|
Publications sur RJMCMC
Résultat de la recherche dans la liste des publications :
2 Articles |
1 - Approche non supervisée par processus ponctuels marqués pour l'extraction d'objets à partir d'images aériennes et satellitaires. S. Ben Hadj et F. Chatelain et X. Descombes et J. Zerubia. Revue Française de Photogrammétrie et de Télédétection (SFPT), (194): pages 2-15, 2011. Mots-clés : processus ponctuel marqué, RJMCMC, Recuit Simule, SEM, pseudo-vraisemblance, extraction d'objet..
@ARTICLE{RFPT_SBH_11,
|
author |
= |
{Ben Hadj, S. and Chatelain, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Approche non supervisée par processus ponctuels marqués pour l'extraction d'objets à partir d'images aériennes et satellitaires}, |
year |
= |
{2011}, |
journal |
= |
{Revue Française de Photogrammétrie et de Télédétection (SFPT)}, |
number |
= |
{194}, |
pages |
= |
{2-15}, |
url |
= |
{http://hal.inria.fr/hal-00638665}, |
keyword |
= |
{processus ponctuel marqué, RJMCMC, Recuit Simule, SEM, pseudo-vraisemblance, extraction d'objet.} |
} |
|
2 - Building Outline Extraction from Digital Elevation Models using Marked Point Processes. M. Ortner et X. Descombes et J. Zerubia. International Journal of Computer Vision, 72(2): pages 107-132, avril 2007. Mots-clés : RJMCMC, Batiments, Geometrie stochastique, Processus ponctuels marques, Modele numerique d'elevation (MNE).
@ARTICLE{ortner_ijcv_05,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Building Outline Extraction from Digital Elevation Models using Marked Point Processes}, |
year |
= |
{2007}, |
month |
= |
{avril}, |
journal |
= |
{International Journal of Computer Vision}, |
volume |
= |
{72}, |
number |
= |
{2}, |
pages |
= |
{107-132}, |
url |
= |
{http://www.springerlink.com/content/d563v16957427102/?p=873bd324c7c14049a45cc1f2905b5a86&pi=0}, |
keyword |
= |
{RJMCMC, Batiments, Geometrie stochastique, Processus ponctuels marques, Modele numerique d'elevation (MNE)} |
} |
|
haut de la page
4 Thèses de Doctorat et Habilitations |
1 - Etude du couvert forestier par processus ponctuels marqués. G. Perrin. Thèse de Doctorat, Ecole Centrale Paris, octobre 2006. Mots-clés : Extraction de Houppiers, Processus ponctuels marques, Geometrie stochastique, Extraction d'objets, RJMCMC.
@PHDTHESIS{perrin_phd06,
|
author |
= |
{Perrin, G.}, |
title |
= |
{Etude du couvert forestier par processus ponctuels marqués}, |
year |
= |
{2006}, |
month |
= |
{octobre}, |
school |
= |
{Ecole Centrale Paris}, |
url |
= |
{http://www-sop.inria.fr/ariana/personnel/Guillaume.Perrin/resume.php}, |
pdf |
= |
{http://www-sop.inria.fr/ariana/personnel/Guillaume.Perrin/DOWNLOADS/these_perrin_2006.pdf}, |
keyword |
= |
{Extraction de Houppiers, Processus ponctuels marques, Geometrie stochastique, Extraction d'objets, RJMCMC} |
} |
Résumé :
Cette thèse aborde le problème de l'extraction d'arbres à partir d'images aériennes InfraRouge Couleur (IRC) de forêts. Nos modèles reposent sur l'utilisation de processus objets ou processus ponctuels marqués. Il s'agit de variables aléatoires dont les réalisations sont des configurations d'objets géométriques. Une fois l'objet géométrique de référence choisi, nous définissons l'énergie du processus par le biais d'un terme a priori, modélisant les contraintes sur les objets et leurs interactions, ainsi qu'un terme image. Nous échantillonnons le processus objet grâce à un algorithme de type Monte Carlo par Chaînes de Markov à sauts réversibles (RJMCMC), optimisé par un recuit simulé afin d'extraire la meilleure configuration d'objets, qui nous donne l'extraction recherchée.
