|
Publications sur Recuit Simule
Résultat de la recherche dans la liste des publications :
Article |
1 - Approche non supervisée par processus ponctuels marqués pour l'extraction d'objets à partir d'images aériennes et satellitaires. S. Ben Hadj et F. Chatelain et X. Descombes et J. Zerubia. Revue Française de Photogrammétrie et de Télédétection (SFPT), (194): pages 2-15, 2011. Mots-clés : processus ponctuel marqué, RJMCMC, Recuit Simule, SEM, pseudo-vraisemblance, extraction d'objet..
@ARTICLE{RFPT_SBH_11,
|
author |
= |
{Ben Hadj, S. and Chatelain, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Approche non supervisée par processus ponctuels marqués pour l'extraction d'objets à partir d'images aériennes et satellitaires}, |
year |
= |
{2011}, |
journal |
= |
{Revue Française de Photogrammétrie et de Télédétection (SFPT)}, |
number |
= |
{194}, |
pages |
= |
{2-15}, |
url |
= |
{http://hal.inria.fr/hal-00638665}, |
keyword |
= |
{processus ponctuel marqué, RJMCMC, Recuit Simule, SEM, pseudo-vraisemblance, extraction d'objet.} |
} |
|
haut de la page
2 Thèses de Doctorat et Habilitations |
1 - Modèles stochastiques pour la reconstruction tridimensionnelle d'environnements urbains. F. Lafarge. Thèse de Doctorat, Ecole des Mines de Paris, octobre 2007. Mots-clés : Reconstruction en 3D, Zones urbaines, Imagerie satellitaire, Approche structurelle, Recuit Simule, MCMC.
@PHDTHESIS{lafarge_phd07,
|
author |
= |
{Lafarge, F.}, |
title |
= |
{Modèles stochastiques pour la reconstruction tridimensionnelle d'environnements urbains}, |
year |
= |
{2007}, |
month |
= |
{octobre}, |
school |
= |
{Ecole des Mines de Paris}, |
url |
= |
{http://tel.archives-ouvertes.fr/tel-00179695/en/}, |
keyword |
= |
{Reconstruction en 3D, Zones urbaines, Imagerie satellitaire, Approche structurelle, Recuit Simule, MCMC} |
} |
Résumé :
Cette thèse aborde le problème de la reconstruction tridimensionnelle de zones urbaines à partir d'images satellitaires très haute résolution. Le contenu informatif de ce type de données est insuffisant pour permettre une utilisation efficace des nombreux algorithmes développés pour des données aériennes. Dans ce contexte, l'introduction de connaissances a priori fortes sur les zones urbaines est nécessaire. Les outils stochastiques sont particulièrement bien adaptés pour traiter cette problématique.
Nous proposons une approche structurelle pour aborder ce sujet. Cela consiste à modéliser un bâtiment comme un assemblage de modules urbains élémentaires extraits d'une bibliothèque de modèles 3D paramétriques. Dans un premier temps, nous extrayons les supports 2D de ces modules à partir d'un Modèle Numérique d' Elévation (MNE). Le résultat est un agencement de quadrilatères dont les éléments voisins sont connectés entre eux. Ensuite, nous reconstruisons les bâtiments en recherchant la configuration optimale de modèles 3D se fixant sur les supports précédemment extraits. Cette configuration correspond à la réalisation qui maximise une densité mesurant la cohérence entre la réalisation et le MNE, mais également prenant en compte des connaissances a priori telles que des lois d'assemblage des modules. Nous discutons enfin de la pertinence de cette approche en analysant les résultats obtenus à partir de données satellitaires (simulations PLEIADES). Des expérimentations sont également réalisées à partir d'images aériennes mieux résolues. |
|
2 - Extraction de Réseaux Linéiques à partir d'Images Satellitaires et Aériennes par Processus Ponctuels Marqués. C. Lacoste. Thèse de Doctorat, Universite de Nice Sophia Antipolis, septembre 2004. Mots-clés : Geometrie stochastique, Extraction d'objets, RJMCMC, Reseaux lineiques, Recuit Simule, Processus ponctuels marques.
