|
Publications de Josiane Zerubia
Résultat de la recherche dans la liste des publications :
64 Rapports de recherche et Rapports techniques |
29 - SAR Image Filtering Based on the Heavy-Tailed Rayleigh Model. A. Achim et E.E. Kuruoglu et J. Zerubia. Rapport de Recherche 5493, INRIA, France, février 2005. Mots-clés : Radar a Ouverture Synthetique (SAR), Estimation MAP, Distribution alpha-stable, Transformee de Mellin.
@TECHREPORT{5493,
|
author |
= |
{Achim, A. and Kuruoglu, E.E. and Zerubia, J.}, |
title |
= |
{SAR Image Filtering Based on the Heavy-Tailed Rayleigh Model}, |
year |
= |
{2005}, |
month |
= |
{février}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5493}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070514}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70514/filename/RR-5493.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/05/14/PS/RR-5493.ps}, |
keyword |
= |
{Radar a Ouverture Synthetique (SAR), Estimation MAP, Distribution alpha-stable, Transformee de Mellin} |
} |
Résumé :
Les images issues d'un radar à synthèse d'ouverture (RSO) sont affectées de manière inhérente par un bruit dépendant du signal, généralement connu sous le nom de bruit de chatoiement et qui est dû à la cohérence de l'onde radar. Dans ce rapport, nous proposons un nouveau filtre adaptatif pour débruiter les images RSO et nous déduisons un estimateur du maximum a posteriori (MAP) pour la section efficace du diagramme de gain en radar. On utilise d'abord une transformée logarithmique afin de changer le bruit multiplicatif en bruit additif. Nous modélisons la section efficace à l'aide d'une densité de probabilité récemment introduite - la densité de Rayleigh à queue lourde, qui a été obtenue en supposant que les parties réelles et imaginaires du signal complexe reçu peuvent être mieux caractérisées à l'aide de la famille des distributions alpha-stables. Nous estimons les paramètres du modèle à partir d'observations bruitées en faisant appel à la théorie statistique de deuxième espèce qui est fondée sur la transformée de Mellin. Enfin, nous faisons la comparaison entre la méthode que nous proposons et d'autres filtres classiques pour le débruitage d'images RSO. Nos résultats expérimentaux démontrent que le filtre MAP homomorphique fondé sur le modèle de Rayleigh à queue lourde est parmi les meilleurs pour enlever le bruit de chatoiement. |
Abstract :
Synthetic aperture radar (SAR) images are inherently affected by a signal dependent noise known as speckle, which is due to the radar wave coherence. In this report, we propose a novel adaptive despeckling filter and derive a maximum a posteriori (MAP) estimator for the radar cross section (RCS). We first employ a logarithmic transformation to change the multiplicative speckle into additive noise. We model the RCS using the recently introduced heavy-tailed Rayleigh density function, which was derived based on the assumption that the real and imaginary parts of the received complex signal are best described using the alpha-stable family of distribution. We estimate model parameters from noisy observations by means of second-kind statistics theory, which relies on the Mellin transform. Finally, we compare our proposed algorithm with several classical speckle filters applied on actual SAR images. Experimental results show that the homomorphic MAP filter based on the heavy-tailed Rayleigh prior for the RCS is among the best for speckle removal. |
|
30 - Détection de Feux de Forêt par Analyse Statistique de la Radiométrie d'Images Satellitaires. F. Lafarge et X. Descombes et J. Zerubia. Rapport de Recherche 5369, INRIA, France, décembre 2004. Mots-clés : Feux de foret, Champs Gaussiens, Évenement rare.
@TECHREPORT{5369,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Détection de Feux de Forêt par Analyse Statistique de la Radiométrie d'Images Satellitaires}, |
year |
= |
{2004}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5369}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070634}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70634/filename/RR-5369.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/06/34/PS/RR-5369.ps}, |
keyword |
= |
{Feux de foret, Champs Gaussiens, Évenement rare} |
} |
Résumé :
Nous proposons, dans ce rapport, une méthode de détection des feux de forêt par imagerie satellitaire fondée sur la théorie des champs aléatoires. L'idée consiste à modéliser l'image par une réalisation d'un champ gaussien afin d'en extraire, par une analyse statistique, les éléments étrangers pouvant correspondre aux feux.
