|
Publications de Guillaume Perrin
Résultat de la recherche dans la liste des publications :
Thèse de Doctorat et Habilitation |
1 - Etude du couvert forestier par processus ponctuels marqués. G. Perrin. Thèse de Doctorat, Ecole Centrale Paris, octobre 2006. Mots-clés : Extraction de Houppiers, Processus ponctuels marques, Geometrie stochastique, Extraction d'objets, RJMCMC.
@PHDTHESIS{perrin_phd06,
|
author |
= |
{Perrin, G.}, |
title |
= |
{Etude du couvert forestier par processus ponctuels marqués}, |
year |
= |
{2006}, |
month |
= |
{octobre}, |
school |
= |
{Ecole Centrale Paris}, |
url |
= |
{http://www-sop.inria.fr/ariana/personnel/Guillaume.Perrin/resume.php}, |
pdf |
= |
{http://www-sop.inria.fr/ariana/personnel/Guillaume.Perrin/DOWNLOADS/these_perrin_2006.pdf}, |
keyword |
= |
{Extraction de Houppiers, Processus ponctuels marques, Geometrie stochastique, Extraction d'objets, RJMCMC} |
} |
Résumé :
Cette thèse aborde le problème de l'extraction d'arbres à partir d'images aériennes InfraRouge Couleur (IRC) de forêts. Nos modèles reposent sur l'utilisation de processus objets ou processus ponctuels marqués. Il s'agit de variables aléatoires dont les réalisations sont des configurations d'objets géométriques. Une fois l'objet géométrique de référence choisi, nous définissons l'énergie du processus par le biais d'un terme a priori, modélisant les contraintes sur les objets et leurs interactions, ainsi qu'un terme image. Nous échantillonnons le processus objet grâce à un algorithme de type Monte Carlo par Chaînes de Markov à sauts réversibles (RJMCMC), optimisé par un recuit simulé afin d'extraire la meilleure configuration d'objets, qui nous donne l'extraction recherchée.
Dans ce manuscrit, nous proposons différents modèles d'extraction de houppiers, qui extraient des informations à l'échelle de l'arbre selon la densité du peuplement. Dans les peuplements denses, nous présentons un processus d'ellipses, et dans les zones de plus faible densité, un processus d'ellipsoïdes. Nous obtenons ainsi le nombre d'arbres, leur localisation, le diamètre de la couronne et leur hauteur pour les zones non denses. Les algorithmes automatiques résultant de cette modélisation sont testés sur des images IRC très haute résolution fournies par l'Inventaire Forestier National (IFN). |
Abstract :
This thesis addresses the problem of tree crown extraction from Colour InfraRed (CIR) aerial images of forests. Our models are based on object processes, otherwise known as marked point processes. These mathematical objects are random variables whose realizations are configurations of geometrical shapes. This approach yields an energy minimization problem, where the energy is composed of a regularization term (prior density), which introduces some constraints on the objects and their interactions, and a data term, which links the objects to the features to be extracted. Once the reference object has been chosen, we sample the process and extract the best configuration of objects with respect to the energy, using a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm embedded in a Simulated Annealing scheme.
We propose different models for tree crown extraction depending on the density of the stand. In dense areas, we use an ellipse process, while in sparse vegetation an ellipsoïd process is used. As a result we obtain the number of stems, their position, the diameters of the crowns and the heights of the trees for sparse areas. The resulting algorithms are tested on high resolution CIR aerial images provided by the French National Forest Inventory (IFN). |
|
haut de la page
8 Articles de conférence |
1 - 2D and 3D Vegetation Resource Parameters Assessment using Marked Point Processes. G. Perrin et X. Descombes et J. Zerubia. Dans Proc. International Conference on Pattern Recognition (ICPR), Hong-Kong, août 2006. Mots-clés : Energie d'attache aux données, Extraction d'objets, Extraction de Houppiers, Geometrie stochastique, Processus ponctuels marques.
