|
Publications sur Processus ponctuels marques
Résultat de la recherche dans la liste des publications :
5 Articles |
1 - Building Development Monitoring in Multitemporal Remotely Sensed Image Pairs with Stochastic Birth-Death Dynamics. C. Benedek et X. Descombes et J. Zerubia. IEEE Trans. Pattern Analysis and Machine Intelligence, 34(1): pages 33-50, janvier 2012. Mots-clés : Building extraction, Change detection, Processus ponctuels marques, multiple birth-and-death dynamics. Copyright : IEEE
@ARTICLE{benedekPAMI11,
|
author |
= |
{Benedek, C. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Building Development Monitoring in Multitemporal Remotely Sensed Image Pairs with Stochastic Birth-Death Dynamics}, |
year |
= |
{2012}, |
month |
= |
{janvier}, |
journal |
= |
{IEEE Trans. Pattern Analysis and Machine Intelligence}, |
volume |
= |
{34}, |
number |
= |
{1}, |
pages |
= |
{33-50}, |
url |
= |
{http://dx.doi.org/10.1109/TPAMI.2011.94}, |
keyword |
= |
{Building extraction, Change detection, Processus ponctuels marques, multiple birth-and-death dynamics} |
} |
Abstract :
In this paper we introduce a new probabilistic method which integrates building extraction with change detection in remotely sensed image pairs. A global optimization process attempts to find the optimal configuration of buildings, considering the observed data, prior knowledge, and interactions between the neighboring building parts. We present methodological contributions in three key issues: (1) We implement a novel object-change modeling approach based on Multitemporal Marked Point Processes, which simultaneously exploits low level change information between the time layers and object level building description to recognize and separate changed and unaltered buildings. (2) To answering the challenges of data heterogeneity in aerial and satellite image repositories, we construct a flexible hierarchical framework which can create various building appearance models from different elementary feature based modules. (3) To simultaneously ensure the convergence, optimality and computation complexity constraints raised by the increased data quantity, we adopt the quick Multiple Birth and Death optimization technique for change detection purposes, and propose a novel non-uniform stochastic object birth process, which generates relevant objects with higher probability based on low-level image features. |
|
2 - A Marked Point Process Model Including Strong Prior Shape Information Applied to Multiple Object Extraction From Images. M. S. Kulikova et I. H. Jermyn et X. Descombes et E. Zhizhina et J. Zerubia. International Journal of Computer Vision and Image Processing, 1(2): pages 1-12, 2011. Mots-clés : Contour actif, Processus ponctuels marques, multiple birth-and-death dynamics, multiple object extraction, Shape prior.
@ARTICLE{kulikova_ijcvip2010,
|
author |
= |
{Kulikova, M. S. and Jermyn, I. H. and Descombes, X. and Zhizhina, E. and Zerubia, J.}, |
title |
= |
{A Marked Point Process Model Including Strong Prior Shape Information Applied to Multiple Object Extraction From Images}, |
year |
= |
{2011}, |
journal |
= |
{International Journal of Computer Vision and Image Processing}, |
volume |
= |
{1}, |
number |
= |
{2}, |
pages |
= |
{1-12}, |
url |
= |
{http://hal.archives-ouvertes.fr/hal-00804118}, |
keyword |
= |
{Contour actif, Processus ponctuels marques, multiple birth-and-death dynamics, multiple object extraction, Shape prior} |
} |
Abstract :
Object extraction from images is one of the most important tasks in remote sensing image analysis. For accurate extraction from very high resolution (VHR) images, object geometry needs to be taken into account. A method for incorporating strong yet flexible prior shape information into a marked point process model for the extraction of multiple objects of complex shape is presented. To control the computational complexity, the objects considered are defined using the image data and the prior shape information. To estimate the optimal configuration of objects, the process is sampled using a Markov chain based on a stochastic birth-and-death process on the space of multiple objects. The authors present several experimental results on the extraction of tree crowns from VHR aerial images. |
|
3 - Unsupervised line network extraction in remote sensing using a polyline process. C. Lacoste et X. Descombes et J. Zerubia. Pattern Recognition, 43(4): pages 1631-1641, avril 2010. Mots-clés : Processus ponctuels marques, Reseaux lineiques, Road network extraction.
@ARTICLE{lacoste10,
|
author |
= |
{Lacoste, C. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Unsupervised line network extraction in remote sensing using a polyline process}, |
year |
= |
{2010}, |
month |
= |
{avril}, |
journal |
= |
{Pattern Recognition}, |
volume |
= |
{43}, |
number |
= |
{4}, |
pages |
= |
{1631-1641}, |
url |
= |
{http://dx.doi.org/10.1016/j.patcog.2009.11.003}, |
keyword |
= |
{Processus ponctuels marques, Reseaux lineiques, Road network extraction} |
} |
Abstract :
Marked point processes provide a rigorous framework to describe a scene by an unordered set of objects. The efficiency of this modeling has been shown on line network extraction with models manipulating interacting segments. In this paper, we extend this previous modeling to polylines composed of an unknown number of segments. Optimization is done via simulated annealing using a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm. We accelerate the convergence of the algorithm by using appropriate proposal kernels. Results on aerial and satellite images show that this new model outperforms the previous one. |
|
4 - Object Extraction Using a Stochastic Birth-and-Death Dynamics in Continuum. X. Descombes et R. Minlos et E. Zhizhina. Journal of Mathematical Imaging and Vision, 33(3): pages 347-359, 2009. Mots-clés : birth and death process, Processus ponctuels marques, Extraction d'objets. Copyright : Springer
@ARTICLE{DZM08,
|
author |
= |
{Descombes, X. and Minlos, R. and Zhizhina, E.}, |
title |
= |
{Object Extraction Using a Stochastic Birth-and-Death Dynamics in Continuum}, |
year |
= |
{2009}, |
journal |
= |
{Journal of Mathematical Imaging and Vision}, |
volume |
= |
{33}, |
number |
= |
{3}, |
pages |
= |
{347-359}, |
pdf |
= |
{http://dx.doi.org/10.1007/s10851-008-0117-y}, |
keyword |
= |
{birth and death process, Processus ponctuels marques, Extraction d'objets} |
} |
Abstract :
We define a new birth and death dynamics dealing with configurations of disks in the plane. We prove the convergence of the continuous process and propose a discrete scheme converging to the continuous case. This framework is developed to address image processing problems consisting in detecting a configuration of objects from a digital image. The derived algorithm is applied for tree crown extraction and bird detection from aerial images. The performance of this approach is shown on real data. |
|
5 - Building Outline Extraction from Digital Elevation Models using Marked Point Processes. M. Ortner et X. Descombes et J. Zerubia. International Journal of Computer Vision, 72(2): pages 107-132, avril 2007. Mots-clés : RJMCMC, Batiments, Geometrie stochastique, Processus ponctuels marques, Modele numerique d'elevation (MNE).