Le canal IRT (InfraRouge Thermique) contient des longueurs d'onde particulièrement sensibles à l'émission de chaleur. L'intensité d'un pixel d'une image IRT est donc d'autant plus forte que la température de la zone associée à ce pixel est élevée. Les feux de forêt peuvent alors être caractérisés par des pics d'intensité sur ce type d'images. Nous proposons une méthode de classification non supervisée et automatique fondée sur la théorie des champs gaussiens. Pour ce faire, nous modélisons dans un premier temps l'image par une réalisation d'un champ gaussien. Les zones de feux, minoritaires et de fortes intensités sont considérées comme des éléments étrangers à ce champ : ce sont des évènements rares. Ensuite, par une analyse statistique, nous déterminons un jeu de probabilités définissant, pour une zone donnée de l'image, un degré d'appartenance au champ gaussien, et par complémentarité aux zones potentiellement en feux. |
Abstract :
We present in this report a method for forest fire detection in satellite images based on random field theory. The idea is to model the image as a realization of a gaussian field in order to extract the rare events, which are potential fires, by a statistical analysis.
The TIR (Thermical InfraRed) channel has a wavelength sensitive to the emission of heat : the higher the heat of a area, the higher the intensity of the corresponding pixel of the image. Then a forest fire can be characterized by peak intensity in TIR images. We present an fully automatic unsupervised classification method based on Gaussian field theory. First we model the image as a realization of a Gaussian field. The fire areas, which have high intensity and are supposed to be a minority, are considered as foreign elements of that field : they are rare events. Then we determine by a statistical analysis a set of probabilities which characterizes the degree of belonging to the Gaussian field of a small area of the image. So, we estimate the probability that the area is a potential fire. |
|
31 - Noyaux Texturaux pour les Problèmes de Classification par SVM en Télédétection. F. Lafarge et X. Descombes et J. Zerubia. Rapport de Recherche 5370, INRIA, France, décembre 2004. Mots-clés : Support Vector Machines, Classification, Feux de foret, Zones urbaines, Base d'apprentissage, Champs de Markov.
@TECHREPORT{5370,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Noyaux Texturaux pour les Problèmes de Classification par SVM en Télédétection}, |
year |
= |
{2004}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5370}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070633}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70633/filename/RR-5370.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/06/33/PS/RR-5370.ps}, |
keyword |
= |
{Support Vector Machines, Classification, Feux de foret, Zones urbaines, Base d'apprentissage, Champs de Markov} |
} |
Résumé :
Nous détaillons dans ce rapport la construction de deux noyaux texturaux s'utilisant dans les problèmes de classification par «Support Vector Machines» en télédétection. Les SVM constituent une méthode de classification supervisée particulièrement bien adaptée pour traiter des données de grande dimension telles que les images satellitaires. Par cette méthode, nous souhaitons réaliser l'apprentissage de paramètres qui permettent la différenciation entre deux ensembles de pixels connexes non-identiques. Nous travaillons pour cela sur des fonctions noyaux, fonctions caractérisant une certaine similarité entre deux données. Dans notre cas, cette similarité sera fondée à la fois sur une notion radiométrique et sur une notion texturale. La principale difficulté rencontrée dans cette étude réside dans l'élaboration de paramètres texturaux pertinents qui modélisent au mieux l'homogénéité d'un ensemble de pixels connexes. Nous appliquons les noyaux proposés à deux problèmes de télédétection: la détection de feux de forêt et la détection de zones urbaines à partir d'images satellitaires haute résolusion. |
Abstract :
We present in this report two textural kernels for «Support Vector Machines» classification applied to remote sensing problems. SVMs constitute a method of supervised classification well adapted to deal with data of high dimension, such as images. We would like to learn parameters which allow the differentiation between two sets of connected pixels. We also introduce kernel functions which characterize a notion of similarity between two pieces of data. In our case this similarity is based on a radiometric charateristic and a textural characteristic. The main difficulty is to elaborate textural parameters which are pertinent and characterize as well as possible the homogeneity of a set of connected pixels. We apply this method to remote sensing problems : the detection of forest fires and the extraction of urban areas in high resolution satellite images. |
|
32 - 3D Microscopy Deconvolution using Richardson-Lucy Algorithm with Total Variation Regularization. N. Dey et L. Blanc-Féraud et C. Zimmer et P. Roux et Z. Kam et J.C. Olivo-Marin et J. Zerubia. Rapport de Recherche 5272, INRIA, France, juillet 2004. Mots-clés : Microscopie confocale, Deconvolution, Reponse impulsionnelle, Variation totale.