@INPROCEEDINGS{perrin_06_c,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{2D and 3D Vegetation Resource Parameters Assessment using Marked Point Processes}, |
year |
= |
{2006}, |
month |
= |
{août}, |
booktitle |
= |
{Proc. International Conference on Pattern Recognition (ICPR)}, |
address |
= |
{Hong-Kong}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_perrin_06_c.pdf}, |
keyword |
= |
{Energie d'attache aux données, Extraction d'objets, Extraction de Houppiers, Geometrie stochastique, Processus ponctuels marques} |
} |
Abstract :
High resolution aerial and satellite images of forests have a key role to play in natural resource management. As they enable to study forests at the scale of trees, it is now possible to get a more accurate evaluation of the forest resources, from which can be deduced information of biodiversity and ecological sustainability. In that prospect, automatic algorithms are needed to give a further exploitation of the data and to assist human operators. In this paper, we present a stochastic geometry approach to extract 2D and 3D parameters of the trees, by modelling the stands as some realizations of a marked point process of ellipses or ellipsoids, whose points are the positions of the trees and marks their geometric features. This approach gives also the number of stems, their position, and their size. It is an energy minimization problem, where the energy embeds a regularization term (prior density), which introduces some interactions between the objects, and a data term, which links the objects to the features to be extracted. Results are shown on aerial images provided by the French National Forest Inventory (IFN). |
|
2 - A comparative study of three methods for identifying individual tree crowns in aerial images covering different types of forests. M. Eriksson et G. Perrin et X. Descombes et J. Zerubia. Dans Proc. International Society for Photogrammetry and Remote Sensing (ISPRS), Marne La Vallee, France, juillet 2006. Mots-clés : Croissance de Region, Processus ponctuels marques, Champs de Markov, Extraction d'objets, Extraction de Houppiers.
@INPROCEEDINGS{eriksson06a,
|
author |
= |
{Eriksson, M. and Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A comparative study of three methods for identifying individual tree crowns in aerial images covering different types of forests}, |
year |
= |
{2006}, |
month |
= |
{juillet}, |
booktitle |
= |
{Proc. International Society for Photogrammetry and Remote Sensing (ISPRS)}, |
address |
= |
{Marne La Vallee, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_eriksson06a.pdf}, |
keyword |
= |
{Croissance de Region, Processus ponctuels marques, Champs de Markov, Extraction d'objets, Extraction de Houppiers} |
} |
Abstract :
Most of today's silviculture methods has the goal to optimise the outcome of the forest in stem volume when it is cut. It might also be relevant to save parts of the forest, for instance, to protect a habitat. In order to get a good survey of the forest, remote sensed images are often used. These images are most often manually interpreted in combination with field measurements in order to estimate the forest parameters that are of importance in the decision how to optimally maintain the forest. Among these parameters the most common are stem number, stem volume, and tree species. Interpretation of images are often labour and time consuming. Thus, automatically developed methods for interpretation can lower the work load and speed up the interpretation time.
The interpretation is often done using images captured from a far distance from the ground in order to capture as large area as possible. However, this lower the accuracy of the estimates since it must be done stand wise. Knowledge of where each individual trees in the forest is located together with its size will increase accuracy. It makes it also possible to plan the cutting in detail. With this knowledge in mind, research about finding automatically methods for finding individual tree crowns in aerial images has been a subject for researchers the last decades.
Today's methods are not capable to alone handle all kind of forests. Therefore, comparative studies of different segmentation methods with different types of forests are of importance in order to clarify how much a method is reliable at a certain type of forest. This knowledge can, for instance, be used to build up an expert system which are supposed to be able to find individual tree crowns in any kind of forests. The comparison is done using images covering different types of forests. The types of forests that are included in the study ranges from isolated tree crown where the ground is clearly visible between the crowns to dense forest which is naturally regenerated via planted forest.