@ARTICLE{ortner_ijcv_05,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Building Outline Extraction from Digital Elevation Models using Marked Point Processes}, |
year |
= |
{2007}, |
month |
= |
{avril}, |
journal |
= |
{International Journal of Computer Vision}, |
volume |
= |
{72}, |
number |
= |
{2}, |
pages |
= |
{107-132}, |
url |
= |
{http://www.springerlink.com/content/d563v16957427102/?p=873bd324c7c14049a45cc1f2905b5a86&pi=0}, |
keyword |
= |
{RJMCMC, Batiments, Geometrie stochastique, Processus ponctuels marques, Modele numerique d'elevation (MNE)} |
} |
|
haut de la page
5 Thèses de Doctorat et Habilitations |
1 - Shape recognition for image scene analysis. M. S. Kulikova. Thèse de Doctorat, Universite de Nice - Sophia-Antipolis, décembre 2009. Mots-clés : tree crown , Classification, Forme, multiple object extraction, Processus ponctuels marques, Shape prior.
@PHDTHESIS{mkulikova_phd09,
|
author |
= |
{Kulikova, M. S.}, |
title |
= |
{Shape recognition for image scene analysis}, |
year |
= |
{2009}, |
month |
= |
{décembre}, |
school |
= |
{Universite de Nice - Sophia-Antipolis}, |
url |
= |
{http://tel.archives-ouvertes.fr/docs/00/48/20/19/PDF/phd_mkulikova_2009.pdf}, |
keyword |
= |
{tree crown , Classification, Forme, multiple object extraction, Processus ponctuels marques, Shape prior} |
} |
Résumé :
Cette thèse est composée de deux parties principales. La première partie est dédiée au problème de la classification d’espèces d’arbres en utilisant des descripteurs de forme, en combainison ou non, avec ceux de radiométrie ou de texture. Nous montrons notamment que l’information sur la forme améliore la performance d’un classifieur. Pour ce faire, dans un premier temps, une étude des formes de couronnes d’arbres extraites à partir d’images aériennes, en infrarouge couleur, est eectuée en utilisant une méthodologie d’analyse de
formes des courbes continues fermées dans un espace de formes, en utilisant la notion de chemin géodésique sous deux métriques dans des espaces appropriés : une métrique non-élastique en utilisant la reprèsentation par la fonction d’angle de la courbe, ainsi qu’une métrique élastique induite par une représentation par la racinecarée appelée q-fonction. Une étape préliminaire nécessaire à la classification est l’extraction des couronnes d’arbre. Dans une seconde partie, nous abordons donc le problème de l’extraction d’objets de forme complexe
arbitraire, à partir d’images de télédétection à très haute résolution. Nous construisons un modèle fondé sur les processus ponctuels marqués. Son originalité tient dans sa prise en compte d’objets de forme arbitraire par rapport aux objets de forme paramétrique, e.g. ellipses ou rectangles. Les formes sélectionnées sont obtenues par la minimisation locale d’une énergie de type contours actifs avec diérents a priori sur la forme incorporé. Les objets de la configuration finale (optimale) sont ensuite sélectionnés parmi les candidats par une dynamique
de naissances et morts multiples, couplée à un schéma de recuit simulé. L’approche est validée sur des images de zones forestières à très haute résolution fournies par l’Université d’Agriculture de Suède. |
Abstract :
This thesis includes two main parts. In the first part we address the problem of tree crown classification into species using shape features, without, or in combination with, those of radiometry and texture, to demonstrate that shape information improves classification performance. For this purpose, we first study the shapes of tree crowns extracted from very high resolution colour aerial infra-red images. For our study, we choose a methodology based on the shape analysis of closed continuous curves on shape spaces using geodesic paths under the bending metric with the angle-function curve representation, and the elastic metric with the square root
q-function representation. A necessary preliminary step to classification is extraction of the tree crowns. In the second part, we address thus the problem of extraction of multiple objects with complex, arbitrary shape from remote sensing images of very high resolution. We develop a model based on marked point processes. Its originality lies in its use of arbitrarily-shaped objects as opposed to parametric shape objects, e.g. ellipses or rectangles. The shapes considered are obtained by local minimisation of an active contour energy with weak and then strong shape prior knowledge included. The objects in the final (optimal) configuration are then selected from amongst these candidates by a multiple birth-and-death dynamics embedded in an annealing scheme. The approach is validated on very high resolution images of forest provided by the Swedish University of Agriculture. |
|
2 - Etude du couvert forestier par processus ponctuels marqués. G. Perrin. Thèse de Doctorat, Ecole Centrale Paris, octobre 2006. Mots-clés : Extraction de Houppiers, Processus ponctuels marques, Geometrie stochastique, Extraction d'objets, RJMCMC.