@TECHREPORT{5272,
|
author |
= |
{Dey, N. and Blanc-Féraud, L. and Zimmer, C. and Roux, P. and Kam, Z. and Olivo-Marin, J.C. and Zerubia, J.}, |
title |
= |
{3D Microscopy Deconvolution using Richardson-Lucy Algorithm with Total Variation Regularization}, |
year |
= |
{2004}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5272}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00070726/fr/}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70726/filename/RR-5272.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/07/26/PS/RR-5272.ps}, |
keyword |
= |
{Microscopie confocale, Deconvolution, Reponse impulsionnelle, Variation totale} |
} |
Résumé :
La microscopie confocale (Confocal laser scanning microscopy ou microscopie confocale à balayage laser) est une méthode puissante de plus en plus populaire pour l'imagerie 3D de spécimens biologiques. Malheureusement, les images acquises sont dégradées non seulement par du flou dû à la lumière provenant de zones du spécimen non focalisées, mais aussi par un bruit de Poisson dû à la détection, qui se fait à faible flux de photons. Plusieurs méthodes de déconvolution ont été proposées pour réduire ces dégradations, avec en particulier l'algorithme itératif de Richardson-Lucy, qui calcule un maximum de vraisemblance adapté à une statistique poissonienne. Mais cet algorithme utilisé comme tel ne converge pas nécessairement vers une solution adaptée, car il tend à amplifier le bruit. Si par contre on l'utilise avec une contrainte de régularisation (connaissance a priori sur l'objet que l'on cherche à restaurer, par exemple), Richardson-Lucy régularisé converge toujours vers une solution adaptée, sans amplification du bruit. Nous proposons ici de combiner l'algorithme de Richardson-Lucy avec une contrainte de régularisation basée sur la Variation Totale, dont l'effet d'adoucissement permet d'éviter les oscillations d'intensité tout en préservant les bords des objets. Nous montrons sur des images synthétiques et sur des images réelles que cette contrainte de régularisation améliore les résultats de la déconvolution à la fois qualitativement et quantitativement. Nous comparons plusieurs méthodes de déconvolution bien connues à la méthode que nous proposons, comme Richardson-Lucy standard (pas de régularisation), Richardson-Lucy régularisé avec Tikhonov-Miller, et un algorithme basé sur la descente de gradients (sous l'hypothèse d'un bruit additif gaussien). |
Abstract :
Confocal laser scanning microscopy is a powerful and increasingly popular technique for 3D imaging of biological specimens. However the acquired images are degraded by blur from out-of-focus light and Poisson noise due to photon-limited detection. Several deconvolution methods have been proposed to reduce these degradations, including the Richardson-Lucy iterative algorithm, which computes a maximum likelihood estimation adapted to Poisson statistics. However this algorithm does not necessarily converge to a suitable solution, as it tends to amplify noise. If it is used with a regularizing constraint (some prior knowledge on the data), Richardson-Lucy regularized with a well-chosen constraint, always converges to a suitable solution. Here, we propose to combine the Richardson-Lucy algorithm with a regularizing constraint based on Total Variation, whose smoothing avoids oscillations while preserving object edges. We show on simulated and real images that this constraint improves the deconvolution results both visually and using quantitative measures. We compare several well-known deconvolution methods to the proposed method, such as standard Richardson-Lucy (no regularization), Richardson-Lucy with Tikhonov-Miller regularization, and an additive gradient-based algorithm. |
|
33 - SAR Amplitude Probability Density Function Estimation based on a Generalized Gaussian Scattering Model. G. Moser et J. Zerubia et S.B. Serpico. Rapport de Recherche 5153, INRIA, France, mars 2004. Mots-clés : Radar a Ouverture Synthetique (SAR), Gaussiennes generalisees.