In this study we compare three existing segmentation methods for extracting individual tree crowns from aerial images. The first two methods are probabilistic methods which minimises some energy function while the third is a region growing algorithm. The first probabilistic method is based on a Markov Random Field modelling. We define a prior Markov model to segment the image into three classes (background, vegetation and tree centres). The prior model embed a circular shape model of the tree crown with a random radius. The data term allows to well position the tree centres onto the image and to describe the tree shape as fluctuations around the circular template. Besides, some long range interactions models the relations between the trees locations, such as some periodicity in case of plantations.
The second probabilistic method consists in modeling the trees in the forestry images as random configurations of ellipses or ellipsoids, whose points are the positions of the stems and marks their geometric features. The density of this process embeds a regularization term (prior density), which introduces some interactions between the objects, and a data term, which links the objects to the features to be extracted. We estimate the best configuration of an unknown number of objects, from which 2D and 3D vegetation resource parameters can be extracted. To sample this marked point process, we use Monte Carlo dynamics, while the optimization is performed via a Simulated Annealing algorithm, which results in a fully automatic approach. This approach works well on plantations, where there are high spatial relations between the trees, and on isolated trees where 3D parameters can be extracted, but some difficulties remain in dense areas.
The third method, the region growing algorithm, relies as all region growing methods on good seed points, i.e. in this case approximate locations of the tree crowns. From the seed points the segments are grown according to a grey level value of the neighbouring pixels. The larger the value is the sooner it is connected to the neighbouring segment. The segments stops to grow when all pixels belongs to a segment. This method, contrary the others, will have as a result, segments that have captured the actual shape of the tree crown if the forest is not too sparse. If the forest is too sparse such that the ground is visible, there are problems of finding the seed points. In the cases when the forest is sparse, there are difficulties to separate the tree crowns from the ground. Even if the seed points would be located only at the tree crowns the result will contain a lot of errors since all pixels most belong to a segment, i.e. even the ground pixels must be connected to a segment in this case. |
|
3 - Forest Resource Assessment using Stochastic Geometry. G. Perrin et X. Descombes et J. Zerubia et J.G. Boureau. Dans Proc. International Precision Forestry Symposium, mars 2006. Mots-clés : Extraction de Houppiers, Extraction d'objets, Geometrie stochastique, RJMCMC, Energie d'attache aux données.
@INPROCEEDINGS{perrin_06_b,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J. and Boureau, J.G.}, |
title |
= |
{Forest Resource Assessment using Stochastic Geometry}, |
year |
= |
{2006}, |
month |
= |
{mars}, |
booktitle |
= |
{Proc. International Precision Forestry Symposium}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/perrin_ipfs06.pdf}, |
keyword |
= |
{Extraction de Houppiers, Extraction d'objets, Geometrie stochastique, RJMCMC, Energie d'attache aux données} |
} |
Abstract :
Aerial and satellite imagery has a key role to play in natural resource management, especially in forestry application. The submetric resolution of the data enables to study forests at the scale of trees, and to get a more accurate assessment of the resources such as the number of stems or the forest cover. To develop automatic tools in order to help the inventories in their work and to bring more knowledge about the stands is also nowadays of important economical and environmental concerns.
In this paper, we aim at extracting tree crowns from high resolution aerial Color Infrared images (CIR) of forests using marked point processes. Our approach consists in modelling the trees in the forestry images as random configurations of ellipses, whose points are the positions of the stems and marks their geometric features. The density of this process embeds a regularization term (prior density), which introduces some interactions between the objects, and a data term, which links the objects to the features to be extracted. Our goal is to find the best configuration of an unknown number of objects, i.e. the configuration that maximizes this density. To sample this marked point process, we use Monte Carlo dynamics while the optimization is performed via a Simulated Annealing algorithm, which results in a fully automatic approach.
