|
Publications de E.E. Kuruoglu
Résultat de la recherche dans la liste des publications :
3 Articles |
1 - SAR Image Filtering Based on the Heavy-Tailed Rayleigh Model. A. Achim et E.E. Kuruoglu et J. Zerubia. IEEE Trans. on Image Processing, 15(9): pages 2686-2693, septembre 2006. Mots-clés : Images SAR.
@ARTICLE{jz_ieee_tr_ip_06,
|
author |
= |
{Achim, A. and Kuruoglu, E.E. and Zerubia, J.}, |
title |
= |
{SAR Image Filtering Based on the Heavy-Tailed Rayleigh Model}, |
year |
= |
{2006}, |
month |
= |
{septembre}, |
journal |
= |
{IEEE Trans. on Image Processing}, |
volume |
= |
{15}, |
number |
= |
{9}, |
pages |
= |
{2686-2693}, |
pdf |
= |
{http://dx.doi.org/10.1109/TIP.2006.877362}, |
keyword |
= |
{Images SAR} |
} |
Abstract :
Synthetic aperture radar (SAR) images are inherently affected by a signal dependent noise known as speckle, which is due to the radar wave coherence. In this paper, we propose a novel adaptive despeckling filter and derive a maximum a posteriori (MAP) estimator for the radar cross section (RCS). We first employ a logarithmic transformation to change the multiplicative speckle into additive noise. We model the RCS using the recently introduced heavy-tailed Rayleigh density function, which was derived based on the assumption that the real and imaginary parts of the received complex signal are best described using the alpha-stable family of distribution. We estimate model parameters from noisy observations by means of second-kind statistics theory, which relies on the Mellin transform. Finally, we compare the proposed algorithm with several classical speckle filters applied on actual SAR images. Experimental results show that the homomorphic MAP filter based on the heavy-tailed Rayleigh prior for the RCS is among the best for speckle removal |
|
2 - Modelling SAR Images with a Generalization of the Rayleigh Distribution. E.E. Kuruoglu et J. Zerubia. IEEE Trans. Image Processing, 13(4): pages 527 - 533, avril 2004.
@ARTICLE{Kuruoglu03,
|
author |
= |
{Kuruoglu, E.E. and Zerubia, J.}, |
title |
= |
{Modelling SAR Images with a Generalization of the Rayleigh Distribution}, |
year |
= |
{2004}, |
month |
= |
{avril}, |
journal |
= |
{IEEE Trans. Image Processing}, |
volume |
= |
{13}, |
number |
= |
{4}, |
pages |
= |
{527 - 533}, |
pdf |
= |
{http://ieeexplore.ieee.org/iel5/83/28667/01284389.pdf?tp=&arnumber=1284389&isnumber=28667}, |
keyword |
= |
{} |
} |
|
3 - Skewed alpha-stable distributions for modelling textures. E.E. Kuruoglu et J. Zerubia. Pattern Recognition Letters, 24(1-3): pages 339--348, 2003.
@ARTICLE{Kuruoglu03a,
|
author |
= |
{Kuruoglu, E.E. and Zerubia, J.}, |
title |
= |
{Skewed alpha-stable distributions for modelling textures}, |
year |
= |
{2003}, |
journal |
= |
{Pattern Recognition Letters}, |
volume |
= |
{24}, |
number |
= |
{1-3}, |
pages |
= |
{339--348}, |
url |
= |
{http://www.sciencedirect.com/science/article/pii/S0167865502002477}, |
keyword |
= |
{} |
} |
|
haut de la page
3 Articles de conférence |
1 - Maximum A Posteriori Estimation of Radar Cross Section in SAR Images using the Heavy-Tailed Rayleigh Model. A. Achim et E.E. Kuruoglu et J. Zerubia. Dans Proc. European Signal Processing Conference (EUSIPCO), Antalya, Turkey, septembre 2005.
@INPROCEEDINGS{achim_eusipco_05,
|
author |
= |
{Achim, A. and Kuruoglu, E.E. and Zerubia, J.}, |
title |
= |
{Maximum A Posteriori Estimation of Radar Cross Section in SAR Images using the Heavy-Tailed Rayleigh Model}, |
year |
= |
{2005}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{Antalya, Turkey}, |
pdf |
= |
{http://kilyos.ee.bilkent.edu.tr/~signal/defevent/papers/cr1741.pdf}, |
keyword |
= |
{} |
} |
|
2 - Modelling images with alpha-stable textures. E.E. Kuruoglu et J. Zerubia. Dans Physics in Signal and Image Processing, Marseille, France, janvier 2001.