@PHDTHESIS{perrin_phd06,
|
author |
= |
{Perrin, G.}, |
title |
= |
{Etude du couvert forestier par processus ponctuels marqués}, |
year |
= |
{2006}, |
month |
= |
{octobre}, |
school |
= |
{Ecole Centrale Paris}, |
url |
= |
{http://www-sop.inria.fr/ariana/personnel/Guillaume.Perrin/resume.php}, |
pdf |
= |
{http://www-sop.inria.fr/ariana/personnel/Guillaume.Perrin/DOWNLOADS/these_perrin_2006.pdf}, |
keyword |
= |
{Extraction de Houppiers, Processus ponctuels marques, Geometrie stochastique, Extraction d'objets, RJMCMC} |
} |
Résumé :
Cette thèse aborde le problème de l'extraction d'arbres à partir d'images aériennes InfraRouge Couleur (IRC) de forêts. Nos modèles reposent sur l'utilisation de processus objets ou processus ponctuels marqués. Il s'agit de variables aléatoires dont les réalisations sont des configurations d'objets géométriques. Une fois l'objet géométrique de référence choisi, nous définissons l'énergie du processus par le biais d'un terme a priori, modélisant les contraintes sur les objets et leurs interactions, ainsi qu'un terme image. Nous échantillonnons le processus objet grâce à un algorithme de type Monte Carlo par Chaînes de Markov à sauts réversibles (RJMCMC), optimisé par un recuit simulé afin d'extraire la meilleure configuration d'objets, qui nous donne l'extraction recherchée.
Dans ce manuscrit, nous proposons différents modèles d'extraction de houppiers, qui extraient des informations à l'échelle de l'arbre selon la densité du peuplement. Dans les peuplements denses, nous présentons un processus d'ellipses, et dans les zones de plus faible densité, un processus d'ellipsoïdes. Nous obtenons ainsi le nombre d'arbres, leur localisation, le diamètre de la couronne et leur hauteur pour les zones non denses. Les algorithmes automatiques résultant de cette modélisation sont testés sur des images IRC très haute résolution fournies par l'Inventaire Forestier National (IFN). |
Abstract :
This thesis addresses the problem of tree crown extraction from Colour InfraRed (CIR) aerial images of forests. Our models are based on object processes, otherwise known as marked point processes. These mathematical objects are random variables whose realizations are configurations of geometrical shapes. This approach yields an energy minimization problem, where the energy is composed of a regularization term (prior density), which introduces some constraints on the objects and their interactions, and a data term, which links the objects to the features to be extracted. Once the reference object has been chosen, we sample the process and extract the best configuration of objects with respect to the energy, using a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm embedded in a Simulated Annealing scheme.
We propose different models for tree crown extraction depending on the density of the stand. In dense areas, we use an ellipse process, while in sparse vegetation an ellipsoïd process is used. As a result we obtain the number of stems, their position, the diameters of the crowns and the heights of the trees for sparse areas. The resulting algorithms are tested on high resolution CIR aerial images provided by the French National Forest Inventory (IFN). |
|
3 - Processus Ponctuels Marqués pour l'Extraction Automatique de Caricatures de Bâtiments à partir de Modèles Numériques d'Elévation. M. Ortner. Thèse de Doctorat, Universite de Nice Sophia Antipolis, octobre 2004. Mots-clés : Processus ponctuels marques, Extraction d'objets, Batiments, Modele numerique d'elevation (MNE), RJMCMC, Geometrie stochastique.
@PHDTHESIS{mortner_these,
|
author |
= |
{Ortner, M.}, |
title |
= |
{Processus Ponctuels Marqués pour l'Extraction Automatique de Caricatures de Bâtiments à partir de Modèles Numériques d'Elévation}, |
year |
= |
{2004}, |
month |
= |
{octobre}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
url |
= |
{https://hal.inria.fr/tel-00189803}, |
pdf |
= |
{http://hal.inria.fr/docs/00/18/98/03/PDF/These_Ortner.pdf}, |
keyword |
= |
{Processus ponctuels marques, Extraction d'objets, Batiments, Modele numerique d'elevation (MNE), RJMCMC, Geometrie stochastique} |
} |
Résumé :
Cette thèse se place dans un cadre de reconstruction urbaine et propose un corpus algorithmique pour extraire des formes simples sur les Modèles Numériques d'Elévation. Ce type de données décrit le relief d'une zone urbaine par une grille régulière de points à chacun desquels est associée une information de hauteur.
Les modèles utilisés reposent sur l'utilisation de processus ponctuels marqués. Il s'agit de variables aléatoires dont les réalisations sont des configurations d'objets géométriques. Ces modèles permettent d'introduire des contraintes sur la forme des objets recherchés dans une image ainsi qu'un terme de régularisation modélisé par des interactions entre les objets. Une énergie peut être associée aux configurations d'objets et la configuration minimisant cette énergie trouvée au moyen d'un recuit-simulé couplé à un échantillonneur de type Monte Carlo par Chaîne de Markov à sauts réversibles (RJMCMC).
Nous proposons quatre modèles pour extraire des caricatures de bâtiments à partir de descriptions altimétriques de zones urbaines denses. Chaque modèle est constitué par une forme d'objet, une énergie d'attache aux données et une énergie de régularisation. Les deux premiers modèles permettent d'extraire des formes simples (rectangles) en utilisant une contrainte d'homogénéité pour l'un et une détection des discontinuités pour l'autre. Le troisième modèle modélise les bâtiments par une forme polyhédrique. Le dernier modèle s'intéresse à l'apport d'une coopération entre des objets simples. Les algorithmes obtenus, automatiques, sont évalués sur des données réelles fournies par l'IGN (MNE Laser et optiques de différentes qualités). |
Abstract :
The context of this thesis is the reconstruction of urban areas from images. It proposes a set of algorithms for extracting simple shapes from Digital Elevation Models (DEM). DEMs describe the altimetry of an urban area by a grid of points, each of which has a height associated to it.