We present different models for the data term in order to cope with different kinds of stands : plantations, isolated trees and mixed stands. Results are shown on aerial CIR images provided by the French Forest Inventory (IFN) |
|
4 - Evaluation des Ressources Forestières à l'aide de Processus Ponctuels Marqués. G. Perrin et X. Descombes et J. Zerubia. Dans Proc. Reconnaissance des Formes et Intelligence Artificielle (RFIA), Tours, France, janvier 2006. Mots-clés : Extraction de Houppiers, Geometrie stochastique, Processus ponctuels marques, Extraction d'objets.
@INPROCEEDINGS{perrin_06_a,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Evaluation des Ressources Forestières à l'aide de Processus Ponctuels Marqués}, |
year |
= |
{2006}, |
month |
= |
{janvier}, |
booktitle |
= |
{Proc. Reconnaissance des Formes et Intelligence Artificielle (RFIA)}, |
address |
= |
{Tours, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/perrin_rfia06.pdf}, |
keyword |
= |
{Extraction de Houppiers, Geometrie stochastique, Processus ponctuels marques, Extraction d'objets} |
} |
Résumé :
Les images aériennes et satellitaires jouent un role de plus en plus important dans le domaine de la gestion des ressources naturelles, et en particulier des forêts. Les organismes chargés d'en faire l'inventaire, comme l'Inventaire Forestier National (IFN) en France, s'appuient en effet sur ces images pour observer les différentes espèces d'arbres d'une zone boisée, avant de se rendre sur le terrain pour une étude plus poussée. La résolution submétrique des données permet, en outre, d'entrevoir une étude plus fine, à savoir un comptage à l'arbre près et une classification automatique des houppiers (ensemble des branches et du feuillage d'un arbre). Cette évaluation précise des ressources forestières n'est actuellement pas disponible. Aussi, le développement d'outils automatiques, chargés d'aider les gestionnaires du paysage dans leur travail en leur apportant une connaissance des ressources à l'échelle de l'arbre, se révèle-t-il être d'un intérêt grandissant.L'objectif de notre travail est donc d'extraire des houppiers à partir d'images aériennes de forêts à très haute résolution. Notre approche consiste à modéliser les peuplements forestiers par un processus ponctuel marqué d'ellipses, dont les points représentent les positions des arbres et les marques leurs caractéristiques géométriques. La densité de ce processus comporte une composante de régularisation, dite a priori, qui introduit des interactions entre les objets du processus, ainsi qu'une composante d'attache aux données, afin que les objets du processus se positionnent sur les houppiers que l'on souhaite extraire. Il s'agit de trouver la configuration d'objets, en nombre inconnu a priori, qui maximise cette densité. La simulation de tels processus fait appel aux algorithmes de type Monte Carlo par Chaîne de Markov (MCMC) à sauts réversibles, l'optimisation étant réalisée à l'aide d'un recuit simulé.Nous présentons ici un nouveau modèle d'attache aux données. Contrairement à nos précédents modèles testés sur des plantations, ce modèle n'est plus bayésien puisque le terme d'attache aux données est désormais calculé au niveau des objets et non de l'image. Ceci nous permet de travailler sur des images plus générales, avec des densités d'arbres plus variables. Des résultats obtenus sur des images fournies par l'IFN valident ce modèle. |
Abstract :
Aerial and satellite imagery has a key role to play in natural resources management, especially in forestry application. Indeed, forest inventories, such as the French National Inventory (IFN), refer to these images to analyse the different tree species in a stand, before sending a team on the ground to obtain some more advanced knowledge. Moreover, the submetric resolution of the data enables to study forests at the scale of trees, and also to get a more accurate evaluation of the resources such as the number of stems. It would be also of important economical and environmental concerns to develop automatic tools to analyze and monitor forests.We aim at extracting tree crowns from high resolution aerial images of forests. Our approach consists in modelling the forestry images as realizations of a marked point process of ellipses, whose points are the positions of the trees and marks their geometric features. The density of this process embeds a regularization term (prior density), which introduces some interactions between the objects, and a data term, which links