@PHDTHESIS{lacoste_these,
|
author |
= |
{Lacoste, C.}, |
title |
= |
{Extraction de Réseaux Linéiques à partir d'Images Satellitaires et Aériennes par Processus Ponctuels Marqués}, |
year |
= |
{2004}, |
month |
= |
{septembre}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
url |
= |
{https://hal.inria.fr/tel-00261397}, |
pdf |
= |
{http://hal.inria.fr/docs/00/26/13/97/PDF/THESE_CAROLINE_LACOSTE.pdf}, |
keyword |
= |
{Geometrie stochastique, Extraction d'objets, RJMCMC, Reseaux lineiques, Recuit Simule, Processus ponctuels marques} |
} |
Résumé :
Cette thèse aborde le problème de l'extraction non supervisée des réseaux linéiques (routes, rivières, etc.) à partir d'images satellitaires et aériennes. Nous utilisons des processus objet, ou processus ponctuels marqués, comme modèles a priori. Ces modèles permettent de bénéficier de l'apport d'un cadre stochastique (robustesse au bruit, corpus algorithmique, etc.) tout en manipulant des contraintes géométriques fortes. Un recuit simulé sur un algorithme de type Monte Carlo par Chaîne de Markov (MCMC) permet une optimisation globale sur l'espace des configurations d'objets, indépendamment de l'initialisation.
Nous proposons tout d'abord une modélisation du réseau linéique par un processus dont les objets sont des segments interagissant entre eux. Le modèle a priori est construit de façon à exploiter au mieux la topologie du réseau recherché au travers de potentiels fondés sur la qualité de chaque interaction. Les propriétés radiométriques sont prises en compte dans un terme d'attache aux données fondé sur des mesures statistiques.
Nous étendons ensuite cette modélisation à des objets plus complexes. La manipulation de lignes brisées permet une extraction plus précise du réseau et améliore la détection des bifurcations.
Enfin, nous proposons une modélisation hiérarchique des réseaux hydrographiques dans laquelle les affluents d'un fleuve sont modélisés par un processus de lignes brisées dans le voisinage de ce fleuve.
Pour chacun des modèles, nous accélérons la convergence de l'algorithme MCMC par l'ajout de perturbations adaptées.
La pertinence de cette modélisation par processus objet est vérifiée sur des images satellitaires et aériennes, optiques et radar. |
Abstract :
This thesis addresses the problem of the unsupervised extraction of line networks (roads, rivers, etc.) from remotely sensed images. We use object processes, or marked point processes, as prior models. These models benefit from a stochastic framework (robustness w.r.t. noise, algorithms, etc.) while incorporating strong geometric constraints. Optimization is done via simulated annealing using a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm, without any specific initialization.
We first propose to model line networks by a process whose objects are interacting line segments. The prior model is designed to exploit as fully as possible the topological properties of the network under consideration through potentials based on the quality of each interaction. The radiometric properties of the network are modeled using a data term based on statistical measures.
We then extend this model to more complex objects. The use of broken lines improves the detection of network junctions and increases the accuracy of the extracted network.
Finally, we propose a hierarchical model of hydrographic networks in which the tributaries of a given river are modeled by a process of broken lines in the neighborhood of this river. For each model, we accelerate convergence of the RJMCMC algorithm by using appropriate perturbations.
We show experimental results on aerial and satellite images (optical and radar data) to verify the relevance of the object process models. |
|
haut de la page
3 Articles de conférence |
1 - Parameter estimation for a marked point process within a framework of multidimensional shape extraction from remote sensing images. S. Ben Hadj et F. Chatelain et X. Descombes et J. Zerubia. Dans Proc. ISPRS Technical Commission III Symposium on Photogrammetry Computer Vision and Image Analysis (PCV), Paris, France, septembre 2010. Mots-clés : Shape extraction, Processus ponctuels marques, RJMCMC, Recuit Simule, EM Stochastique (SEM).