The proposed models are based on marked point processes. These mathematical objects are random variables whose realizations are configurations of geometrical shapes. Using these processes, we can introduce constraints on the shape of the objects to be detected in an image, and a regularizing term incorporating geometrical interactions between objects. An energy can be associated to each object configuration, and the global minima of this energy can then be found by applying simulated annealing to a Reversible Jump Monte Carlo Markov Chain sampler (RJMCMC).
We propose four different models for extracting the outlines of buildings from altimetric descriptions of dense urban areas. Each of these models is constructed from an object shape, a data energy, and a regularizing energy.
The first two models extract simple shapes (rectangles) using, respectively, a homogeneity constraint and discontinuity detection. The third model looks for three-dimensional polyhedral buildings. The last model uses cooperation between two types of objects, rectangles and segments.
The resulting algorithms are evaluated on real data provided by the French National Geographic Institute (a laser DEM and optical DEMs of differing quality). |
|
4 - Extraction de Réseaux Linéiques à partir d'Images Satellitaires et Aériennes par Processus Ponctuels Marqués. C. Lacoste. Thèse de Doctorat, Universite de Nice Sophia Antipolis, septembre 2004. Mots-clés : Geometrie stochastique, Extraction d'objets, RJMCMC, Reseaux lineiques, Recuit Simule, Processus ponctuels marques.
@PHDTHESIS{lacoste_these,
|
author |
= |
{Lacoste, C.}, |
title |
= |
{Extraction de Réseaux Linéiques à partir d'Images Satellitaires et Aériennes par Processus Ponctuels Marqués}, |
year |
= |
{2004}, |
month |
= |
{septembre}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
url |
= |
{https://hal.inria.fr/tel-00261397}, |
pdf |
= |
{http://hal.inria.fr/docs/00/26/13/97/PDF/THESE_CAROLINE_LACOSTE.pdf}, |
keyword |
= |
{Geometrie stochastique, Extraction d'objets, RJMCMC, Reseaux lineiques, Recuit Simule, Processus ponctuels marques} |
} |
Résumé :
Cette thèse aborde le problème de l'extraction non supervisée des réseaux linéiques (routes, rivières, etc.) à partir d'images satellitaires et aériennes. Nous utilisons des processus objet, ou processus ponctuels marqués, comme modèles a priori. Ces modèles permettent de bénéficier de l'apport d'un cadre stochastique (robustesse au bruit, corpus algorithmique, etc.) tout en manipulant des contraintes géométriques fortes. Un recuit simulé sur un algorithme de type Monte Carlo par Chaîne de Markov (MCMC) permet une optimisation globale sur l'espace des configurations d'objets, indépendamment de l'initialisation.
Nous proposons tout d'abord une modélisation du réseau linéique par un processus dont les objets sont des segments interagissant entre eux. Le modèle a priori est construit de façon à exploiter au mieux la topologie du réseau recherché au travers de potentiels fondés sur la qualité de chaque interaction. Les propriétés radiométriques sont prises en compte dans un terme d'attache aux données fondé sur des mesures statistiques.
Nous étendons ensuite cette modélisation à des objets plus complexes. La manipulation de lignes brisées permet une extraction plus précise du réseau et améliore la détection des bifurcations.
Enfin, nous proposons une modélisation hiérarchique des réseaux hydrographiques dans laquelle les affluents d'un fleuve sont modélisés par un processus de lignes brisées dans le voisinage de ce fleuve.
Pour chacun des modèles, nous accélérons la convergence de l'algorithme MCMC par l'ajout de perturbations adaptées.
La pertinence de cette modélisation par processus objet est vérifiée sur des images satellitaires et aériennes, optiques et radar. |
Abstract :
This thesis addresses the problem of the unsupervised extraction of line networks (roads, rivers, etc.) from remotely sensed images. We use object processes, or marked point processes, as prior models. These models benefit from a stochastic framework (robustness w.r.t. noise, algorithms, etc.) while incorporating strong geometric constraints. Optimization is done via simulated annealing using a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm, without any specific initialization.
We first propose to model line networks by a process whose objects are interacting line segments. The prior model is designed to exploit as fully as possible the topological properties of the network under consideration through potentials based on the quality of each interaction. The radiometric properties of the network are modeled using a data term based on statistical measures.
We then extend this model to more complex objects. The use of broken lines improves the detection of network junctions and increases the accuracy of the extracted network.
Finally, we propose a hierarchical model of hydrographic networks in which the tributaries of a given river are modeled by a process of broken lines in the neighborhood of this river. For each model, we accelerate convergence of the RJMCMC algorithm by using appropriate perturbations.
We show experimental results on aerial and satellite images (optical and radar data) to verify the relevance of the object process models. |
|
5 - Processus ponctuels pour l'extraction de réseaux linéiques dans les images satellitaires et aériennes. R. Stoica. Thèse de Doctorat, Universite de Nice Sophia Antipolis, février 2001. Mots-clés : Processus ponctuels marques, Reseaux lineiques, Reseaux routiers, Geometrie stochastique, RJMCMC.