the objects to the features to be extracted. Our goal is to find the best configuration of an unknown number of objects, i.e. the configuration that maximizes this density. To sample the marked point process, we use Monte Carlo dynamics (Reversible Jump Markov Chain Monte Carlo), while the optimization is performed via a simulated annealing algorithm.We present here a new model for the data term. Contrary to our previous models tested on plantations images, this model is not Bayesian anymore : the data term is calculated for each object and not for the whole image. This enables us to work on more general images, with variable tree crown densities. Example results are shown on aerial images provided by the French Forest Inventory (IFN). |
|
5 - Adaptive Simulated Annealing for Energy Minimization Problem in a Marked Point Process Application. G. Perrin et X. Descombes et J. Zerubia. Dans Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), St Augustine, Florida, USA, novembre 2005. Mots-clés : Recuit Simule, Processus ponctuels marques, Geometrie stochastique, Estimation MAP, RJMCMC. Copyright : Springer Verlag
@INPROCEEDINGS{perrin_emmcvpr05,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Adaptive Simulated Annealing for Energy Minimization Problem in a Marked Point Process Application}, |
year |
= |
{2005}, |
month |
= |
{novembre}, |
booktitle |
= |
{Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR)}, |
address |
= |
{St Augustine, Florida, USA}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/perrin_emmcvpr.pdf}, |
ps |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/perrin_emmcvpr.ps.gz}, |
keyword |
= |
{Recuit Simule, Processus ponctuels marques, Geometrie stochastique, Estimation MAP, RJMCMC} |
} |
Abstract :
We use marked point processes to detect an unknown number of trees from high resolution aerial images. This is in fact an energy minimization problem, where the energy contains a prior term which takes into account the geometrical properties of the objects, and a data term to match these objects to the image. This stochastic process is simulated via a Reversible Jump Markov Chain Monte Carlo procedure, which embeds a Simulated Annealing scheme to extract the best configuration of objects.
We compare here different cooling schedules of the Simulated Annealing algorithm which could provide some good minimization in a short time. We also study some adaptive proposition kernels. |
|
6 - A Marked Point Process Model for Tree Crown Extraction in Plantations. G. Perrin et X. Descombes et J. Zerubia. Dans Proc. IEEE International Conference on Image Processing (ICIP), Genoa, Italy, septembre 2005. Mots-clés : Geometrie stochastique, RJMCMC, Extraction de Houppiers, Extraction d'objets, Processus ponctuels marques.
@INPROCEEDINGS{perrin_icip05,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Marked Point Process Model for Tree Crown Extraction in Plantations}, |
year |
= |
{2005}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Genoa, Italy}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/perrin_icip05.pdf}, |
ps |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/perrin_icip05.ps.gz}, |
keyword |
= |
{Geometrie stochastique, RJMCMC, Extraction de Houppiers, Extraction d'objets, Processus ponctuels marques} |
} |
Abstract :
This work presents a framework to extract tree crowns from remotely sensed data, especially in plantation images, using stochastic geometry. We aim at finding the tree top positions, and the tree crown diameter distribution. Our approach consists in considering that these images are some realizations of a marked point process. First we model the tree plantation as a configuration of an unknown number of ellipses. Then, a Bayesian energy is defined, containing both a prior energy which incorporates the prior knowledge of the plantation geometric properties, and a likelihood which fits the objects to the data. Eventually, we estimate the global minimum of this energy using Reversible Jump Markov Chain Monte Carlo dynamics and a simulated annealing scheme. We present results on optical aerial images of poplars provided by IFN. |
|
7 - Tree Crown Extraction using Marked Point Processes. G. Perrin et X. Descombes et J. Zerubia. Dans Proc. European Signal Processing Conference (EUSIPCO), University of Technology, Vienna, Austria, septembre 2004. Mots-clés : RJMCMC, Processus ponctuels marques, Recuit Simule, Extraction de Houppiers, Extraction d'objets, Geometrie stochastique.
