|
Publications sur Aerial images
Résultat de la recherche dans la liste des publications :
2 Articles |
1 - Detection of Object Motion Regions in Aerial Image Pairs with a Multi-Layer Markovian Model. C. Benedek et T. Szirányi et Z. Kato et J. Zerubia. IEEE Trans. Image Processing, 18(10): pages 2303-2315, octobre 2009. Mots-clés : Change detection, Aerial images, Camera motion, MRF.
@ARTICLE{benedekTIP09,
|
author |
= |
{Benedek, C. and Szirányi, T. and Kato, Z. and Zerubia, J.}, |
title |
= |
{Detection of Object Motion Regions in Aerial Image Pairs with a Multi-Layer Markovian Model}, |
year |
= |
{2009}, |
month |
= |
{octobre}, |
journal |
= |
{IEEE Trans. Image Processing}, |
volume |
= |
{18}, |
number |
= |
{10}, |
pages |
= |
{2303-2315}, |
url |
= |
{http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5089480}, |
keyword |
= |
{Change detection, Aerial images, Camera motion, MRF} |
} |
Abstract :
We propose a new Bayesian method for detecting the regions of object displacements in aerial image pairs. We use a robust but coarse 2-D image registration algorithm. Our main challenge is to eliminate the registration errors from the extracted change map. We introduce a three-layer Markov Random Field model which integrates information from two different features, and ensures connected homogeneous regions in the segmented images. Validation is given on real aerial photos. |
|
2 - Change Detection in Optical Aerial Images by a Multi-Layer Conditional Mixed Markov Model. C. Benedek et T. Szirányi. IEEE Trans. Geoscience and Remote Sensing, 47(10): pages 3416-3430, octobre 2009. Mots-clés : mixed Markov models, Change detection, Aerial images, Estimation MAP. Copyright : IEEE
@ARTICLE{benedekTGRS09,
|
author |
= |
{Benedek, C. and Szirányi, T.}, |
title |
= |
{Change Detection in Optical Aerial Images by a Multi-Layer Conditional Mixed Markov Model}, |
year |
= |
{2009}, |
month |
= |
{octobre}, |
journal |
= |
{IEEE Trans. Geoscience and Remote Sensing}, |
volume |
= |
{47}, |
number |
= |
{10}, |
pages |
= |
{3416-3430}, |
url |
= |
{http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=5257398&arnumber=5169964&count=26&index=11}, |
keyword |
= |
{mixed Markov models, Change detection, Aerial images, Estimation MAP} |
} |
Abstract :
In this paper we propose a probabilistic model for detecting relevant changes in registered aerial image pairs taken with the time differences of several years and in different seasonal conditions. The introduced approach, called the Conditional Mixed Markov model (CXM), is a combination of a mixed Markov model and a conditionally independent random field of signals. The model integrates global intensity statistics with local correlation and contrast features. A global energy optimization process ensures simultaneously optimal local feature selection and smooth, observation-consistent segmentation. Validation is given on real aerial image sets provided by the Hungarian Institute of Geodesy, Cartography and Remote Sensing and Google Earth. |
|
haut de la page
5 Articles de conférence |
1 - Building Extraction and Change Detection in Multitemporal Remotely Sensed Images with Multiple Birth and Death Dynamics. C. Benedek et X. Descombes et J. Zerubia. Dans IEEE Workshop on Applications of Computer Vision (WACV), pages 100-105, Snowbird, Utah, USA, décembre 2009. Mots-clés : Processus ponctuels marques, Change detection, Aerial images, Building extraction, Imagerie satellitaire.
@INPROCEEDINGS{benedekWacv09,
|
author |
= |
{Benedek, C. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Building Extraction and Change Detection in Multitemporal Remotely Sensed Images with Multiple Birth and Death Dynamics}, |
year |
= |
{2009}, |
month |
= |
{décembre}, |
booktitle |
= |
{IEEE Workshop on Applications of Computer Vision (WACV)}, |
pages |
= |
{100-105}, |
address |
= |
{Snowbird, Utah, USA}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/42/66/18/PDF/benedekWACV09.pdf}, |
keyword |
= |
{Processus ponctuels marques, Change detection, Aerial images, Building extraction, Imagerie satellitaire} |
} |
Abstract :
In this paper we introduce a new probabilistic method which integrates building extraction with change detection in remotely sensed image pairs. A global optimization process attempts to find the optimal configuration of buildings, considering the observed data, prior knowledge, and interactions between the neighboring building parts. The accuracy is ensured by a Bayesian object model verification, meanwhile the computational cost is significantly decreased by a non-uniform stochastic object birth process, which proposes relevant objects with higher probability based on low-level image features.
|
|
2 - A Mixed Markov Model for Change Detection in Aerial Photos with Large Time Differences. C. Benedek et T. Szirányi. Dans Proc. International Conference on Pattern Recognition (ICPR), Tampa, USA, décembre 2008. Mots-clés : Aerial images, Change detection, mixed Markov models.