@PHDTHESIS{rs01,
|
author |
= |
{Stoica, R.}, |
title |
= |
{Processus ponctuels pour l'extraction de réseaux linéiques dans les images satellitaires et aériennes}, |
year |
= |
{2001}, |
month |
= |
{février}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
pdf |
= |
{Theses/These-stoica.pdf}, |
keyword |
= |
{Processus ponctuels marques, Reseaux lineiques, Reseaux routiers, Geometrie stochastique, RJMCMC} |
} |
Résumé :
Les réseaux routiers, ou les réseaux hydrographiques, les vaisseaux sanguins ou bien les fissures dans les matériaux sont connus dans la communauté du traitement d'image sous le nom générique de réseaux liné¨iques. La théorie des processus ponctuels marqués est un cadre mathématique rigoureux qui donne la possibilité de modéliser l'image comme un ensemble d'objets en interaction. Les deux idées principales qui ont motivé ce travail sont : ces réseaux sont approchés par de segments de droite connectés, et les réseaux liné¨iques dans une image sont la réalisation d'un processus ponctuel de Gibbs. Le processus ponctuel qui modèlise les réseaux comporte deux composantes. Le premier terme ("Candy" modèle) gère les états et les interactions entre segments : densité, connectivité, alignement et répulsion des segments. L'emplacement du réseau dans l'image est trouvé grâce au second terme, le terme d'attache aux données. Cette composante du modèle est construite à partir de tests d'hypothèses. L'estimateur des réseaux dans l'image est donné par le minimum d'une fonction d'énergie de Gibbs. Pour trouver l'optimum global de cette fonction, nous mettons en {\oe}uvre un algorithme de type recuit simulé qui s'appuie, sur une dynamique de type Monte Carlo par Chaînes de Markov (MCMC) à sauts réversibles. Des résultats sont présentes sur des images aériennes, SPOT et RADAR (RSO). Nous abordons ensuite deux de problèmes ouverts liés au "Candy" modèle, mais d'un interêt théorique général : la convergence d'une dynamique de Monte Carlo à sauts reversibles, et l'estimation des paramètres des processus ponctuels. Une solution à ces problèmes pourrait ouvrir une nouvelle direction dans la recherche de méthodes non-supervisése en traitement d'image. |
Abstract :
Road or hydrographical networks, blood vessels or fissures in materials are all known by the image processing community under the general name of line networks. The theory of point processes is a rigourous mathematical framework which allows us to model an image as a set of interacting objects. The two main ideas which are the basis of this work are : these networks can be considered as connected segments, and the line networks in an image are the realization of a Gibbs point process. The point process used to model the networks has two components. The first one (Candy model) deals with the states and the interaction of the segments : density, connectivity, alignment, attraction and rejection. The location of the network is determined by the second component, the data term. This component is based on hypothesis tests. The network estimator is given by the minimum of a Gibbs energy. We build a simulated annealing algorithm in order to avoid local minima. This algorithm uses reversible jump Monte Carlo Markov Chain (RJMCMC) dynamics. Results are shown on aerial, SPOT and RADAR (SAR) images. Finally, we start a study on two open problems related to the Candy model, but of general theoretical interest : the convergence of a RJMCMC dynamics, and parameter estimation related to point processes. A solution to these problems would give a new direction for the research of unsupervised methods in image processing. |
|
haut de la page
15 Articles de conférence |
1 - Multiple Birth and Cut Algorithm for Point Process Optimization. A. Gamal Eldin et X. Descombes et J. Zerubia. Dans Proc. IEEE International Conference on Signal-Image Technology and Internet-based Systems (SITIS), Kuala Lumpur, Malaysia, décembre 2010. Mots-clés : Multiple Birth and Cut, Graph Cut, Multiple Birth and Death, Processus ponctuels marques.
@INPROCEEDINGS{MBC_MPP_SITIS10,
|
author |
= |
{Gamal Eldin, A. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Multiple Birth and Cut Algorithm for Point Process Optimization}, |
year |
= |
{2010}, |
month |
= |
{décembre}, |
booktitle |
= |
{Proc. IEEE International Conference on Signal-Image Technology and Internet-based Systems (SITIS)}, |
address |
= |
{Kuala Lumpur, Malaysia}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00516305/fr/}, |
keyword |
= |
{Multiple Birth and Cut, Graph Cut, Multiple Birth and Death, Processus ponctuels marques} |
} |
Abstract :
In this paper, we describe a new optimization method which we call Multiple Birth and Cut (MBC). It combines the recently developed Multiple Birth and Death (MBD) algorithm and the Graph-Cut algorithm. MBD and MBC optimization methods are applied to the energy minimization of an object based model, the marked point process. We compare the MBC to the MBD showing the advantages and disadvantages, where the most important advantage is the reduction of the number of parameters. We validated our algorithm on the counting problem of flamingos in colony, where our algorithm outperforms the performance of the MBD algorithm. |
|
2 - Parameter estimation for a marked point process within a framework of multidimensional shape extraction from remote sensing images. S. Ben Hadj et F. Chatelain et X. Descombes et J. Zerubia. Dans Proc. ISPRS Technical Commission III Symposium on Photogrammetry Computer Vision and Image Analysis (PCV), Paris, France, septembre 2010. Mots-clés : Shape extraction, Processus ponctuels marques, RJMCMC, Recuit Simule, EM Stochastique (SEM).
@INPROCEEDINGS{sbenhadj10a,
|
author |
= |
{Ben Hadj, S. and Chatelain, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Parameter estimation for a marked point process within a framework of multidimensional shape extraction from remote sensing images}, |
year |
= |
{2010}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. ISPRS Technical Commission III Symposium on Photogrammetry Computer Vision and Image Analysis (PCV)}, |
address |
= |
{Paris, France}, |
url |
= |
{http://hal.archives-ouvertes.fr/docs/00/52/63/45/PDF/ISPRS_SBH_FC_XD_JZ_Final2.pdf}, |
keyword |
= |
{Shape extraction, Processus ponctuels marques, RJMCMC, Recuit Simule, EM Stochastique (SEM)} |
} |
|
3 - Building Detection in a Single Remotely Sensed Image with a Point Process of Rectangles. C. Benedek et X. Descombes et J. Zerubia. Dans Proc. International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, août 2010. Mots-clés : Processus ponctuels marques, multiple birth-and-death dynamics, Building extraction.