@INPROCEEDINGS{perrin04a,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Tree Crown Extraction using Marked Point Processes}, |
year |
= |
{2004}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{University of Technology, Vienna, Austria}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/perrin_eusipco2004.pdf}, |
ps |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/perrin_eusipco2004.ps.gz}, |
keyword |
= |
{RJMCMC, Processus ponctuels marques, Recuit Simule, Extraction de Houppiers, Extraction d'objets, Geometrie stochastique} |
} |
Abstract :
In this paper we aim at extracting tree crowns from remotely sensed images. Our approach is to consider that these images are some realizations of a marked point process. The first step is to define the geometrical objects that design the trees, and the density of the process.
Then, we use a Reversible Jump Markov Chain Monte Carlo dynamics and a simulated annealing to get the maximum a posteriori estimator of the tree crown distribution on the image. Transitions of the Markov chain are managed by some specific proposition kernels.
Results are shown on aerial images of poplars provided by IFN. |
|
8 - Marked Point Process in Image Analysis : from Context to Geometry. X. Descombes et F. Kruggel et C. Lacoste et M. Ortner et G. Perrin et J. Zerubia. Dans International Conference on Spatial Point Process Modelling and its Application (SPPA), Castellon, Spain, 2004. Mots-clés : RJMCMC, Extraction d'objets, Processus ponctuels marques, Geometrie stochastique.
@INPROCEEDINGS{geostoch04a,
|
author |
= |
{Descombes, X. and Kruggel, F. and Lacoste, C. and Ortner, M. and Perrin, G. and Zerubia, J.}, |
title |
= |
{Marked Point Process in Image Analysis : from Context to Geometry}, |
year |
= |
{2004}, |
booktitle |
= |
{International Conference on Spatial Point Process Modelling and its Application (SPPA)}, |
address |
= |
{Castellon, Spain}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/SPPA_2004.pdf}, |
ps |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/SPPA_2004.ps.gz}, |
keyword |
= |
{RJMCMC, Extraction d'objets, Processus ponctuels marques, Geometrie stochastique} |
} |
Abstract :
We consider the marked point process framework as a natural extension of the Markov random field approach in image analysis. We consider a general model defined by its density allowing us to consider some geometrical constraints on objects and between objects in feature extraction problems. Some examples are derived for small brain lesions detection from MR Images, road network, tree crown and building extraction from remotely sensed images. The results obtained on real data show the relevance of the proposal approach. |
|
haut de la page
4 Rapports de recherche et Rapports techniques |
1 - A Non-Bayesian Model for Tree Crown Extraction using Marked Point Processes. G. Perrin et X. Descombes et J. Zerubia. Rapport de Recherche 5846, INRIA, France, février 2006. Mots-clés : Energie d'attache aux données, Extraction d'objets, Extraction de Houppiers, Processus ponctuels marques, Geometrie stochastique, Reconstruction en 3D.
@TECHREPORT{rr_perrin_nonbay_05,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Non-Bayesian Model for Tree Crown Extraction using Marked Point Processes}, |
year |
= |
{2006}, |
month |
= |
{février}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5846}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00070180/fr/}, |
pdf |
= |
{http://hal.inria.fr/inria-00070180/fr/}, |
keyword |
= |
{Energie d'attache aux données, Extraction d'objets, Extraction de Houppiers, Processus ponctuels marques, Geometrie stochastique, Reconstruction en 3D} |
} |
Résumé :
Dans ce rapport de recherche, notre but est d'extraire les houppiers à partir d'images aériennes de forêts à l'aide de processus ponctuels marqués d'ellipses ou d'ellipsoïdes. Notre approche consiste, en effet, à modéliser les données comme des réalisations de tels processus. Une fois l'objet géométrique de référence choisi, nous échantillonnons le processus objet défini par une densité grâce à un algorithme MCMC à sauts réversibles, optimisé par un recuit simulé afin d'extraire la meilleure configuration d'objets, qui nous donne l'extraction recherchée.