@TECHREPORT{5153,
|
author |
= |
{Moser, G. and Zerubia, J. and Serpico, S.B.}, |
title |
= |
{SAR Amplitude Probability Density Function Estimation based on a Generalized Gaussian Scattering Model}, |
year |
= |
{2004}, |
month |
= |
{mars}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5153}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071430}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71430/filename/RR-5153.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/14/30/PS/RR-5153.ps}, |
keyword |
= |
{Radar a Ouverture Synthetique (SAR), Gaussiennes generalisees} |
} |
Résumé :
En télédetection, un problème important est celui de développer des modèles précis pour representer les statistiques des intensités des pixels. En ce qui concerne les données du type Radar à Synthèse d'Ouverture (RSO), cette modélisation constitue un point capital pour la classification ou le débruitage d'une image, par exemple. Dans ce rapport de recherche, une nouvelle méthode d'estimation paramétrique pour les amplitudes d'images RSO est proposée. Elle tient compte de la nature physique des phénomènes de diffusion qui générent une image RSO en adoptant une modèle de gaussiennes generalisées pour les phénomènes de rétrodiffusion. Une expression, sous forme explicite, de la densité de probabilité de l'amplitude est obtenue et un algorithme spécifique d'estimation des paramètres est proposé afin de pouvoir utiliser le modèle proposé. Une mèthode récente fondée sur les «logs-cumulants» est appliquée, dérivant de l'utilisation d'une transformée de Mellin (à la place de la transformée de Fourier usuelle) dans le calcul des fonctions caractéristiques et de la généralisation des concepts de moment et de cumulant correspondante. Les estimées obtenues par la mèthode des log-cumulants pour le modèle d'amplitude fondé sur des gaussiennes généralisées se révelent être calculables numériquement et également consistantes. Dans ce rapport de recherche, l'approche paramètrique proposée est validée sur diverses images radar RSO (ERS, XSAR, ESAR et des radar aéroportés). Les résultats expérimentaux montrent que la mèthode proposée modèlise mieux la densité de probabilité de l'amplitude que beaucoup de modèles paramétriques proposés précédemment pour les phénomènes de rétrodiffusion. |
Abstract :
In the context of remotely sensed data analysis, an important problem is the development of accurate models for the statistics of the pixel intensities. Focusing on Synthetic Aperture Radar (SAR) data, this modelling process turns out to be a crucial task, for instance, for classification or for denoising purposes. In the present report, an innovative parametric estimation methodology for SAR amplitude data is proposed, which takes into account the physical nature of the scattering phenomena generating a SAR image by adopting a generalized Gaussian (GG) model for the backscattering phenomena. A closed form expression for the corresponding amplitude probability density function (PDF) is derived and a specific parameter estimation algorithm is developed in order to deal with the proposed model. Specifically, the recently proposed «method-of-log-cumulants» (MoLC) is applied, which stems from the adoption of the Mellin transform (instead of the usual Fourier transform) in the computation of characteristic functions, and from the corresponding generalization of the concepts of moment and of cumulant. For the developed GG-based amplitude model, the resulting MoLC estimates turn out to be numerically feasible and are also proved to be consistent. The proposed parametric approach is validated using several real ERS-1, XSAR, ESAR and airborne SAR images and the experimental results prove that the method models the amplitude probability density function better than several previously proposed parametric models for the backscattering phenomena. |
|
34 - Dictionary-based Stochastic Expectation-Maximization for SAR amplitude probability density function estimation. G. Moser et J. Zerubia et S.B. Serpico. Rapport de Recherche 5154, INRIA, France, mars 2004. Mots-clés : Radar a Ouverture Synthetique (SAR), EM Stochastique (SEM), Modeles de melange fini.
