|
Publications sur Richardson-Lucy algorithm
Résultat de la recherche dans la liste des publications :
Article de conférence |
1 - Blind deconvolution for diffraction-limited fluorescence microscopy. P. Pankajakshan et B. Zhang et L. Blanc-Féraud et Z. Kam et J.C. Olivo-Marin et J. Zerubia. Dans Proc. IEEE International Symposium on Biomedical Imaging (ISBI), pages 740-743, Paris, France, mai 2008. Mots-clés : Microscopie confocale, Blind Deconvolution, point spread function, Richardson-Lucy algorithm, total variation regularization. Copyright : This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
@INPROCEEDINGS{ppankajakshan08a,
|
author |
= |
{Pankajakshan, P. and Zhang, B. and Blanc-Féraud, L. and Kam, Z. and Olivo-Marin, J.C. and Zerubia, J.}, |
title |
= |
{Blind deconvolution for diffraction-limited fluorescence microscopy}, |
year |
= |
{2008}, |
month |
= |
{mai}, |
booktitle |
= |
{Proc. IEEE International Symposium on Biomedical Imaging (ISBI)}, |
pages |
= |
{740-743}, |
address |
= |
{Paris, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2008_ppankajakshan08a.pdf}, |
keyword |
= |
{Microscopie confocale, Blind Deconvolution, point spread function, Richardson-Lucy algorithm, total variation regularization} |
} |
Abstract :
Optical Sections of biological samples obtained from a fluorescence Confocal Laser Scanning Microscopes (CLSM) are often degraded by out-of-focus blur and photon counting noise. Such physical constraints on the observation are a result of the diffraction-limited nature of the optical system, and the reduced amount of light detected by the photomultiplier respectively. Hence, the image stacks can benefit from postprocessing restoration methods based on deconvolution. The parameters of the acquisition system’s Point Spread Function (PSF) may vary during the course of experimentation, and so they have to be estimated directly from the observation data. We describe here an alternate minimization algorithm for the simultaneous blind estimation of the specimen 3D distribution of fluorescent sources and the PSF. Experimental results on real data show that the algorithm provides very good deconvolution results in comparison to theoretical microscope PSF models. |
|
haut de la page
Rapport de recherche et Rapport technique |
1 - Parametric blind deconvolution for confocal laser scanning microscopy-proof of concept. P. Pankajakshan et L. Blanc-Féraud et B. Zhang et Z. Kam et J.C. Olivo-Marin et J. Zerubia. Rapport de Recherche 6493, INRIA, avril 2008. Mots-clés : Confocal Laser Scanning Microscopy, Bayesian restoration, Blind Deconvolution, point spread function, Richardson-Lucy algorithm, Variation totale. Copyright : ARIANA/INRIA
@TECHREPORT{ppankajakshan08b,
|
author |
= |
{Pankajakshan, P. and Blanc-Féraud, L. and Zhang, B. and Kam, Z. and Olivo-Marin, J.C. and Zerubia, J.}, |
title |
= |
{Parametric blind deconvolution for confocal laser scanning microscopy-proof of concept}, |
year |
= |
{2008}, |
month |
= |
{avril}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6493}, |
url |
= |
{https://hal.inria.fr/inria-00269265}, |
pdf |
= |
{http://hal.inria.fr/docs/00/27/02/92/PDF/report.pdf}, |
keyword |
= |
{Confocal Laser Scanning Microscopy, Bayesian restoration, Blind Deconvolution, point spread function, Richardson-Lucy algorithm, Variation totale} |
} |
Résumé :
Nous proposons une méthode de restauration itérative d’images de fluorescence
CLSM et d’estimation paramétrique de la fonction de flou (PSF) du système d’acquisition.
Le CLSM est un microscope qui balaye un échantillon en 3D et utilise une sténopée pour
rejeter la lumière en dehors du point de focalisation. Néanmoins, la qualité des images
souffre de deux limitations physiques. La première est due à la diffraction due au système
optique et la seconde est due à la quantité réduite de lumière détectée par le tube
photo-multiplicateur (PMT). Ces limitations induisent respectivement un flou et du bruit
de comptage de photons. Les images peuvent alors bénéficier d’un post-traitement de
restauration fondé sur la déconvolution. Le problème à traiter est l’estimation simultanée
de la distribution 3D de l’échantillon des sources fluorescentes et de la PSF du microscope
(i.e. de déconvolution aveugle). En utilisant un modèle de processus physique
d’acquisition d’images microscopiques (CLSM), on réduit le nombre de paramètres libres
décrivant la PSF et on introduit des contraintes. On introduit aussi des connaissances a
priori sur l’échantillon ce qui permet de stabiliser le processus d’estimation et de favoriser
la convergence. Des expériences sur des données synthétiques montrent que la PSF peut
être estimée avec précision. Des expériences sur des données réelles montrent de bons
resultats de déconvolution en comparaison avec le modèle théorique de la PSF du microscope. |
Abstract :
We propose a method for the iterative restoration of fluorescence Confocal Laser Scanning Microscope (CLSM) images with parametric estimation of the acquisition system’s Point Spread Function (PSF). The CLSM is an optical fluorescence microscope that scans a specimen in 3D and uses a pinhole to reject most of the out-of-focus light. However, the quality of the image suffers from two primary physical limitations. The first is due to the diffraction-limited nature of the optical system and the second is due to the reduced amount of light detected by the photomultiplier tube (PMT). These limitations cause blur and photon counting noise respectively. The images can hence benefit from post-processing restoration methods based on deconvolution. An efficient method for parametric blind image deconvolution involves the simultaneous estimation of the specimen 3D distribution of fluorescent sources and the microscope PSF. By using a model for the microscope image acquisition physical process, we reduce the number of free parameters describing the PSF and introduce constraints. The parameters of the PSF may vary during the course of experimentation, and so they have to be estimated directly from the observation data. We also introduce a priori knowledge of the specimen that permits stabilization of the estimation process and favorizes the convergence. Experiments on simulated data show that the PSF could be estimatedwith a higher degree of accuracy and those done on real data show very good deconvolution results in comparison to the theoretical microscope PSF model. |
|
haut de la page
Ces pages sont générées par
|