Nous obtenons ainsi le nombre des arbres, leur localisation et leur taille. Nous présentons, dans ce rapport, un modèle 2D et un modèle 3D pour extraire des statistiques forestières. Ceux-ci sont testés sur des images aériennes infrarouge couleur très haute résolution fournies par l'Inventaire Forestier National (IFN). |
Abstract :
High resolution aerial and satellite images of forests have a key role to play in natural resource management. As they enable forestry managers to study forests at the scale of trees, it is now possible to get a more accurate evaluation of the resources. Automatic algorithms are needed in that prospect to assist human operators in the exploitation of these data. In this paper, we present a stochastic geometry approach to extract 2D and 3D parameters of the trees, by modelling the stands as some realizations of a marked point process of ellipses or ellipsoids, whose points are the locations of the trees and marks their geometric features. As a result we obtain the number of stems, their position, and their size. This approach yields an energy minimization problem, where the energy embeds a regularization term (prior density), which introduces some interactions between the objects, and a data term, which links the objects to the features to be extracted, in 2D and 3D. Results are shown on Colour Infrared aerial images provided by the French National Forest Inventory (IFN) |
|
2 - Optimization Techniques for Energy Minimization Problem in a Marked Point Process Application to Forestry. G. Perrin et X. Descombes et J. Zerubia. Rapport de Recherche 5704, INRIA, France, septembre 2005. Mots-clés : Recuit Simule, Processus ponctuels marques, Geometrie stochastique, Optimisation.
@TECHREPORT{rr_perrin_optim_05,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Optimization Techniques for Energy Minimization Problem in a Marked Point Process Application to Forestry}, |
year |
= |
{2005}, |
month |
= |
{septembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5704}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070312}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70312/filename/RR-5704.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/03/12/PS/RR-5704.ps}, |
keyword |
= |
{Recuit Simule, Processus ponctuels marques, Geometrie stochastique, Optimisation} |
} |
Résumé :
Dans ce rapport de recherche, nous utilisons les processus ponctuels marqués afin d'extraire un nombre inconnu d'objets dans des images aériennes. Ces processus sont définis par une énergie, qui contient un terme a priori formalisant les interactions entre objets ainsi qu'un terme d'attache aux données. Nous cherchons à minimiser cette énergie, afin d'obtenir la meilleure configuration d'objets, à l'aide d'un recuit simulé qui s'inscrit dans l'algorithme d'échantillonnage MCMC à sauts réversibles.
Nous comparons ici différents schémas de décroissance de température, et présentons certaines méthodes qui permettent d'améliorer la convergence de l'algorithme en un temps fini. |
Abstract :
We use marked point processes to detect an unknown number of trees from high resolution aerial images. This approach turns to be an energy minimization problem, where the energy contains a prior term which takes into account the geometrical properties of the objects, and a data term to match these objects onto the image. This stochastic process is simulated via a Reversible Jump Markov Chain Monte Carlo procedure, which embeds a Simulated Annealing scheme to extract the best configuration of objects.
We compare in this paper different cooling schedules of the Simulated Annealing algorithm which could provide some good minimization in a short time. We also study some adaptive proposition kernels. |
|
3 - Point Processes in Forestry : an Application to Tree Crown Detection. G. Perrin et X. Descombes et J. Zerubia. Rapport de Recherche 5544, INRIA, France, avril 2005. Mots-clés : Processus ponctuels marques, Extraction d'objets, RJMCMC, Extraction de Houppiers, Geometrie stochastique.