@INPROCEEDINGS{KuruJZ01,
|
author |
= |
{Kuruoglu, E.E. and Zerubia, J.}, |
title |
= |
{Modelling images with alpha-stable textures}, |
year |
= |
{2001}, |
month |
= |
{janvier}, |
booktitle |
= |
{Physics in Signal and Image Processing}, |
address |
= |
{Marseille, France}, |
keyword |
= |
{} |
} |
|
3 - Modelling SAR images with a generalisation of the Raylegh distribution. E.E. Kuruoglu et J. Zerubia. Dans Asilomar Conference, Pacific Grove, USA, octobre 2000.
@INPROCEEDINGS{jz00w,
|
author |
= |
{Kuruoglu, E.E. and Zerubia, J.}, |
title |
= |
{Modelling SAR images with a generalisation of the Raylegh distribution}, |
year |
= |
{2000}, |
month |
= |
{octobre}, |
booktitle |
= |
{Asilomar Conference}, |
address |
= |
{Pacific Grove, USA}, |
url |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=910949}, |
keyword |
= |
{} |
} |
|
haut de la page
2 Rapports de recherche et Rapports techniques |
1 - SAR Image Filtering Based on the Heavy-Tailed Rayleigh Model. A. Achim et E.E. Kuruoglu et J. Zerubia. Rapport de Recherche 5493, INRIA, France, février 2005. Mots-clés : Radar a Ouverture Synthetique (SAR), Estimation MAP, Distribution alpha-stable, Transformee de Mellin.
@TECHREPORT{5493,
|
author |
= |
{Achim, A. and Kuruoglu, E.E. and Zerubia, J.}, |
title |
= |
{SAR Image Filtering Based on the Heavy-Tailed Rayleigh Model}, |
year |
= |
{2005}, |
month |
= |
{février}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5493}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070514}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70514/filename/RR-5493.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/05/14/PS/RR-5493.ps}, |
keyword |
= |
{Radar a Ouverture Synthetique (SAR), Estimation MAP, Distribution alpha-stable, Transformee de Mellin} |
} |
Résumé :
Les images issues d'un radar à synthèse d'ouverture (RSO) sont affectées de manière inhérente par un bruit dépendant du signal, généralement connu sous le nom de bruit de chatoiement et qui est dû à la cohérence de l'onde radar. Dans ce rapport, nous proposons un nouveau filtre adaptatif pour débruiter les images RSO et nous déduisons un estimateur du maximum a posteriori (MAP) pour la section efficace du diagramme de gain en radar. On utilise d'abord une transformée logarithmique afin de changer le bruit multiplicatif en bruit additif. Nous modélisons la section efficace à l'aide d'une densité de probabilité récemment introduite - la densité de Rayleigh à queue lourde, qui a été obtenue en supposant que les parties réelles et imaginaires du signal complexe reçu peuvent être mieux caractérisées à l'aide de la famille des distributions alpha-stables. Nous estimons les paramètres du modèle à partir d'observations bruitées en faisant appel à la théorie statistique de deuxième espèce qui est fondée sur la transformée de Mellin. Enfin, nous faisons la comparaison entre la méthode que nous proposons et d'autres filtres classiques pour le débruitage d'images RSO. Nos résultats expérimentaux démontrent que le filtre MAP homomorphique fondé sur le modèle de Rayleigh à queue lourde est parmi les meilleurs pour enlever le bruit de chatoiement. |
Abstract :
Synthetic aperture radar (SAR) images are inherently affected by a signal dependent noise known as speckle, which is due to the radar wave coherence. In this report, we propose a novel adaptive despeckling filter and derive a maximum a posteriori (MAP) estimator for the radar cross section (RCS). We first employ a logarithmic transformation to change the multiplicative speckle into additive noise. We model the RCS using the recently introduced heavy-tailed Rayleigh density function, which was derived based on the assumption that the real and imaginary parts of the received complex signal are best described using the alpha-stable family of distribution. We estimate model parameters from noisy observations by means of second-kind statistics theory, which relies on the Mellin transform. Finally, we compare our proposed algorithm with several classical speckle filters applied on actual SAR images. Experimental results show that the homomorphic MAP filter based on the heavy-tailed Rayleigh prior for the RCS is among the best for speckle removal. |
|
2 - Modelling SAR images with a generalization of the Rayleigh distribution. E.E. Kuruoglu et J. Zerubia. Rapport de Recherche 4121, Inria, France, février 2001. Mots-clés : Distribution alpha-stable.
