pons Bernad, G. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Restauration d'Images Biologiques 3D en Microscopie Confocale par Transformée en Ondelettes Complexes}, |
year |
= |
{2005}, |
month |
= |
{février}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5507}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070500}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70500/filename/RR-5507.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/05/00/PS/RR-5507.ps}, |
keyword |
= |
{Microscopie confocale, Transformee en ondelettes complexes 3D, Restauration, Debruitage, Deconvolution} |
} |
Résumé :
La microscopie confocale est une méthode puissante pour l'imagerie 3D de spécimens biologiques. Néanmoins, les images acquises sont dégradées non seulement par du flou dû à la lumière provenant de zones non focalisées du spécimen, mais aussi par un bruit de Poisson dû à la détection. Plusieurs algorithmes de déconvolution ont été proposés pour réduire ces dégradations. Un des plus utilisés est l'algorithme itératif de Richardson-Lucy, qui calcule un maximum de vraisemblance adapté à une statistique poissonienne. Mais cet algorithme tend à amplifier le bruit. Une solution consiste alors à introduire une contrainte de régularisation (par exemple, fondée sur la Variation Totale). Ici, nous nous concentrons sur des méthodes fondées sur l'analyse par ondelettes, en particulier sur des méthodes de débruitage via la transformée en ondelettes, qui semblent être plus appropriées à la microscopie en fluorescence 3D. Nous développons dans ce rapport un algorithme de Transformation en Ondelettes Complexes 3D introduit par N. Kingsbury. Celui-ci permet une décomposition invariante par translation et rotation et une sélectivité directionnelle des coefficients en ondelettes. Nous montrons sur des images synthétiques et sur des images réelles les résultats de cet algorithme de débruitage. Ce dernier est ensuite inséré dans le processus de déconvolution. |
Abstract :
Confocal laser scanning microscopy is a powerful technique for 3D imaging of biological specimens. However the acquired images are degraded by blur from out-of-focus light and Poisson noise. Several deconvolution algorithms have been proposed to reduce these degradations, including the Richardson-Lucy iterative algorithm, which computes a maximum likelihood estimation adapted to Poisson statistics. Nevertheless, this algorithm tends to amplify noise. Other solutions exist which combine Richardson-Lucy algorithm and regularization (for example with a Total Variation constraint). In this report, we will concentrate on methods based on wavelet analysis, in particular on wavelet denoising methods, which turn out to be very effective in application to 3D confocal images. To obtain a translation and rotation invariant decomposition algorithm, we have developped the 3D Complex Wavelet Transform introduced by Nick Kingsbury. These wavelets allow moreover a directional selectivity of the wavelet coefficients. We show on simulated and real images the denoising results. This algorithm is then used for the deconvolution purpose. |
|
2 - Flattening of 3D Data. R. Acar et B.W. Seales. Rapport de Recherche 5048, INRIA, France, décembre 2003. Mots-clés : Conservation numerique, Analyse de documents, Restauration.
@TECHREPORT{Acar03,
|
author |
= |
{Acar, R. and Seales, B.W.}, |
title |
= |
{Flattening of 3D Data}, |
year |
= |
{2003}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5048}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071535}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71535/filename/RR-5048.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/15/35/PS/RR-5048.ps}, |
keyword |
= |
{Conservation numerique, Analyse de documents, Restauration} |
} |
Résumé :
Le but du projet de la bibliothèque numérique est de numériser les collections spéciales des bibliothèques; ceci consiste à transformer en données binaires des photographies du contenu de manuscripts rares ou anciens. L'objet, typiquement, n'est pas dans un plan. On enregistre, en même temps que des photographies de l'objet non plat et du texte déformé qui s'y trouve, la forme et la position de sa surface en utilisant un laseromètre. La manière de se servir de cette information pour enlever la distortion de la photographie avant d'enregistrer l'image numérique est alors un problème mathématique. Nous en examinons une formulation variationnelle et l'implantation correspondante. |
Abstract :
The digital library project strives to digitise special collections of libraries; this consists in storing as binary data, photographs of the content of ancient or rare manuscripts. The object is typically not in a flat plane. One collects, along with the photograph of the unflattened object (and the inevitably distorted text), a positional reading of its surface using laserometer. It is then a mathematical problem of how to use the latter information to undo the distortion of the photograph before storing the digitised image. |
|
3 - Image Decomposition : Application to Textured Images and SAR Images. J.F. Aujol et G. Aubert et L. Blanc-Féraud et A. Chambolle. Rapport de Recherche 4704, INRIA, France, janvier 2003. Mots-clés : Variation totale, Espace Variations Bornees, Texture, Classification, Restauration, Radar a Ouverture Synthetique (SAR).