Dans ce manuscrit, nous proposons différents modèles d'extraction de houppiers, qui extraient des informations à l'échelle de l'arbre selon la densité du peuplement. Dans les peuplements denses, nous présentons un processus d'ellipses, et dans les zones de plus faible densité, un processus d'ellipsoïdes. Nous obtenons ainsi le nombre d'arbres, leur localisation, le diamètre de la couronne et leur hauteur pour les zones non denses. Les algorithmes automatiques résultant de cette modélisation sont testés sur des images IRC très haute résolution fournies par l'Inventaire Forestier National (IFN). |
Abstract :
This thesis addresses the problem of tree crown extraction from Colour InfraRed (CIR) aerial images of forests. Our models are based on object processes, otherwise known as marked point processes. These mathematical objects are random variables whose realizations are configurations of geometrical shapes. This approach yields an energy minimization problem, where the energy is composed of a regularization term (prior density), which introduces some constraints on the objects and their interactions, and a data term, which links the objects to the features to be extracted. Once the reference object has been chosen, we sample the process and extract the best configuration of objects with respect to the energy, using a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm embedded in a Simulated Annealing scheme.
We propose different models for tree crown extraction depending on the density of the stand. In dense areas, we use an ellipse process, while in sparse vegetation an ellipsoïd process is used. As a result we obtain the number of stems, their position, the diameters of the crowns and the heights of the trees for sparse areas. The resulting algorithms are tested on high resolution CIR aerial images provided by the French National Forest Inventory (IFN). |
|
2 - Processus Ponctuels Marqués pour l'Extraction Automatique de Caricatures de Bâtiments à partir de Modèles Numériques d'Elévation. M. Ortner. Thèse de Doctorat, Universite de Nice Sophia Antipolis, octobre 2004. Mots-clés : Processus ponctuels marques, Extraction d'objets, Batiments, Modele numerique d'elevation (MNE), RJMCMC, Geometrie stochastique.
@PHDTHESIS{mortner_these,
|
author |
= |
{Ortner, M.}, |
title |
= |
{Processus Ponctuels Marqués pour l'Extraction Automatique de Caricatures de Bâtiments à partir de Modèles Numériques d'Elévation}, |
year |
= |
{2004}, |
month |
= |
{octobre}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
url |
= |
{https://hal.inria.fr/tel-00189803}, |
pdf |
= |
{http://hal.inria.fr/docs/00/18/98/03/PDF/These_Ortner.pdf}, |
keyword |
= |
{Processus ponctuels marques, Extraction d'objets, Batiments, Modele numerique d'elevation (MNE), RJMCMC, Geometrie stochastique} |
} |
Résumé :
Cette thèse se place dans un cadre de reconstruction urbaine et propose un corpus algorithmique pour extraire des formes simples sur les Modèles Numériques d'Elévation. Ce type de données décrit le relief d'une zone urbaine par une grille régulière de points à chacun desquels est associée une information de hauteur.
Les modèles utilisés reposent sur l'utilisation de processus ponctuels marqués. Il s'agit de variables aléatoires dont les réalisations sont des configurations d'objets géométriques. Ces modèles permettent d'introduire des contraintes sur la forme des objets recherchés dans une image ainsi qu'un terme de régularisation modélisé par des interactions entre les objets. Une énergie peut être associée aux configurations d'objets et la configuration minimisant cette énergie trouvée au moyen d'un recuit-simulé couplé à un échantillonneur de type Monte Carlo par Chaîne de Markov à sauts réversibles (RJMCMC).
Nous proposons quatre modèles pour extraire des caricatures de bâtiments à partir de descriptions altimétriques de zones urbaines denses. Chaque modèle est constitué par une forme d'objet, une énergie d'attache aux données et une énergie de régularisation. Les deux premiers modèles permettent d'extraire des formes simples (rectangles) en utilisant une contrainte d'homogénéité pour l'un et une détection des discontinuités pour l'autre. Le troisième modèle modélise les bâtiments par une forme polyhédrique. Le dernier modèle s'intéresse à l'apport d'une coopération entre des objets simples. Les algorithmes obtenus, automatiques, sont évalués sur des données réelles fournies par l'IGN (MNE Laser et optiques de différentes qualités). |
Abstract :
The context of this thesis is the reconstruction of urban areas from images. It proposes a set of algorithms for extracting simple shapes from Digital Elevation Models (DEM). DEMs describe the altimetry of an urban area by a grid of points, each of which has a height associated to it.
The proposed models are based on marked point processes. These mathematical objects are random variables whose realizations are configurations of geometrical shapes. Using these processes, we can introduce constraints on the shape of the objects to be detected in an image, and a regularizing term incorporating geometrical interactions between objects. An energy can be associated to each object configuration, and the global minima of this energy can then be found by applying simulated annealing to a Reversible Jump Monte Carlo Markov Chain sampler (RJMCMC).