@INPROCEEDINGS{sbenhadj10a,
|
author |
= |
{Ben Hadj, S. and Chatelain, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Parameter estimation for a marked point process within a framework of multidimensional shape extraction from remote sensing images}, |
year |
= |
{2010}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. ISPRS Technical Commission III Symposium on Photogrammetry Computer Vision and Image Analysis (PCV)}, |
address |
= |
{Paris, France}, |
url |
= |
{http://hal.archives-ouvertes.fr/docs/00/52/63/45/PDF/ISPRS_SBH_FC_XD_JZ_Final2.pdf}, |
keyword |
= |
{Shape extraction, Processus ponctuels marques, RJMCMC, Recuit Simule, EM Stochastique (SEM)} |
} |
|
2 - Adaptive Simulated Annealing for Energy Minimization Problem in a Marked Point Process Application. G. Perrin et X. Descombes et J. Zerubia. Dans Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), St Augustine, Florida, USA, novembre 2005. Mots-clés : Recuit Simule, Processus ponctuels marques, Geometrie stochastique, Estimation MAP, RJMCMC. Copyright : Springer Verlag
@INPROCEEDINGS{perrin_emmcvpr05,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Adaptive Simulated Annealing for Energy Minimization Problem in a Marked Point Process Application}, |
year |
= |
{2005}, |
month |
= |
{novembre}, |
booktitle |
= |
{Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR)}, |
address |
= |
{St Augustine, Florida, USA}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/perrin_emmcvpr.pdf}, |
ps |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/perrin_emmcvpr.ps.gz}, |
keyword |
= |
{Recuit Simule, Processus ponctuels marques, Geometrie stochastique, Estimation MAP, RJMCMC} |
} |
Abstract :
We use marked point processes to detect an unknown number of trees from high resolution aerial images. This is in fact an energy minimization problem, where the energy contains a prior term which takes into account the geometrical properties of the objects, and a data term to match these objects to the image. This stochastic process is simulated via a Reversible Jump Markov Chain Monte Carlo procedure, which embeds a Simulated Annealing scheme to extract the best configuration of objects.
We compare here different cooling schedules of the Simulated Annealing algorithm which could provide some good minimization in a short time. We also study some adaptive proposition kernels. |
|
3 - Tree Crown Extraction using Marked Point Processes. G. Perrin et X. Descombes et J. Zerubia. Dans Proc. European Signal Processing Conference (EUSIPCO), University of Technology, Vienna, Austria, septembre 2004. Mots-clés : RJMCMC, Processus ponctuels marques, Recuit Simule, Extraction de Houppiers, Extraction d'objets, Geometrie stochastique.
@INPROCEEDINGS{perrin04a,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Tree Crown Extraction using Marked Point Processes}, |
year |
= |
{2004}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{University of Technology, Vienna, Austria}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/perrin_eusipco2004.pdf}, |
ps |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/perrin_eusipco2004.ps.gz}, |
keyword |
= |
{RJMCMC, Processus ponctuels marques, Recuit Simule, Extraction de Houppiers, Extraction d'objets, Geometrie stochastique} |
} |
Abstract :
In this paper we aim at extracting tree crowns from remotely sensed images. Our approach is to consider that these images are some realizations of a marked point process. The first step is to define the geometrical objects that design the trees, and the density of the process.
Then, we use a Reversible Jump Markov Chain Monte Carlo dynamics and a simulated annealing to get the maximum a posteriori estimator of the tree crown distribution on the image. Transitions of the Markov chain are managed by some specific proposition kernels.
Results are shown on aerial images of poplars provided by IFN. |
|
haut de la page
5 Rapports de recherche et Rapports techniques |
1 - Estimation des paramètres de modèles de processus ponctuels marqués pour l'extraction d'objets en imagerie spatiale et aérienne haute résolution . S. Ben Hadj et F. Chatelain et X. Descombes et J. Zerubia. Rapport de recherche 7350, INRIA, juillet 2010. Mots-clés : Processus ponctuels marques, RJMCMC, Recuit Simule, EM Stochastique (SEM), pseudo-vraisemblance, Extraction d'objets.