@INPROCEEDINGS{benedekICPR08,
|
author |
= |
{Benedek, C. and Szirányi, T.}, |
title |
= |
{A Mixed Markov Model for Change Detection in Aerial Photos with Large Time Differences}, |
year |
= |
{2008}, |
month |
= |
{décembre}, |
booktitle |
= |
{Proc. International Conference on Pattern Recognition (ICPR)}, |
address |
= |
{Tampa, USA}, |
pdf |
= |
{http://hal.inria.fr/docs/00/35/91/16/PDF/benedekICPR08.pdf}, |
keyword |
= |
{Aerial images, Change detection, mixed Markov models} |
} |
Abstract :
In the paper we propose a novel multi-layer Mixed Markov model for detecting relevant changes in registered aerial images taken with significant time differences. The introduced approach combines global intensity statistics with local correlation and contrast features. A global energy optimization process simultaneously ensures optimal local feature selection and smooth, observation-consistent classification. Validation is given on real aerial photos. |
|
3 - A Multi-Layer MRF Model for Object-Motion Detection in Unregistered Airborne Image-Pairs. C. Benedek et T. Szirányi et Z. Kato et J. Zerubia. Dans Proc. IEEE International Conference on Image Processing (ICIP), Vol. 6, pages 141--144, San Antonio, Texas, USA, septembre 2007. Mots-clés : Change detection, Aerial images, Camera motion, MRF. Copyright : Copyright IEEE
@INPROCEEDINGS{benedek_ICIP07,
|
author |
= |
{Benedek, C. and Szirányi, T. and Kato, Z. and Zerubia, J.}, |
title |
= |
{A Multi-Layer MRF Model for Object-Motion Detection in Unregistered Airborne Image-Pairs}, |
year |
= |
{2007}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
volume |
= |
{6}, |
pages |
= |
{141--144}, |
address |
= |
{San Antonio, Texas, USA}, |
url |
= |
{http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=4379541&isnumber=4379494&punumber=4378863&k2dockey=4379541@ieeecnfs&query=%28benedek+%3Cin%3E+metadata%29+%3Cand%3E+%284379494+%3Cin%3E+isnumber%29&pos=0}, |
pdf |
= |
{http://web.eee.sztaki.hu/~bcsaba/Publications/Pdf/benedek_icip2007.pdf}, |
keyword |
= |
{Change detection, Aerial images, Camera motion, MRF} |
} |
Abstract :
In this paper, we give a probabilistic model for automatic change detection on airborne images taken with moving cameras. To ensure robustness, we adopt an unsupervised coarse matching instead of a precise image registration. The challenge of the proposed model is to eliminate the registration errors, noise and the parallax artifacts caused by the static objects having considerable height (buildings, trees, walls etc.) from the difference image. We describe the background membership of a given image point through two different features, and introduce a novel three-layerMarkov Random Field (MRF) model to ensure connected homogenous regions in the segmented image. |
|
4 - An improved 'gas of circles' higher-order active contour model and its application to tree crown extraction. P. Horvath et I. H. Jermyn et Z. Kato et J. Zerubia. Dans Proc. Indian Conference on Computer Vision, Graphics, and Image Processing (ICVGIP), Madurai, India, décembre 2006. Mots-clés : Extraction de Houppiers, Aerial images, Ordre superieur, Contour actif, Gaz de cercles, Forme.
@INPROCEEDINGS{Horvath06_icvgip,
|
author |
= |
{Horvath, P. and Jermyn, I. H. and Kato, Z. and Zerubia, J.}, |
title |
= |
{An improved 'gas of circles' higher-order active contour model and its application to tree crown extraction}, |
year |
= |
{2006}, |
month |
= |
{décembre}, |
booktitle |
= |
{Proc. Indian Conference on Computer Vision, Graphics, and Image Processing (ICVGIP)}, |
address |
= |
{Madurai, India}, |
url |
= |
{http://dx.doi.org/10.1007/11949619_14}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_Horvath06_icvgip.pdf}, |
keyword |
= |
{Extraction de Houppiers, Aerial images, Ordre superieur, Contour actif, Gaz de cercles, Forme} |
} |
Abstract :
A central task in image processing is to find the
region in the image corresponding to an entity. In a
number of problems, the region takes the form of a
collection of circles, eg tree crowns in remote
sensing imagery; cells in biological and medical
imagery. In~citeHorvath06b, a model of such regions,
the `gas of circles' model, was developed based on
higher-order active contours, a recently developed
framework for the inclusion of prior knowledge in
active contour energies. However, the model suffers
from a defect. In~citeHorvath06b, the model
parameters were adjusted so that the circles were local
energy minima. Gradient descent can become stuck in
these minima, producing phantom circles even with no
supporting data. We solve this problem by calculating,
via a Taylor expansion of the energy, parameter values
that make circles into energy inflection points rather
than minima. As a bonus, the constraint halves the
number of model parameters, and severely constrains one
of the two that remain, a major advantage for an
energy-based model. We use the model for tree crown
extraction from aerial images. Experiments show that
despite the lack of parametric freedom, the new model
performs better than the old, and much better than a
classical active contour. |
|
5 - Gaussian Mixture Models of Texture and Colour for Image Database Retrieval. H. Permuter et J.M. Francos et I. H. Jermyn. Dans Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Hong Kong, avril 2003. Mots-clés : Texture, Mixture de gaussiennes, Classification, Aerial images.