We propose four different models for extracting the outlines of buildings from altimetric descriptions of dense urban areas. Each of these models is constructed from an object shape, a data energy, and a regularizing energy.
The first two models extract simple shapes (rectangles) using, respectively, a homogeneity constraint and discontinuity detection. The third model looks for three-dimensional polyhedral buildings. The last model uses cooperation between two types of objects, rectangles and segments.
The resulting algorithms are evaluated on real data provided by the French National Geographic Institute (a laser DEM and optical DEMs of differing quality). |
|
3 - Extraction de Réseaux Linéiques à partir d'Images Satellitaires et Aériennes par Processus Ponctuels Marqués. C. Lacoste. Thèse de Doctorat, Universite de Nice Sophia Antipolis, septembre 2004. Mots-clés : Geometrie stochastique, Extraction d'objets, RJMCMC, Reseaux lineiques, Recuit Simule, Processus ponctuels marques.
@PHDTHESIS{lacoste_these,
|
author |
= |
{Lacoste, C.}, |
title |
= |
{Extraction de Réseaux Linéiques à partir d'Images Satellitaires et Aériennes par Processus Ponctuels Marqués}, |
year |
= |
{2004}, |
month |
= |
{septembre}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
url |
= |
{https://hal.inria.fr/tel-00261397}, |
pdf |
= |
{http://hal.inria.fr/docs/00/26/13/97/PDF/THESE_CAROLINE_LACOSTE.pdf}, |
keyword |
= |
{Geometrie stochastique, Extraction d'objets, RJMCMC, Reseaux lineiques, Recuit Simule, Processus ponctuels marques} |
} |
Résumé :
Cette thèse aborde le problème de l'extraction non supervisée des réseaux linéiques (routes, rivières, etc.) à partir d'images satellitaires et aériennes. Nous utilisons des processus objet, ou processus ponctuels marqués, comme modèles a priori. Ces modèles permettent de bénéficier de l'apport d'un cadre stochastique (robustesse au bruit, corpus algorithmique, etc.) tout en manipulant des contraintes géométriques fortes. Un recuit simulé sur un algorithme de type Monte Carlo par Chaîne de Markov (MCMC) permet une optimisation globale sur l'espace des configurations d'objets, indépendamment de l'initialisation.
Nous proposons tout d'abord une modélisation du réseau linéique par un processus dont les objets sont des segments interagissant entre eux. Le modèle a priori est construit de façon à exploiter au mieux la topologie du réseau recherché au travers de potentiels fondés sur la qualité de chaque interaction. Les propriétés radiométriques sont prises en compte dans un terme d'attache aux données fondé sur des mesures statistiques.
Nous étendons ensuite cette modélisation à des objets plus complexes. La manipulation de lignes brisées permet une extraction plus précise du réseau et améliore la détection des bifurcations.
Enfin, nous proposons une modélisation hiérarchique des réseaux hydrographiques dans laquelle les affluents d'un fleuve sont modélisés par un processus de lignes brisées dans le voisinage de ce fleuve.
Pour chacun des modèles, nous accélérons la convergence de l'algorithme MCMC par l'ajout de perturbations adaptées.
La pertinence de cette modélisation par processus objet est vérifiée sur des images satellitaires et aériennes, optiques et radar. |
Abstract :
This thesis addresses the problem of the unsupervised extraction of line networks (roads, rivers, etc.) from remotely sensed images. We use object processes, or marked point processes, as prior models. These models benefit from a stochastic framework (robustness w.r.t. noise, algorithms, etc.) while incorporating strong geometric constraints. Optimization is done via simulated annealing using a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm, without any specific initialization.
We first propose to model line networks by a process whose objects are interacting line segments. The prior model is designed to exploit as fully as possible the topological properties of the network under consideration through potentials based on the quality of each interaction. The radiometric properties of the network are modeled using a data term based on statistical measures.
We then extend this model to more complex objects. The use of broken lines improves the detection of network junctions and increases the accuracy of the extracted network.
Finally, we propose a hierarchical model of hydrographic networks in which the tributaries of a given river are modeled by a process of broken lines in the neighborhood of this river. For each model, we accelerate convergence of the RJMCMC algorithm by using appropriate perturbations.
We show experimental results on aerial and satellite images (optical and radar data) to verify the relevance of the object process models. |
|
4 - Processus ponctuels pour l'extraction de réseaux linéiques dans les images satellitaires et aériennes. R. Stoica. Thèse de Doctorat, Universite de Nice Sophia Antipolis, février 2001. Mots-clés : Processus ponctuels marques, Reseaux lineiques, Reseaux routiers, Geometrie stochastique, RJMCMC.