@INPROCEEDINGS{benedekICPR10,
|
author |
= |
{Benedek, C. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Building Detection in a Single Remotely Sensed Image with a Point Process of Rectangles}, |
year |
= |
{2010}, |
month |
= |
{août}, |
booktitle |
= |
{Proc. International Conference on Pattern Recognition (ICPR)}, |
address |
= |
{Istanbul, Turkey}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/inria-00481019/en/}, |
keyword |
= |
{Processus ponctuels marques, multiple birth-and-death dynamics, Building extraction} |
} |
Abstract :
In this paper we introduce a probabilistic approach of building extraction in remotely sensed images. To cope with data heterogeneity we construct a flexible hierarchical framework which can create various building appearance models from different elementary feature based modules. A global optimization process attempts to find the optimal configuration of buildings, considering simultaneously the observed data, prior knowledge, and interactions between the neighboring building parts. The proposed method is evaluated on various aerial image sets containing more than 500 buildings, and the results are matched against two state-of-the-art techniques. |
|
4 - Extraction of arbitrarily shaped objects using stochastic multiple birth-and-death dynamics and active contours. M. S. Kulikova et I. H. Jermyn et X. Descombes et E. Zhizhina et J. Zerubia. Dans Proc. IS&T/SPIE Electronic Imaging, San Jose, USA, janvier 2010. Mots-clés : Extraction d'objets, Processus ponctuels marques, Shape prior, Contour actif, birth-and-death dynamics. Copyright : Copyright 2010 by SPIE and IS&T. This paper was published in the proceedings of IS&T/SPIE Electronic Imaging 2010 Conference in San Jose, USA, and is made available as an electronic reprint with permission of SPIE and IS&T. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
@INPROCEEDINGS{Kulikova10a,
|
author |
= |
{Kulikova, M. S. and Jermyn, I. H. and Descombes, X. and Zhizhina, E. and Zerubia, J.}, |
title |
= |
{Extraction of arbitrarily shaped objects using stochastic multiple birth-and-death dynamics and active contours}, |
year |
= |
{2010}, |
month |
= |
{janvier}, |
booktitle |
= |
{Proc. IS&T/SPIE Electronic Imaging}, |
address |
= |
{San Jose, USA}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/46/54/72/PDF/Kulikova_SPIE2010.pdf}, |
keyword |
= |
{Extraction d'objets, Processus ponctuels marques, Shape prior, Contour actif, birth-and-death dynamics} |
} |
Abstract :
We extend the marked point process models that have been used for object extraction from images to arbitrarily shaped objects, without greatly increasing the computational complexity of sampling and estimation. From an alternative point of view, the approach can be viewed as an extension of the active contour methodology to an a priori unknown number of
objects. Sampling and estimation are based on a stochastic birth-and-death process defined on the configuration space of an arbitrary number of objects, where the objects are defined by the image data and prior information. The performance of the approach is demonstrated via experimental results on synthetic and real data. |
|
5 - A marked point process model with strong prior shape information for extraction of multiple, arbitrarily-shaped objects. M. S. Kulikova et I. H. Jermyn et X. Descombes et E. Zhizhina et J. Zerubia. Dans Proc. IEEE SITIS, Publ. IEEE Computer Society, Marrakech, Maroc, décembre 2009. Mots-clés : Extraction d'objets, Processus ponctuels marques, Shape prior, Contour actif, multiple birth-and-death dynamics.
@INPROCEEDINGS{Kulikova09a,
|
author |
= |
{Kulikova, M. S. and Jermyn, I. H. and Descombes, X. and Zhizhina, E. and Zerubia, J.}, |
title |
= |
{A marked point process model with strong prior shape information for extraction of multiple, arbitrarily-shaped objects}, |
year |
= |
{2009}, |
month |
= |
{décembre}, |
booktitle |
= |
{Proc. IEEE SITIS}, |
publisher |
= |
{IEEE Computer Society}, |
address |
= |
{Marrakech, Maroc}, |
pdf |
= |
{http://hal.inria.fr/docs/00/43/63/20/PDF/PID1054029.pdf}, |
keyword |
= |
{Extraction d'objets, Processus ponctuels marques, Shape prior, Contour actif, multiple birth-and-death dynamics} |
} |
Abstract :
We define a method for incorporating strong prior shape information into a recently extended Markov point process model for the extraction of arbitrarily-shaped objects from images. To estimate the optimal configuration of objects, the process is sampled using a Markov chain based on a stochastic birth-and-death process defined in a space of multiple
objects. The single objects considered are defined by both the image data
and the prior information in a way that controls the computational
complexity of the estimation problem. The method is tested via experiments
on a very high resolution aerial image of a scene composed of tree crowns. |
|
6 - Building Extraction and Change Detection in Multitemporal Remotely Sensed Images with Multiple Birth and Death Dynamics. C. Benedek et X. Descombes et J. Zerubia. Dans IEEE Workshop on Applications of Computer Vision (WACV), pages 100-105, Snowbird, Utah, USA, décembre 2009. Mots-clés : Processus ponctuels marques, Change detection, Aerial images, Building extraction, Imagerie satellitaire.
@INPROCEEDINGS{benedekWacv09,
|
author |
= |
{Benedek, C. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Building Extraction and Change Detection in Multitemporal Remotely Sensed Images with Multiple Birth and Death Dynamics}, |
year |
= |
{2009}, |
month |
= |
{décembre}, |
booktitle |
= |
{IEEE Workshop on Applications of Computer Vision (WACV)}, |
pages |
= |
{100-105}, |
address |
= |
{Snowbird, Utah, USA}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/42/66/18/PDF/benedekWACV09.pdf}, |
keyword |
= |
{Processus ponctuels marques, Change detection, Aerial images, Building extraction, Imagerie satellitaire} |
} |
Abstract :
In this paper we introduce a new probabilistic method which integrates building extraction with change detection in remotely sensed image pairs. A global optimization process attempts to find the optimal configuration of buildings, considering the observed data, prior knowledge, and interactions between the neighboring building parts. The accuracy is ensured by a Bayesian object model verification, meanwhile the computational cost is significantly decreased by a non-uniform stochastic object birth process, which proposes relevant objects with higher probability based on low-level image features.
|
|
7 - Object extraction from high resolution SAR images using a birth and death dynamics. F. Arslan et X. Descombes et J. Zerubia. Dans Proc. IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, novembre 2009. Mots-clés : High resolution SAR images, Extraction d'objets, Processus ponctuels marques, birth and death process.