@TECHREPORT{5154,
|
author |
= |
{Moser, G. and Zerubia, J. and Serpico, S.B.}, |
title |
= |
{Dictionary-based Stochastic Expectation-Maximization for SAR amplitude probability density function estimation}, |
year |
= |
{2004}, |
month |
= |
{mars}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5154}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071429}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71429/filename/RR-5154.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/14/29/PS/RR-5154.ps}, |
keyword |
= |
{Radar a Ouverture Synthetique (SAR), EM Stochastique (SEM), Modeles de melange fini} |
} |
Résumé :
En télédetection, un problème vital est le besoin de développer des modèles précis pour représenter les statistiques des intensités des images. Dans ce rapport de recherche, nous traitons le problème de l'estimation de la densité de probabilité de l'amplitude d'une image de type Radar à Synthèse d'Ouverture (RSO). Plusieurs modèles théoriques ou heuristiques, ultilisés pour représenter l'amplitude d'un signal du type RSO, ont été proposés dans la littérature et ce sont révelés être efficaces pour différentes types de classes dans le contexte des cartes d'occupation des sols, rendant ainsi difficile le choix d'une seule densité de probabilité paramétrique. Dans ce rapport de recherche, un algorithme d'estimation innovant est proposé, se fondant sur un modèle de mélange fini pour la densité de probabilité de l'amplitude, les diverses composantes du mélange appartenant à un dictionnaire specifique. La mèthode proposée dans ce rapport intégre, de fa on automatique, les procédures de sélection d'un modèle optimal pour chaque composante, d'estimation de paramètres et d'optimisation du nombre de composantes, en combinant un algorithme EM stochastique et la méthode des logs-cumulants pour l'estimation de la densité de probabilité paramètrique. Des resultats expérimentaux sur plusieurs images RSO réelles sont présentés, montrant ainsi que la mèthode proposée est suffisamment précise pour modéliser les statistiques du signal d'amplitude radar de type RSO. |
Abstract :
In the context of remotely sensed data analysis, a crucial problem is represented by the need to develop accurate models for the statistics of the pixel intensities. In the current research report, we address the problem of parametric probability density function (PDF) estimation in the context of Synthetic Aperture Radar (SAR) amplitude data analysis. Specifically, several theoretical and heuristic models for the PDFs of SAR data have been proposed in the literature, and have been proved to be effective for different land-cover typologies, thus making the choice of a single optimal SAR parametric PDF a hard task. In thia report, an innovative estimation algorithm is proposed, which addresses this problem by adopting a finite mixture model (FMM) for the amplitude PDF, with mixture components belonging to a given dictionary of SAR-specific PDFs. The proposed method automatically integrates the procedures of selection of the optimal model for each component, of parameter estimation, and of optimization of the number of components, by combining the Stochastic Expectation Maximization (SEM) iterative methodology and the recently proposed «method-of-log-cumulants» (MoLC) for parametric PDF estimation for non-negative random variables. Experimental results on several real SAR images are presented, showing the proposed method is accurately modelling the statistics of SAR amplitude data. |
|
35 - Models of the Unimodal and Multimodal Statistics of Adaptive Wavelet Packet Coefficients. R. Cossu et I. H. Jermyn et K. Brady et J. Zerubia. Rapport de Recherche 5122, INRIA, France, février 2004. Mots-clés : Paquet d'ondelettes, Texture.
@TECHREPORT{5122,
|
author |
= |
{Cossu, R. and Jermyn, I. H. and Brady, K. and Zerubia, J.}, |
title |
= |
{Models of the Unimodal and Multimodal Statistics of Adaptive Wavelet Packet Coefficients}, |
year |
= |
{2004}, |
month |
= |
{février}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5122}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071461}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71461/filename/RR-5122.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/14/61/PS/RR-5122.ps}, |
keyword |
= |
{Paquet d'ondelettes, Texture} |
} |
Résumé :