@PHDTHESIS{rs01,
|
author |
= |
{Stoica, R.}, |
title |
= |
{Processus ponctuels pour l'extraction de réseaux linéiques dans les images satellitaires et aériennes}, |
year |
= |
{2001}, |
month |
= |
{février}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
pdf |
= |
{Theses/These-stoica.pdf}, |
keyword |
= |
{Processus ponctuels marques, Reseaux lineiques, Reseaux routiers, Geometrie stochastique, RJMCMC} |
} |
Résumé :
Les réseaux routiers, ou les réseaux hydrographiques, les vaisseaux sanguins ou bien les fissures dans les matériaux sont connus dans la communauté du traitement d'image sous le nom générique de réseaux liné¨iques. La théorie des processus ponctuels marqués est un cadre mathématique rigoureux qui donne la possibilité de modéliser l'image comme un ensemble d'objets en interaction. Les deux idées principales qui ont motivé ce travail sont : ces réseaux sont approchés par de segments de droite connectés, et les réseaux liné¨iques dans une image sont la réalisation d'un processus ponctuel de Gibbs. Le processus ponctuel qui modèlise les réseaux comporte deux composantes. Le premier terme ("Candy" modèle) gère les états et les interactions entre segments : densité, connectivité, alignement et répulsion des segments. L'emplacement du réseau dans l'image est trouvé grâce au second terme, le terme d'attache aux données. Cette composante du modèle est construite à partir de tests d'hypothèses. L'estimateur des réseaux dans l'image est donné par le minimum d'une fonction d'énergie de Gibbs. Pour trouver l'optimum global de cette fonction, nous mettons en {\oe}uvre un algorithme de type recuit simulé qui s'appuie, sur une dynamique de type Monte Carlo par Chaînes de Markov (MCMC) à sauts réversibles. Des résultats sont présentes sur des images aériennes, SPOT et RADAR (RSO). Nous abordons ensuite deux de problèmes ouverts liés au "Candy" modèle, mais d'un interêt théorique général : la convergence d'une dynamique de Monte Carlo à sauts reversibles, et l'estimation des paramètres des processus ponctuels. Une solution à ces problèmes pourrait ouvrir une nouvelle direction dans la recherche de méthodes non-supervisése en traitement d'image. |
Abstract :
Road or hydrographical networks, blood vessels or fissures in materials are all known by the image processing community under the general name of line networks. The theory of point processes is a rigourous mathematical framework which allows us to model an image as a set of interacting objects. The two main ideas which are the basis of this work are : these networks can be considered as connected segments, and the line networks in an image are the realization of a Gibbs point process. The point process used to model the networks has two components. The first one (Candy model) deals with the states and the interaction of the segments : density, connectivity, alignment, attraction and rejection. The location of the network is determined by the second component, the data term. This component is based on hypothesis tests. The network estimator is given by the minimum of a Gibbs energy. We build a simulated annealing algorithm in order to avoid local minima. This algorithm uses reversible jump Monte Carlo Markov Chain (RJMCMC) dynamics. Results are shown on aerial, SPOT and RADAR (SAR) images. Finally, we start a study on two open problems related to the Candy model, but of general theoretical interest : the convergence of a RJMCMC dynamics, and parameter estimation related to point processes. A solution to these problems would give a new direction for the research of unsupervised methods in image processing. |
|
haut de la page
8 Articles de conférence |
1 - Parameter estimation for a marked point process within a framework of multidimensional shape extraction from remote sensing images. S. Ben Hadj et F. Chatelain et X. Descombes et J. Zerubia. Dans Proc. ISPRS Technical Commission III Symposium on Photogrammetry Computer Vision and Image Analysis (PCV), Paris, France, septembre 2010. Mots-clés : Shape extraction, Processus ponctuels marques, RJMCMC, Recuit Simule, EM Stochastique (SEM).
@INPROCEEDINGS{sbenhadj10a,
|
author |
= |
{Ben Hadj, S. and Chatelain, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Parameter estimation for a marked point process within a framework of multidimensional shape extraction from remote sensing images}, |
year |
= |
{2010}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. ISPRS Technical Commission III Symposium on Photogrammetry Computer Vision and Image Analysis (PCV)}, |
address |
= |
{Paris, France}, |
url |
= |
{http://hal.archives-ouvertes.fr/docs/00/52/63/45/PDF/ISPRS_SBH_FC_XD_JZ_Final2.pdf}, |
keyword |
= |
{Shape extraction, Processus ponctuels marques, RJMCMC, Recuit Simule, EM Stochastique (SEM)} |
} |
|
2 - Lidar Waveform Modeling using a Marked Point Process. C. Mallet et F. Lafarge et F. Bretar et U. Soergel et C. Heipke. Dans Proc. IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, novembre 2009. Mots-clés : 3D point cloud, Lidar, Marked point process, RJMCMC.