@INPROCEEDINGS{Fatih09,
|
author |
= |
{Arslan, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Object extraction from high resolution SAR images using a birth and death dynamics}, |
year |
= |
{2009}, |
month |
= |
{novembre}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Cairo, Egypt}, |
url |
= |
{http://dx.doi.org/10.1109/ICIP.2009.5413907}, |
keyword |
= |
{High resolution SAR images, Extraction d'objets, Processus ponctuels marques, birth and death process} |
} |
Abstract :
We present a new approach to extract predefined objects, such as trees and oil tanks for instance, from high resolution SAR images. We consider a stochastic approach based on an object process also called marked point process. The objects represent trees or oil tanks which are modeled by disks in the image. We first define a Gibbs density that takes into account both prior information and the data. The energy we define is composed of two terms, one is a prior, penalizing overlaps between objects, and the other is a data term, which measures the suitability of an object in the SAR image. The problem is then reduced to an energy minimization problem. We sample the process to extract the configuration of objects minimizing the energy by a fast birth-and-death dynamics, leading to the total number of objects (trees or oil tanks in our case). This approach is much faster than manual counts and does not need any preprocessing or supervision of a user. |
|
8 - 2D and 3D Vegetation Resource Parameters Assessment using Marked Point Processes. G. Perrin et X. Descombes et J. Zerubia. Dans Proc. International Conference on Pattern Recognition (ICPR), Hong-Kong, août 2006. Mots-clés : Energie d'attache aux données, Extraction d'objets, Extraction de Houppiers, Geometrie stochastique, Processus ponctuels marques.
@INPROCEEDINGS{perrin_06_c,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{2D and 3D Vegetation Resource Parameters Assessment using Marked Point Processes}, |
year |
= |
{2006}, |
month |
= |
{août}, |
booktitle |
= |
{Proc. International Conference on Pattern Recognition (ICPR)}, |
address |
= |
{Hong-Kong}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_perrin_06_c.pdf}, |
keyword |
= |
{Energie d'attache aux données, Extraction d'objets, Extraction de Houppiers, Geometrie stochastique, Processus ponctuels marques} |
} |
Abstract :
High resolution aerial and satellite images of forests have a key role to play in natural resource management. As they enable to study forests at the scale of trees, it is now possible to get a more accurate evaluation of the forest resources, from which can be deduced information of biodiversity and ecological sustainability. In that prospect, automatic algorithms are needed to give a further exploitation of the data and to assist human operators. In this paper, we present a stochastic geometry approach to extract 2D and 3D parameters of the trees, by modelling the stands as some realizations of a marked point process of ellipses or ellipsoids, whose points are the positions of the trees and marks their geometric features. This approach gives also the number of stems, their position, and their size. It is an energy minimization problem, where the energy embeds a regularization term (prior density), which introduces some interactions between the objects, and a data term, which links the objects to the features to be extracted. Results are shown on aerial images provided by the French National Forest Inventory (IFN). |
|
9 - A comparative study of three methods for identifying individual tree crowns in aerial images covering different types of forests. M. Eriksson et G. Perrin et X. Descombes et J. Zerubia. Dans Proc. International Society for Photogrammetry and Remote Sensing (ISPRS), Marne La Vallee, France, juillet 2006. Mots-clés : Croissance de Region, Processus ponctuels marques, Champs de Markov, Extraction d'objets, Extraction de Houppiers.
@INPROCEEDINGS{eriksson06a,
|
author |
= |
{Eriksson, M. and Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A comparative study of three methods for identifying individual tree crowns in aerial images covering different types of forests}, |
year |
= |
{2006}, |
month |
= |
{juillet}, |
booktitle |
= |
{Proc. International Society for Photogrammetry and Remote Sensing (ISPRS)}, |
address |
= |
{Marne La Vallee, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_eriksson06a.pdf}, |
keyword |
= |
{Croissance de Region, Processus ponctuels marques, Champs de Markov, Extraction d'objets, Extraction de Houppiers} |
} |
Abstract :
Most of today's silviculture methods has the goal to optimise the outcome of the forest in stem volume when it is cut. It might also be relevant to save parts of the forest, for instance, to protect a habitat. In order to get a good survey of the forest, remote sensed images are often used. These images are most often manually interpreted in combination with field measurements in order to estimate the forest parameters that are of importance in the decision how to optimally maintain the forest. Among these parameters the most common are stem number, stem volume, and tree species. Interpretation of images are often labour and time consuming. Thus, automatically developed methods for interpretation can lower the work load and speed up the interpretation time.
The interpretation is often done using images captured from a far distance from the ground in order to capture as large area as possible. However, this lower the accuracy of the estimates since it must be done stand wise. Knowledge of where each individual trees in the forest is located together with its size will increase accuracy. It makes it also possible to plan the cutting in detail. With this knowledge in mind, research about finding automatically methods for finding individual tree crowns in aerial images has been a subject for researchers the last decades.
Today's methods are not capable to alone handle all kind of forests. Therefore, comparative studies of different segmentation methods with different types of forests are of importance in order to clarify how much a method is reliable at a certain type of forest. This knowledge can, for instance, be used to build up an expert system which are supposed to be able to find individual tree crowns in any kind of forests. The comparison is done using images covering different types of forests. The types of forests that are included in the study ranges from isolated tree crown where the ground is clearly visible between the crowns to dense forest which is naturally regenerated via planted forest.
In this study we compare three existing segmentation methods for extracting individual tree crowns from aerial images. The first two methods are probabilistic methods which minimises some energy function while the third is a region growing algorithm. The first probabilistic method is based on a Markov Random Field modelling. We define a prior Markov model to segment the image into three classes (background, vegetation and tree centres). The prior model embed a circular shape model of the tree crown with a random radius. The data term allows to well position the tree centres onto the image and to describe the tree shape as fluctuations around the circular template. Besides, some long range interactions models the relations between the trees locations, such as some periodicity in case of plantations.
