1 - Multi-class SVM for forestry classification. N. Hajj Chehade et JG. Boureau et C. Vidal et J. Zerubia. Dans Proc. IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, novembre 2009. Mots-clés : Support Vector Machines, texture segmentation, Haralick feature, remote sensing, Forest vegetation.
@INPROCEEDINGS{Nabil09,
|
author |
= |
{Hajj Chehade, N. and Boureau, JG. and Vidal, C. and Zerubia, J.}, |
title |
= |
{Multi-class SVM for forestry classification}, |
year |
= |
{2009}, |
month |
= |
{novembre}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Cairo, Egypt}, |
url |
= |
{http://dx.doi.org/10.1109/ICIP.2009.5413395}, |
keyword |
= |
{Support Vector Machines, texture segmentation, Haralick feature, remote sensing, Forest vegetation} |
} |
Abstract :
In this paper we propose a method for classifying the vegetation types in an aerial color infra-red (CIR) image. Different vegetation types do not only differ in color, but also in texture. We study the use of four Haralick features (energy, contrast, entropy, homogeneity) for texture analysis, and then perform the classification using the one-against-all (OAA) multi-class support vector machine (SVM), which is a popular supervised learning technique for classification. The choice of features (along with their corresponding parameters), the choice of the training set, and the choice of the SVM kernel highly affect the performance of the classification. The study was done on several CIR aerial images provided by the French National Forest Inventory (IFN). In this paper, we will show one example on a national forest near Sedan (in France), and compare our result with the IFN map. |
|