@TECHREPORT{4704,
|
author |
= |
{Aujol, J.F. and Aubert, G. and Blanc-Féraud, L. and Chambolle, A.}, |
title |
= |
{Image Decomposition : Application to Textured Images and SAR Images}, |
year |
= |
{2003}, |
month |
= |
{janvier}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{4704}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071882}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71882/filename/RR-4704.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/18/82/PS/RR-4704.ps}, |
keyword |
= |
{Variation totale, Espace Variations Bornees, Texture, Classification, Restauration, Radar a Ouverture Synthetique (SAR)} |
} |
Résumé :
Dans ce rapport, nous présentons un nouvel algorithme pour décomposer une imagef en u+v, u étant à variation bornée, et v contenant les textures et le bruit de l'image originale. Nous introduisons une fonctionnelle adaptée à ce problème. Le minimum de cette fonctionnelle correspond à la décomposition cherchée de l'image. Le calcul de ce minimum se fait par minimisation successive par rapport à chacune des variables, chaque minimisati- on étant réalisée à l'aide d'un algorithme de projection. Nous faisons l'étude théorique de notre modèle, et nous présentons des résultats numériques. D'une part, nous montrons comment la composante v peut être utilisée pour faire de la classification d'images texturées, et d'autre part nous montrons comment la composante u peut être utilisée en restauration d'images SAR. |
Abstract :
In this report, we present a new algorithm to split an image f into a component u belonging to BV and a component v made of textures and noise of the initial image. We introduce a functional adapted to this problem. The minimum of this functional corresponds to the image decomposition we want to get. We compute this minimum by minimizing successively our functional with respect to u and v. We carry out the mathematical study of our algorithm. We present some numerical results. On the one hand, we show how the v component can be used to classify textured images, and on the other hand, we show how the u component can be used in SAR image restoration. |
|
4 - Isotropic Properties of Some Multi-body Interaction Models: Two Quality Criteria for Markov Priors in Image Processing. X. Descombes et E. Pechersky. Rapport de Recherche 3752, Inria, août 1999. Mots-clés : Champs de Gibbs, Segmentation, Restauration.
@TECHREPORT{xd99k,
|
author |
= |
{Descombes, X. and Pechersky, E.}, |
title |
= |
{Isotropic Properties of Some Multi-body Interaction Models: Two Quality Criteria for Markov Priors in Image Processing}, |
year |
= |
{1999}, |
month |
= |
{août}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3752}, |
url |
= |
{http://hal.inria.fr/inria-00072910}, |
pdf |
= |
{http://hal.inria.fr/docs/00/07/29/10/PDF/RR-3752.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/29/10/PS/RR-3752.ps}, |
keyword |
= |
{Champs de Gibbs, Segmentation, Restauration} |
} |
Résumé :
Les champs de Gibbs sont très utilisés en traitement d'image à la fois pour la segmentation et la restauration. Définis sur la trâme discrète sous-jacente à l'image, ils présentent un comportement non isotrope. Dans ce rapport, nous étudions et quantifions cette non-isotropie, pour des modèles avec des interactions 3x3, en calculant la tension de bord en fonction de l'angle d'une droite séparant le plan en deux parties contenant une phase différente. De cette étude, nous dérivons deux critères quantitatifs d'anisotropie des modèles. Nous calculons ensuite la forme d'une goutte d'une phase immergée dans une autre phase à la température nulle pour les différents modèles, et étudions la non isotropie des formes obtenues. Pour finir, les artéfacts induits par cette non-isotropie sont mis en évidence sur des exemples de segmentation et de restauration d'image. |
Abstract :
Gibbs Fields are widely used in image processing for both segmentation and restoration. Defined on a discrete lattice representing the image they exhibit a non-isotropic behavior. Herein, we study and quantify this non-isotropy by computing the boundary tension as a function of the angle of a line separating the plane in two parts containing a different phase. From this study, we derive two quantitative criteria of the non isotropy of the model. We then compute the shape at zero temperature of a droplet of one phase within the other phase and study the non-isotropy of the shape for the different models. Finally, we show the artifacts due to this non-isotropic behavior for image segmentation and restoration. |
|
haut de la page
Ces pages sont générées par
|