|
Publications sur Zones urbaines
Résultat de la recherche dans la liste des publications :
5 Rapports de recherche et Rapports techniques |
3 - Noyaux Texturaux pour les Problèmes de Classification par SVM en Télédétection. F. Lafarge et X. Descombes et J. Zerubia. Rapport de Recherche 5370, INRIA, France, décembre 2004. Mots-clés : Support Vector Machines, Classification, Feux de foret, Zones urbaines, Base d'apprentissage, Champs de Markov.
@TECHREPORT{5370,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Noyaux Texturaux pour les Problèmes de Classification par SVM en Télédétection}, |
year |
= |
{2004}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5370}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070633}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70633/filename/RR-5370.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/06/33/PS/RR-5370.ps}, |
keyword |
= |
{Support Vector Machines, Classification, Feux de foret, Zones urbaines, Base d'apprentissage, Champs de Markov} |
} |
Résumé :
Nous détaillons dans ce rapport la construction de deux noyaux texturaux s'utilisant dans les problèmes de classification par «Support Vector Machines» en télédétection. Les SVM constituent une méthode de classification supervisée particulièrement bien adaptée pour traiter des données de grande dimension telles que les images satellitaires. Par cette méthode, nous souhaitons réaliser l'apprentissage de paramètres qui permettent la différenciation entre deux ensembles de pixels connexes non-identiques. Nous travaillons pour cela sur des fonctions noyaux, fonctions caractérisant une certaine similarité entre deux données. Dans notre cas, cette similarité sera fondée à la fois sur une notion radiométrique et sur une notion texturale. La principale difficulté rencontrée dans cette étude réside dans l'élaboration de paramètres texturaux pertinents qui modélisent au mieux l'homogénéité d'un ensemble de pixels connexes. Nous appliquons les noyaux proposés à deux problèmes de télédétection: la détection de feux de forêt et la détection de zones urbaines à partir d'images satellitaires haute résolusion. |
Abstract :
We present in this report two textural kernels for «Support Vector Machines» classification applied to remote sensing problems. SVMs constitute a method of supervised classification well adapted to deal with data of high dimension, such as images. We would like to learn parameters which allow the differentiation between two sets of connected pixels. We also introduce kernel functions which characterize a notion of similarity between two pieces of data. In our case this similarity is based on a radiometric charateristic and a textural characteristic. The main difficulty is to elaborate textural parameters which are pertinent and characterize as well as possible the homogeneity of a set of connected pixels. We apply this method to remote sensing problems : the detection of forest fires and the extraction of urban areas in high resolution satellite images. |
|
4 - Analyse Intra-urbaine à partir d'Images Satellitaires par une Approche de Fusion de Données sur la Ville de Mexico. O. Viveros-Cancino et X. Descombes et J. Zerubia. Rapport de Recherche 4578, Inria, France, octobre 2002. Mots-clés : Fusion de donnees, Champs de Markov, Texture, Zones urbaines, Matrice de confusion.
@TECHREPORT{4578,
|
author |
= |
{Viveros-Cancino, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Analyse Intra-urbaine à partir d'Images Satellitaires par une Approche de Fusion de Données sur la Ville de Mexico}, |
year |
= |
{2002}, |
month |
= |
{octobre}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4578}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00072010}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72010/filename/RR-4578.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/20/10/PS/RR-4578.ps}, |
keyword |
= |
{Fusion de donnees, Champs de Markov, Texture, Zones urbaines, Matrice de confusion} |
} |
Résumé :
Ce document présente une analyse intra-urbaine afin d'améliorer la détection des différents tissus urbains avec une application sur la ville de Mexico. La méthode de fission-fusion est proposée ainsi qu'une méthode pour fusionner les classes existantes. Les deux méthodes se composent des étapes suivantes : premièrement, une analyse de texture, nommée étape de fission, est faite pour mieux décrire l'image, ensuite, une classification supervisée, nommée étape de fusion, est faite sur les paramètres issus de l'analyse de texture à partir des valeurs de qualité, notamment la valeur Kappa calculée sur la matrice de confusion. Ces étapes sont réalisées sur des images optiques (SPOT) et radar (ERS) de la ville de Mexico et sont suivies d'un régularisation. |
Abstract :
In this research report we present an intra-urban analysis to improve urban texture extraction. Two methods are proposed : a fission-fusion method and another method which fuses already existing classes. Both methods consist of two steps. The first step, called fission, performs a texture analysis which looks for structures with different parameters. The second step, called fusion, involves a supervised classification using quality parameters, in particular the kappa value which is computed from the confusion matrix. These two steps are carried out on SPOT and radar images of Mexico city. A regularization step is then performed which completes our analysis. |
|
5 - Extraction des zones urbaines fondée sur une analyse de la texture par modélisation markovienne. A. Lorette et X. Descombes et J. Zerubia. Rapport de Recherche 3423, Inria, mai 1998. Mots-clés : Texture, Champs de Markov, Zones urbaines, Entropie.
@TECHREPORT{loretteRR98,
|
author |
= |
{Lorette, A. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Extraction des zones urbaines fondée sur une analyse de la texture par modélisation markovienne}, |
year |
= |
{1998}, |
month |
= |
{mai}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3423}, |
url |
= |
{http://hal.inria.fr/inria-00073267}, |
pdf |
= |
{http://hal.inria.fr/docs/00/07/32/67/PDF/RR-3423.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/32/67/PS/RR-3423.ps}, |
keyword |
= |
{Texture, Champs de Markov, Zones urbaines, Entropie} |
} |
Résumé :
Pour délimiter un masque urbain précis à partir d'une image satellitaire la seule information du niveau de gris est insuffisante. Laplupart des méthodes font donc appel à une analyse de la texture de l'image. Nous nous sommes placés dans ce cadre. Dans une première étape, nous avons défini un nouveau paramètre de texture à partir d'un modèle markovien gaussien. Nous obtenons ce nouveau paramètre en calculant la variance conditionnelle de l'image dans huit directions. Ainsi, nous éliminons la mauvaise classification d'objets ayant une orientation privilégiée tels que les vignes et les serres par exemple. Dans une seconde étape, nous proposons un algorithme de emphfuzzy Cmeans modifié incluant un terme d'entropie et pour lequel le nombre de classes n'est pas fixé a priori. Cet algorithme nous permet d'obtenir une première classification de l'image. Enfin, nous régularisons l'image ainsi obtenue grâce à une modélisation par champs de Markov. Des résultats obtenus sur des simulations d'images SPOT5 fournies par le CNES sont présentés. |
Abstract :
Urban areas cannot be extracted from satellite images through only grey level information. Hence most methods analyze the texture of the image to discriminate between urban areas and non urban areas. We define a new texture parameter derived from a Markovian Gaussian model. This new parameter takes into account the variance of the image in eight directions- . Consequently it copes with the misclassification of objects with a privileged orientation like vineyards or greenhouses for instance. Afterwards we develop a modified fuzzy Cmeans algorithm including an entropy term. The advantage of such an algorithm is that the number of classes does not need to be known a priori. By applying this modified fuzzy Cmeans algorithm on the parameter image we obtain a first classification. Finally we regularize the segmented image by using a Markov random field modelling. Some results on SPOT5 simulated images are presented. These images are provided by the CNES (French Space Agency). |
|
haut de la page
Ces pages sont générées par
|