@INPROCEEDINGS{mallet_icip09,
|
author |
= |
{Mallet, C. and Lafarge, F. and Bretar, F. and Soergel, U. and Heipke, C.}, |
title |
= |
{Lidar Waveform Modeling using a Marked Point Process}, |
year |
= |
{2009}, |
month |
= |
{novembre}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Cairo, Egypt}, |
url |
= |
{http://dx.doi.org/10.1109/ICIP.2009.5413380}, |
keyword |
= |
{3D point cloud, Lidar, Marked point process, RJMCMC} |
} |
Abstract :
Lidar waveforms are 1D signal consisting of a train of echoes where each of them correspond to a scattering target of the Earth surface. Modeling these echoes with the appropriate parametric function is necessary to retrieve physical information about these objects and characterize their properties. This paper presents a marked point process based model to reconstruct a lidar signal in terms of a set of parametric functions. The model takes into account both a data term which measures the coherence between the models and the waveforms, and a regularizing term which introduces physical knowledge on the reconstructed signal. We search for the best configuration of functions by performing a Reversible Jump Markov Chain Monte Carlo sampler coupled with a simulated annealing. Results are finally presented on different kinds of signals in urban areas. |
|
3 - An Automatic Building Reconstruction Method : A Structural Approach Using High Resolution Images. F. Lafarge et X. Descombes et J. Zerubia et M. Pierrot-Deseilligny. Dans Proc. IEEE International Conference on Image Processing (ICIP), Atlanta, octobre 2006. Mots-clés : Reconstruction en 3D, Batiments, RJMCMC, Approche structurelle, Imagerie satellitaire. Copyright : IEEE
@INPROCEEDINGS{lafarge_icip06,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{An Automatic Building Reconstruction Method : A Structural Approach Using High Resolution Images}, |
year |
= |
{2006}, |
month |
= |
{octobre}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Atlanta}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_lafarge_icip06.pdf}, |
keyword |
= |
{Reconstruction en 3D, Batiments, RJMCMC, Approche structurelle, Imagerie satellitaire} |
} |
|
4 - Forest Resource Assessment using Stochastic Geometry. G. Perrin et X. Descombes et J. Zerubia et J.G. Boureau. Dans Proc. International Precision Forestry Symposium, mars 2006. Mots-clés : Extraction de Houppiers, Extraction d'objets, Geometrie stochastique, RJMCMC, Energie d'attache aux données.
@INPROCEEDINGS{perrin_06_b,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J. and Boureau, J.G.}, |
title |
= |
{Forest Resource Assessment using Stochastic Geometry}, |
year |
= |
{2006}, |
month |
= |
{mars}, |
booktitle |
= |
{Proc. International Precision Forestry Symposium}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/perrin_ipfs06.pdf}, |
keyword |
= |
{Extraction de Houppiers, Extraction d'objets, Geometrie stochastique, RJMCMC, Energie d'attache aux données} |
} |
Abstract :
Aerial and satellite imagery has a key role to play in natural resource management, especially in forestry application. The submetric resolution of the data enables to study forests at the scale of trees, and to get a more accurate assessment of the resources such as the number of stems or the forest cover. To develop automatic tools in order to help the inventories in their work and to bring more knowledge about the stands is also nowadays of important economical and environmental concerns.
In this paper, we aim at extracting tree crowns from high resolution aerial Color Infrared images (CIR) of forests using marked point processes. Our approach consists in modelling the trees in the forestry images as random configurations of ellipses, whose points are the positions of the stems and marks their geometric features. The density of this process embeds a regularization term (prior density), which introduces some interactions between the objects, and a data term, which links the objects to the features to be extracted. Our goal is to find the best configuration of an unknown number of objects, i.e. the configuration that maximizes this density. To sample this marked point process, we use Monte Carlo dynamics while the optimization is performed via a Simulated Annealing algorithm, which results in a fully automatic approach.
We present different models for the data term in order to cope with different kinds of stands : plantations, isolated trees and mixed stands. Results are shown on aerial CIR images provided by the French Forest Inventory (IFN) |
|
haut de la page
Ces pages sont générées par
|