@INPROCEEDINGS{Permuter03,
|
author |
= |
{Permuter, H. and Francos, J.M. and Jermyn, I. H.}, |
title |
= |
{Gaussian Mixture Models of Texture and Colour for Image Database Retrieval}, |
year |
= |
{2003}, |
month |
= |
{avril}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
address |
= |
{Hong Kong}, |
pdf |
= |
{http://www-sop.inria.fr/members/Ian.Jermyn/publications/Permuter03icassp.pdf}, |
keyword |
= |
{Texture, Mixture de gaussiennes, Classification, Aerial images} |
} |
Abstract :
We introduce Gaussian mixture models of ‘structure’ and
colour features in order to classify coloured textures in images,
with a view to the retrieval of textured colour images
from databases. Classifications are performed separately
using structure and colour and then combined using
a confidence criterion. We apply the models to the VisTex
database and to the classification of man-made and natural
areas in aerial images. We compare these models with others
in the literature, and show an overall improvement in
performance. |
|
haut de la page
2 Rapports de recherche et Rapports techniques |
1 - A Three-layer MRF model for Object Motion Detection in Airborne Images. C. Benedek et T. Szirányi et Z. Kato et J. Zerubia. Rapport de Recherche 6208, INRIA, juin 2007. Mots-clés : Aerial images, Change detection, Camera motion, MRF.
@TECHREPORT{benedek_INRIARR07,
|
author |
= |
{Benedek, C. and Szirányi, T. and Kato, Z. and Zerubia, J.}, |
title |
= |
{A Three-layer MRF model for Object Motion Detection in Airborne Images}, |
year |
= |
{2007}, |
month |
= |
{juin}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6208}, |
url |
= |
{https://hal.inria.fr/inria-00150805}, |
pdf |
= |
{https://hal.inria.fr/inria-00150805}, |
keyword |
= |
{Aerial images, Change detection, Camera motion, MRF} |
} |
|
2 - A higher-order active contour model of a `gas of circles' and its application to tree crown extraction. P. Horvath et I. H. Jermyn et Z. Kato et J. Zerubia. Research Report 6026, INRIA, France, novembre 2006. Mots-clés : Extraction de Houppiers, Aerial images, Ordre superieur, Contour actif, Gaz de cercles, Forme.
@TECHREPORT{Horvath05,
|
author |
= |
{Horvath, P. and Jermyn, I. H. and Kato, Z. and Zerubia, J.}, |
title |
= |
{A higher-order active contour model of a `gas of circles' and its application to tree crown extraction}, |
year |
= |
{2006}, |
month |
= |
{novembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6026}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00115631}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_Horvath05.pdf}, |
keyword |
= |
{Extraction de Houppiers, Aerial images, Ordre superieur, Contour actif, Gaz de cercles, Forme} |
} |
Abstract :
Many image processing problems involve identifying the region in the image domain occupied by a given entity in the scene. Automatic solution of these problems requires models that incorporate significant prior knowledge about the shape of the region. Many methods for including such knowledge run into difficulties when the topology of the region is unknown a priori, for example when the entity is composed of an unknown number of similar objects. Higher-order active contours (HOACs) represent one method for the modelling of non-trivial prior knowledge about shape without necessarily constraining region topology, via the inclusion of non-local interactions between region boundary points in the energy defining the model. The case of an unknown number of circular objects arises in a number of domains, \eg medical, biological, nanotechnological, and remote sensing imagery. Regions composed of an a priori unknown number of circles may be referred to as a `gas of circles'. In this report, we present a HOAC model of a `gas of circles'. In order to guarantee stable circles, we conduct a stability analysis via a functional Taylor expansion of the HOAC energy around a circular shape. This analysis fixes one of the model parameters in terms of the others and constrains the rest. In conjunction with a suitable likelihood energy, we apply the model to the extraction of tree crowns from aerial imagery, and show that the new model outperforms other techniques. |
|
haut de la page
Ces pages sont générées par
|