De récents travaux ont montré que bien que les histogrammes de sous-bandes pour les coefficients d'ondelettes standards ont une forme de gaussienne généralisée, ce n'est plus vrai pour les bases de paquets d'ondelettes adaptés à une certaine texture. Trois types de statistiques sont alors observés pour les sous-bandes: gaussienne, gaussienne generalisée et dans certaines sous-bandes des histogrammes multimodaux sans mode en zéro. Dans ce rapport, nous démontrons que ces sous-bandes sont étroitement liées à la structure de la texture et sont ainsi primordiales dans les applications dans lesquelles la texture joue un rôle important. Fort de ces observations, nous étendons l'approche de modélisation de textures proposée par en incluant ces sous-bandes. Nous modifions l'hypothèse gaussienne pour inclure les gaussiennes généralisées et les mixtures de gaussiennes contraintes. Nous utilisons une méthodologie bayésienne, définissant des estimateurs MAP pour la base adaptative, pour la sélection du modèle de la sous-bande et pour les paramètres de ce modèle. Les résultats confirment l'efficacité de la méthode proposée et soulignent l'importance des sous-bandes multimodales pour la discrimination et la modélisation de textures. |
Abstract :
In recent work, it was noted that although the subband histograms for standard wavelet coefficients take on a generalized Gaussian form, this is no longer true for wavelet packet bases adapted to a given texture. Instead, three types of subband statistics are observed: Gaussian, generalized Gaussian, and most interestingly, in some subbands, multimodal histograms with no mode at zero. As will be demonstrated in this report, these latter subbands are closely linked to the structure of the texture, and are thus likely to be important for many applications in which texture plays a role. Motivated by these observations, we extend the approach to texture modelling proposed by to include these subbands. We relax the Gaussian assumption to include generalized Gaussians and constrained Gaussian mixtures. We use a Bayesian methodology, finding MAP estimates for the adaptive basis, for subband model selection, and for subband model parameters. Results confirm the effectiveness of the proposed approach, and highlight the importance of multimodal subbands for texture discrimination and modelling. |
|
36 - Contours Actifs d'Ordre Supérieur Appliqués à la Détection de Linéiques dans des Images de Télédétection. M. Rochery et I. H. Jermyn et J. Zerubia. Rapport de Recherche 5063, INRIA, France, décembre 2003. Mots-clés : Reseaux lineiques, Contour actif, Modeles deformables, Extraction d'objets.
@TECHREPORT{RRRochery03,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Contours Actifs d'Ordre Supérieur Appliqués à la Détection de Linéiques dans des Images de Télédétection}, |
year |
= |
{2003}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5063}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071521}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71521/filename/RR-5063.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/15/21/PS/RR-5063.ps}, |
keyword |
= |
{Reseaux lineiques, Contour actif, Modeles deformables, Extraction d'objets} |
} |
Résumé :
Dans ce rapport, nous présentons une nouvelle méthode pour l'incorporation d'une information sur la géométrie a priori dans le cadre des contours actifs. Nous introduisons une nouvelle classe de contours actifs d'ordre supérieur, qui sont des énergies quadratiques sur l'espace des 1-chaînes, contrairement aux énergies classiquement utilisées qui sont linéaires. Ces énergies permettent de définir des interactions non triviales entre les différents points du contour. Elles donnent naissance à des forces non locales, permettant ainsi d'introduire une information géométrique forte dans le modèle. D'un point de vue algorithmique, nous utilisons la méthodologie par courbes de niveau afin de trouver le minimum de l'énergie, la présence de forces non locales nécessitant une extension des méthodes standard utilisées pour l'évolution que nous décrivons. Nous utilisons ce nouveau modèle pour la détection de linéiques (routes, rivières, ...) dans les images de télédétection et nous montrons des résultats d'extraction sur des images réelles. |
Abstract :
In this report, we introduce a new class of active contour energies, quadratic on the space of 1-chains, as opposed to classical energies, which are linear. These energies define non trivial interactions between different points of the contour, and thus allow the incorporation of a priori shape information through the generation of non-local forces that carry geometric information. They also allow the definition of complex data terms linking the data at different points of the contour. To solve the models, we use the level set methodology, in the process extending the standard evolution methods to deal with the non-locality of the forces involved. We use this new approach in order to define models for the extraction of line networks (roads, rivers, ...) in satellite imagery. We show some results on real-world images. |
|
37 - A Binary Tree-Structured MRF Model for Multispectral Satellite Image Segmentation. G. Scarpa et G. Poggi et J. Zerubia. Rapport de Recherche 5062, INRIA, France, décembre 2003. Mots-clés : Estimation bayesienne, Classification, Champs de Markov, Modeles hierarchiques.