@TECHREPORT{RR-7350,
|
author |
= |
{Ben Hadj, S. and Chatelain, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Estimation des paramètres de modèles de processus ponctuels marqués pour l'extraction d'objets en imagerie spatiale et aérienne haute résolution }, |
year |
= |
{2010}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Rapport de recherche}, |
number |
= |
{7350}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00508431/fr/}, |
keyword |
= |
{Processus ponctuels marques, RJMCMC, Recuit Simule, EM Stochastique (SEM), pseudo-vraisemblance, Extraction d'objets} |
} |
|
2 - An adaptive simulated annealing cooling schedule for object detection in images. M. Ortner et X. Descombes et J. Zerubia. Rapport de Recherche 6336, INRIA, octobre 2007. Mots-clés : Traitement d'image, Shape extraction, Spatial point process, Recuit Simule, Adaptive cooling schedule.
@TECHREPORT{Ortner-Descombes,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{An adaptive simulated annealing cooling schedule for object detection in images}, |
year |
= |
{2007}, |
month |
= |
{octobre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6336}, |
url |
= |
{https://hal.inria.fr/inria-00181764}, |
pdf |
= |
{https://hal.inria.fr/inria-00181764}, |
keyword |
= |
{Traitement d'image, Shape extraction, Spatial point process, Recuit Simule, Adaptive cooling schedule} |
} |
|
3 - Optimization Techniques for Energy Minimization Problem in a Marked Point Process Application to Forestry. G. Perrin et X. Descombes et J. Zerubia. Rapport de Recherche 5704, INRIA, France, septembre 2005. Mots-clés : Recuit Simule, Processus ponctuels marques, Geometrie stochastique, Optimisation.
@TECHREPORT{rr_perrin_optim_05,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Optimization Techniques for Energy Minimization Problem in a Marked Point Process Application to Forestry}, |
year |
= |
{2005}, |
month |
= |
{septembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5704}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070312}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70312/filename/RR-5704.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/03/12/PS/RR-5704.ps}, |
keyword |
= |
{Recuit Simule, Processus ponctuels marques, Geometrie stochastique, Optimisation} |
} |
Résumé :
Dans ce rapport de recherche, nous utilisons les processus ponctuels marqués afin d'extraire un nombre inconnu d'objets dans des images aériennes. Ces processus sont définis par une énergie, qui contient un terme a priori formalisant les interactions entre objets ainsi qu'un terme d'attache aux données. Nous cherchons à minimiser cette énergie, afin d'obtenir la meilleure configuration d'objets, à l'aide d'un recuit simulé qui s'inscrit dans l'algorithme d'échantillonnage MCMC à sauts réversibles.
Nous comparons ici différents schémas de décroissance de température, et présentons certaines méthodes qui permettent d'améliorer la convergence de l'algorithme en un temps fini. |
Abstract :
We use marked point processes to detect an unknown number of trees from high resolution aerial images. This approach turns to be an energy minimization problem, where the energy contains a prior term which takes into account the geometrical properties of the objects, and a data term to match these objects onto the image. This stochastic process is simulated via a Reversible Jump Markov Chain Monte Carlo procedure, which embeds a Simulated Annealing scheme to extract the best configuration of objects.
We compare in this paper different cooling schedules of the Simulated Annealing algorithm which could provide some good minimization in a short time. We also study some adaptive proposition kernels. |
|
4 - A Multiresolution Approach for Shape from Shading Coupling Deterministic and Stochastic Optimization. A. Crouzil et X. Descombes et J.D. Durou. Rapport de Recherche 5006, INRIA, France, décembre 2003. Mots-clés : Shape from shading, Recuit Simule, Optimisation, Multiresolution.