The second probabilistic method consists in modeling the trees in the forestry images as random configurations of ellipses or ellipsoids, whose points are the positions of the stems and marks their geometric features. The density of this process embeds a regularization term (prior density), which introduces some interactions between the objects, and a data term, which links the objects to the features to be extracted. We estimate the best configuration of an unknown number of objects, from which 2D and 3D vegetation resource parameters can be extracted. To sample this marked point process, we use Monte Carlo dynamics, while the optimization is performed via a Simulated Annealing algorithm, which results in a fully automatic approach. This approach works well on plantations, where there are high spatial relations between the trees, and on isolated trees where 3D parameters can be extracted, but some difficulties remain in dense areas.
The third method, the region growing algorithm, relies as all region growing methods on good seed points, i.e. in this case approximate locations of the tree crowns. From the seed points the segments are grown according to a grey level value of the neighbouring pixels. The larger the value is the sooner it is connected to the neighbouring segment. The segments stops to grow when all pixels belongs to a segment. This method, contrary the others, will have as a result, segments that have captured the actual shape of the tree crown if the forest is not too sparse. If the forest is too sparse such that the ground is visible, there are problems of finding the seed points. In the cases when the forest is sparse, there are difficulties to separate the tree crowns from the ground. Even if the seed points would be located only at the tree crowns the result will contain a lot of errors since all pixels most belong to a segment, i.e. even the ground pixels must be connected to a segment in this case. |
|
10 - Evaluation des Ressources Forestières à l'aide de Processus Ponctuels Marqués. G. Perrin et X. Descombes et J. Zerubia. Dans Proc. Reconnaissance des Formes et Intelligence Artificielle (RFIA), Tours, France, janvier 2006. Mots-clés : Extraction de Houppiers, Geometrie stochastique, Processus ponctuels marques, Extraction d'objets.
@INPROCEEDINGS{perrin_06_a,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Evaluation des Ressources Forestières à l'aide de Processus Ponctuels Marqués}, |
year |
= |
{2006}, |
month |
= |
{janvier}, |
booktitle |
= |
{Proc. Reconnaissance des Formes et Intelligence Artificielle (RFIA)}, |
address |
= |
{Tours, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/perrin_rfia06.pdf}, |
keyword |
= |
{Extraction de Houppiers, Geometrie stochastique, Processus ponctuels marques, Extraction d'objets} |
} |
Résumé :
Les images aériennes et satellitaires jouent un role de plus en plus important dans le domaine de la gestion des ressources naturelles, et en particulier des forêts. Les organismes chargés d'en faire l'inventaire, comme l'Inventaire Forestier National (IFN) en France, s'appuient en effet sur ces images pour observer les différentes espèces d'arbres d'une zone boisée, avant de se rendre sur le terrain pour une étude plus poussée. La résolution submétrique des données permet, en outre, d'entrevoir une étude plus fine, à savoir un comptage à l'arbre près et une classification automatique des houppiers (ensemble des branches et du feuillage d'un arbre). Cette évaluation précise des ressources forestières n'est actuellement pas disponible. Aussi, le développement d'outils automatiques, chargés d'aider les gestionnaires du paysage dans leur travail en leur apportant une connaissance des ressources à l'échelle de l'arbre, se révèle-t-il être d'un intérêt grandissant.L'objectif de notre travail est donc d'extraire des houppiers à partir d'images aériennes de forêts à très haute résolution. Notre approche consiste à modéliser les peuplements forestiers par un processus ponctuel marqué d'ellipses, dont les points représentent les positions des arbres et les marques leurs caractéristiques géométriques. La densité de ce processus comporte une composante de régularisation, dite a priori, qui introduit des interactions entre les objets du processus, ainsi qu'une composante d'attache aux données, afin que les objets du processus se positionnent sur les houppiers que l'on souhaite extraire. Il s'agit de trouver la configuration d'objets, en nombre inconnu a priori, qui maximise cette densité. La simulation de tels processus fait appel aux algorithmes de type Monte Carlo par Chaîne de Markov (MCMC) à sauts réversibles, l'optimisation étant réalisée à l'aide d'un recuit simulé.Nous présentons ici un nouveau modèle d'attache aux données. Contrairement à nos précédents modèles testés sur des plantations, ce modèle n'est plus bayésien puisque le terme d'attache aux données est désormais calculé au niveau des objets et non de l'image. Ceci nous permet de travailler sur des images plus générales, avec des densités d'arbres plus variables. Des résultats obtenus sur des images fournies par l'IFN valident ce modèle. |
Abstract :
Aerial and satellite imagery has a key role to play in natural resources management, especially in forestry application. Indeed, forest inventories, such as the French National Inventory (IFN), refer to these images to analyse the different tree species in a stand, before sending a team on the ground to obtain some more advanced knowledge. Moreover, the submetric resolution of the data enables to study forests at the scale of trees, and also to get a more accurate evaluation of the resources such as the number of stems. It would be also of important economical and environmental concerns to develop automatic tools to analyze and monitor forests.We aim at extracting tree crowns from high resolution aerial images of forests. Our approach consists in modelling the forestry images as realizations of a marked point process of ellipses, whose points are the positions of the trees and marks their geometric features. The density of this process embeds a regularization term (prior density), which introduces some interactions between the objects, and a data term, which links the objects to the features to be extracted. Our goal is to find the best configuration of an unknown number of objects, i.e. the configuration that maximizes this density. To sample the marked point process, we use Monte Carlo dynamics (Reversible Jump Markov Chain Monte Carlo), while the optimization is performed via a simulated annealing algorithm.We present here a new model for the data term. Contrary to our previous models tested on plantations images, this model is not Bayesian anymore : the data term is calculated for each object and not for the whole image. This enables us to work on more general images, with variable tree crown densities. Example results are shown on aerial images provided by the French Forest Inventory (IFN). |
|
haut de la page
Ces pages sont générées par
|