@TECHREPORT{Scarpa03,
|
author |
= |
{Scarpa, G. and Poggi, G. and Zerubia, J.}, |
title |
= |
{A Binary Tree-Structured MRF Model for Multispectral Satellite Image Segmentation}, |
year |
= |
{2003}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5062}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071522}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71522/filename/RR-5062.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/15/22/PS/RR-5062.ps}, |
keyword |
= |
{Estimation bayesienne, Classification, Champs de Markov, Modeles hierarchiques} |
} |
Résumé :
Dans ce rapport, nous proposons un modèle markovien a priori structuré à arbre binaire (le TS-MRF) pour la segmentation d'images satellitaires multispectrales. Ce modèle permet de représenter un champ bidimensionnel par une séquence de champs de Markov binaires, chacun correspondant à un noeud de l'arbre. Pour avoir une bonne classification, on peut adapter le modèle TS-MRF à la structure intrinsèque des données, en définissant un MRF, à plusieurs paramètres, très flexible. Bien que l'on définisse le modèle global sur tout l'arbre, l'optimisation et l'estimation peuvent être poursuivis en considérant un noeud à la fois, à partir de la racine jusqu'aux feuilles, avec une réduction significative de la complexité. En effet, on a montré expérimentalement que l'algorithme global est beaucoup plus rapide qu'un algorithme conventionnel fondé sur le modèle markovien d'Ising, en particulier quand le nombre des bandes spectrales est très grand. Grâce à la procédure d'optimisation séquentielle, ce modèle permet aussi de déterminer le nombre des classes présentes dans l'image satellitaire, dans le cadre d'une classification non supervisée, à travers une condition d'arrêt définie localement pour chaque noeud. Nous avons effectué des expériences sur une image SPOT de la baie de Lannion, pour laquelle nous disposons d'une vérité terrain, et nous avons trouvé que le modèle proposé fournit de meilleurs résultats que certains autres modèles de Markov et que d'autres méthodes variationnelles. |
Abstract :
In this work we detail a tree-structured MRF (TS-MRF) prior model useful for segmentation of multispectral satellite images. This model allows a hierarchical representation of a 2-D field by the use of a sequence of binary MRFs, each corresponding to a node in the tree. In order to get good performances, one can fit the intrinsic structure of the data to the TS-MRF model, thereby defining a multi-parameter, flexible, MRF. Although a global MRF model is defined on the whole tree, optimization as well estimation can be carried out by working on a single node at a time, from the root down to the leaves, with a significant reduction in complexity. Indeed the overall algorithm is proved experimentally to be much faster than a comparable algorithm based on a conventional Ising MRF model, especially when the number of bands becomes very large. Thanks to the sequential optimization procedure, this model also addresses the cluster validation problem of unsupervised segmentation, through the use of a stopping condition local to each node. Experiments on a SPOT image of the Lannion Bay, a ground-truth of which is available, prove the superior performance of the algorithm w.r.t. some other MRF based algorithms for supervised segmentation, as well as w.r.t. some variational methods. |
|
38 - Extraction de Houppiers par Processus Objet. G. Perrin et X. Descombes et J. Zerubia. Rapport de Recherche 5037, INRIA, France, décembre 2003. Mots-clés : Extraction d'objets, Extraction de Houppiers, Geometrie stochastique, Processus ponctuels marques, RJMCMC.
@TECHREPORT{Perrin03,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Extraction de Houppiers par Processus Objet}, |
year |
= |
{2003}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5037}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071547}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71547/filename/RR-5037.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/15/47/PS/RR-5037.ps}, |
keyword |
= |
{Extraction d'objets, Extraction de Houppiers, Geometrie stochastique, Processus ponctuels marques, RJMCMC} |
} |
Résumé :
Nous cherchons à extraire des houppiers à partir d'images de télédétection. Pour ce faire, nous construisons un processus objet et assimilons nos images d'arbres à des réalisations de ce processus. La première étape consiste à définir d'une part les objets géométriques modélisant les arbres, et d'autre part la densité du processus à simuler.La seconde étape consiste à construire un algorithme MCMC à sauts réversibles, et une estimée de la configuration d'objets. Les transitions aléatoires de la chaîne sont régies par des noyaux de propositions, chacun étant associé à une perturbation.Nous testons notre modèle sur des images aériennes de peupleraies fournies par l'IFN. |
Abstract :
In this paper we aim at extracting tree crowns from remotely sensed images. Our approach is to consider that these images are some realizations of a marked point process. The first step is to define the geometrical objects that design the trees, and the density of the process.Then, we use a reversible jump MCMC dynamics and a simulated annealing to get the maximum a posteriori estimator of the tree crowns distribution on the image. Transitions of the Markov chain are managed by some specific proposition kernels.Results are shown on aerial images of poplars given by IFN. |
|
haut de la page
Ces pages sont générées par
|