@TECHREPORT{Crouzil03,
|
author |
= |
{Crouzil, A. and Descombes, X. and Durou, J.D.}, |
title |
= |
{A Multiresolution Approach for Shape from Shading Coupling Deterministic and Stochastic Optimization}, |
year |
= |
{2003}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5006}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071578}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71578/filename/RR-5006.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/15/78/PS/RR-5006.ps}, |
keyword |
= |
{Shape from shading, Recuit Simule, Optimisation, Multiresolution} |
} |
Résumé :
Le Shape from shading est un problème inverse mal posé pour lequel aucune méthode de résolution complètement satisfaisante n'a encore été proposée. Dans ce rapport technique, nous ramenons le à un problème d'optimisation. Nous montrons d'abord que l'approche déterministe fournit des algorithmes efficaces en termes de temps de calcul, mais est d'un intérêt limité lorsque l'énergie comporte des minima locaux très profonds. Nous proposons comme alternative une approche stochastique utilisant le recuit simulé. Les résultats obtenus dépassent largement ceux de l'approche déterministe. La contrepartie est l'extrême lenteur du processus d'optimisation. Pour cette raison, nous proposons une approche hybride qui combine les approches déterministe et stochastique dans un cadre de multi-résolution. |
Abstract :
Shape from shading is an ill-posed inverse problem for which there is no completely satisfactory solution in the existing literature. In this technical report, we address shape from shading as an energy minimization problem. We first show that the deterministic approach provides efficient algorithms in terms of CPU time, but reaches its limits since the energy associated to shape from shading can contain multiple deep local minima. We derive an alternative stochastic approach using simulated annealing. The obtained results strongly outperform the results of the deterministic approach. The shortcoming is an extreme slowness of the optimization. Therefore, we propose an hybrid approach which combines the deterministic and stochastic approaches in a multiresolution framework. |
|
5 - Classification d'images satellitaires hyperspectrales en zone rurale et périurbaine. O. Pony et X. Descombes et J. Zerubia. Rapport de Recherche 4008, Inria, septembre 2000. Mots-clés : Imagerie hyperspectrale, Champs de Markov, Recuit Simule, Champs de Gibbs, Modele de Potts, Texture.
@TECHREPORT{pony00,
|
author |
= |
{Pony, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Classification d'images satellitaires hyperspectrales en zone rurale et périurbaine}, |
year |
= |
{2000}, |
month |
= |
{septembre}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4008}, |
url |
= |
{https://hal.inria.fr/inria-00072636}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72636/filename/RR-4008.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/26/36/PS/RR-4008.ps}, |
keyword |
= |
{Imagerie hyperspectrale, Champs de Markov, Recuit Simule, Champs de Gibbs, Modele de Potts, Texture} |
} |
Résumé :
L'observation satellitaire en zone rurale et périurbaine fournit des images hyperspectrales exploitables en vue de réaliser une cartographie ou une analyse du paysage. Nous avons appliqué une classification par maximum de vraisemblance sur des images de zone agricole. Afin de régulariser la classification, nous considérons la modélisation d'image par champs de Markov, dont l'équivalence avec les champs de Gibbs nous permet d'utiliser plusieurs algorithmes itératifs d'optimisation : l'ICM et le recuit simulé, qui convergent respectivement vers une classification sous-optimale ou optimale pour une certaine énergie. Un modèle d'énergie est proposé : le modèle de Potts, que nous améliorons pour le rendre adaptatif aux classes présentes dans l'image. L'étude de la texture dans l'image initiale permet d'introduire des critères artificiels qui s'ajoutent à la radiométrie de l'image en vue d'améliorer la classification. Ceci permet de bien segmenter les zones périurbaines, la forêt, la campagne, dans le cadre d'un plan d'occupation des sols. Trois images hyperspectrales et une vérité terrain ont été utilisées pour réaliser des tests, afin de mettre en évidence les méthodes et le paramétrage adéquats pour obtenir les résultats les plus satisfaisants. |
Abstract :
Satellite observation in rural and semiurban areas provides hyperspectral images which enable us to make a map or an analysis of the landscape. Herein, we applied a maximum likelihood classification on agricultural images. In order to improve this procedure, it is possible in each pixel to use contextual information. Thus, we consider Markov random fields image modeling. The equivalence between Markov and Gibbs fields allows us to use some iterative algorithms of optimisation : ICM and simulated annealing, which converge respectively towards a suboptimal or an optimal classification for a given energy. An energy model is proposed : the Potts model, which can be improved to be adaptive to the classes defined in the image. Texture analysis on the initial image is used to introduce artificial criteria, added to the original image, in order to improve classification. This proves to be useful for segmenting semiurban regions, forests, and the countryside, within the framework of a land-use plan. We use three hyperspectral images and a ground truth to carry out tests, in order to highlight the best methods and parameter setting to obtain the most satisfactory results. |
|
haut de la page
Ces pages sont générées par
|