@TECHREPORT{5544,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Point Processes in Forestry : an Application to Tree Crown Detection}, |
year |
= |
{2005}, |
month |
= |
{avril}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5544}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070463}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70463/filename/RR-5544.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/04/63/PS/RR-5544.ps}, |
keyword |
= |
{Processus ponctuels marques, Extraction d'objets, RJMCMC, Extraction de Houppiers, Geometrie stochastique} |
} |
Résumé :
Dans ce rapport de recherche, notre but est d'extraire des houppiers à partir d'images aériennes de forêts à l'aide de processus ponctuels marqués de disques et d'ellipses. Notre approche consiste, en effet, à modéliser les données comme des réalisations de tels processus. Une fois l'objet géométrique de référence choisi, nous échantillonnons le processus objet défini par une densité grâce à un algorithme MCMC à sauts réversibles, optimisé par un recuit simulé afin d'extraire le maximum a posteriori de cette densité. Cette configuration optimale nous donnera l'extraction recherchée.
Dans une première partie, nous proposons de revenir quelque peu sur les processus ponctuels marqués et leur application dans la foresterie. Puis, nous présentons deux nouveaux modèles d'extraction de houppiers à base de disques et d'ellipses, et discutons de quelques améliorations au niveau de la simulation et de l'optimisation de notre algorithme.
Nous présentons des résultats obtenus sur des images aériennes très haute résolution fournies par l'Inventaire Forestier National (IFN), ainsi que sur des images synthétiques simulées avec le logiciel AMAP (Bionatics, projet Digiplante). |
Abstract :
In this research report, we aim at extracting tree crowns from remotely sensed images using marked point processes of discs and ellipses. Our approach is indeed to consider that the data are some realizations of a marked point process. Once a geometrical object is defined, we sample a marked point process defined by a density with a Reversible Jump Markov Chain Monte Carlo dynamics and simulated annealing to get the maximum a posteriori estimator of the tree crown distribution on the image.
In a first part, we propose to review the basis of marked point processes and some of their examples used in forestry statistic inference. Then, we present two new models, with discs and ellipses, and discuss some improvements made in the optimization or in the simulation.
Results are shown on high resolution aerial images of poplars provided by the French Forest Inventory (IFN), and synthetic images simulated with AMAP software (Bionatics, Digiplante project). |
|
4 - Extraction de Houppiers par Processus Objet. G. Perrin et X. Descombes et J. Zerubia. Rapport de Recherche 5037, INRIA, France, décembre 2003. Mots-clés : Extraction d'objets, Extraction de Houppiers, Geometrie stochastique, Processus ponctuels marques, RJMCMC.
@TECHREPORT{Perrin03,
|
author |
= |
{Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Extraction de Houppiers par Processus Objet}, |
year |
= |
{2003}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5037}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071547}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71547/filename/RR-5037.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/15/47/PS/RR-5037.ps}, |
keyword |
= |
{Extraction d'objets, Extraction de Houppiers, Geometrie stochastique, Processus ponctuels marques, RJMCMC} |
} |
Résumé :
Nous cherchons à extraire des houppiers à partir d'images de télédétection. Pour ce faire, nous construisons un processus objet et assimilons nos images d'arbres à des réalisations de ce processus. La première étape consiste à définir d'une part les objets géométriques modélisant les arbres, et d'autre part la densité du processus à simuler.La seconde étape consiste à construire un algorithme MCMC à sauts réversibles, et une estimée de la configuration d'objets. Les transitions aléatoires de la chaîne sont régies par des noyaux de propositions, chacun étant associé à une perturbation.Nous testons notre modèle sur des images aériennes de peupleraies fournies par l'IFN. |
Abstract :
In this paper we aim at extracting tree crowns from remotely sensed images. Our approach is to consider that these images are some realizations of a marked point process. The first step is to define the geometrical objects that design the trees, and the density of the process.Then, we use a reversible jump MCMC dynamics and a simulated annealing to get the maximum a posteriori estimator of the tree crowns distribution on the image. Transitions of the Markov chain are managed by some specific proposition kernels.Results are shown on aerial images of poplars given by IFN. |
|
haut de la page
Ces pages sont générées par
|