@TECHREPORT{KuruJZ01a,
|
author |
= |
{Kuruoglu, E.E. and Zerubia, J.}, |
title |
= |
{Modelling SAR images with a generalization of the Rayleigh distribution}, |
year |
= |
{2001}, |
month |
= |
{février}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4121}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00072507}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72507/filename/RR-4121.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/25/07/PS/RR-4121.ps}, |
keyword |
= |
{Distribution alpha-stable} |
} |
Résumé :
L'imagerie Radar à Synthése d'Ouverture (RSO) a conduit à d'importantes applications, du fait de son avantage certain sur l'imagerie satellitaire optique (utilisation tout temps).Cependant, du fait de la physique du capteur RSO, les images produites présentent des artefacts non désirables, connus sous le nom de bruit de chatoiement. L'hypothèse que les parties réelles et qqimaginaires del'onde reçue suivent une loi Gaussienne (ce qui revient à dire que l'amplitude de l'onde suit une distribution de Rayleigh)découle des hypothèses classiquement faites sur le modèle de génération de l'image RSO.
Cependant, des données expérimentales présentent des charactéristiques impulsionnelles correspondant à des distributions à queue lourde sous-jascente- s, qui ne sont pas de type Rayleigh. D'autres distributions telles que les lois de Weibull ou log-normale ont été proposées. Cependant, dans la plupart des cas, ces modèles sont empiriques ne prenant pas, encompte la physique du capteur, et sont trop spécifiques.
Dans ce rapport, en relachant quelques hypothèses qui conduisent au modèle de Rayleigh et en utilisant des résultats récents publiés dans la littérature surles distributions $alpha$-stables, nous proposons une version généralisée (à queue lourde) du modèle de Rayleigh. Ceci est fondé sur l'hypothèse que les parties reélle et imaginaire du signal reçu suivent une loi $alpha$-s- table isotrope, suggérée par une généralisation du théorème central limite. Nous présentons également de nouvelles mèthodes d'estimation des paramètres d'une distribution de Rayleigh à queue lourde fondées sur des statistiques d'ordre fractionnaire négatif. Les tests expérimentaux montrent que le modèle de Rayleigh à queue lourde permet de décrire une grande variété de données qui ne pourraient pas être décrites defaçon satisfaisante par un modèle de Rayleigh classique. |
Abstract :
Synthetic aperture radar (SAR) imagery has found important applications since its introduction, due to its clear advantage over optical satellite imagery, being operable in various weather conditions. However, due to the physics of radar imaging process, sar images contain unwanted artefacts in the form of a granular look which is called speckle. the assumptions of the classical SAR image generation model lead to the convention that the real and imaginary parts of the received wave follow a Gaussian law, which in turn means that the amplitude of the wave has a Rayleigh distribution- . However, some experimental data show impulsive characteristics which correspond to underlying heavy-tailed distributions, clearly non-rayleigh. some alternative distributions have been suggested such as weibull and log-normal distributions, however, in most of the cases these models are empirical, not derived with the consideration of underlying physical conditions and therefore are case specific. In this report, relaxing some of the assumptions leading to the classical rayleigh model and using the recent results in the literature on $alpha$-stable distributions, we develop a generalised (heavy-tailed) version of the rayleigh model based on the assumption that the real and the imaginary parts of the received signal follows an isotropic $alpha$-stable law which is suggested by a generalised form of the central limit theorem. we also derive novel methods for the estimation of the heavy-tailed rayleigh distribution parameter- s based on negative fractional-order statistics for model fitting. our experimental results show that the heavy-tailed rayleigh model can describe a wide range of data which could not be described by the classical rayleigh model. |
|
haut de la page
Ces pages sont générées par
|