|
Publications de Xavier Descombes
Résultat de la recherche dans la liste des publications :
36 Rapports de recherche et Rapports techniques |
29 - La poursuite de projection pour la classification d'image hyperspectrale texturée. G. Rellier et X. Descombes et F. Falzon et J. Zerubia. Rapport de Recherche 4152, Inria, France, mars 2001. Mots-clés : Classification, Texture, Imagerie hyperspectrale, Champs de Markov.
@TECHREPORT{xd01,
|
author |
= |
{Rellier, G. and Descombes, X. and Falzon, F. and Zerubia, J.}, |
title |
= |
{La poursuite de projection pour la classification d'image hyperspectrale texturée}, |
year |
= |
{2001}, |
month |
= |
{mars}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4152}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00072472}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72472/filename/RR-4152.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/24/72/PS/RR-4152.ps}, |
keyword |
= |
{Classification, Texture, Imagerie hyperspectrale, Champs de Markov} |
} |
Résumé :
Dans ce travail, nous considérons le problème de la classification supervisée de texture à partir d'images multi-composante de télédetection, dites hyperspectrales. Ces images, le plus souvent acquises par des instruments spectro-imageurs dont le nombre de canaux est en général supérieur à 10, fournissent ainsi une représentation du paysage échantillonnée à la fois spatialement et spectralement. Le but de ce travail est de réaliser une analyse de texture qui se déroule conjointement dans ces deux espaces discrets. On recherche ainsi à enrichir la représentation "habituelle" de texture fondée sur la prise en compte des variations locales de contraste, par l'adjonction d'une connaissance sur ses variations spectrales. L'applicati- on qui est susceptible de bénéficier directement des résultats de cette étude est la classification du tissu urbain. En effet, la réponse spectrale (radiométrique) des zones urbaines est en général ambiguë du fait de la similitude de réponse spectrale de certains matériaux constitutifs du paysage urbain avec certains éléments naturels tels que l'eau, le sol nu, la végétation. La multiplication des bandes spectrales a pour conséquence de rendre plus complexes les mesures et demande également la prise en considération d'un nombre d'échantillons d'apprentissage très important. Quand le nombre de ces échantillons n'est pas suffisant, il faut passer par une étape de réduction de la dimension de l'espace d'observation. Pour prendre en compte le problème de la dimension et celui de l'analyse de texture conjointement dans le domaine spatial et spectral, on se propose ici de faire coopérer un algorithme de poursuite de projection paramétrique, déjà utilisé pour la réduction d'espace dans un cadre non-contextuel, à un modèle de texture par champ markovien, dit modèle markovien gaussien. |
Abstract :
In this work we develop a supervised texture classification algorithm for application to the class of multi-component images called hyperspectral. These images, usually recorded by spectrometers with a number of bands greater than 10, give both a spatially and spectrally sampled representation of a remote scene. The aim of this work is to perform a joint texture analysis in both discrete spaces. The use of spectral variations in this joint texture analysis scheme enables us to improve on the standard representa- tion of textures which only takes into account the local contrast variations. A likely application of this work is urban area classification. Indeed, the spectral response of urban areas is in general ambiguous because some of its constitutive elements have the same reflectance as natural elements such as water, vegetation or bare soil. The greater number of spectral bands makes the measures more complex and so creates the need for a greater number of training samples. When the number of training samples is not sufficient, a necessary step in the analysis is to reduce the dimension of the observation space. To take into account both the problem of dimensional- ity and the jointly spectral and spatial texture analysis, we propose to use in cooperation a projection pursuit algorithm and a Gauss-Markov random field texture model. |
|
30 - Classification d'images satellitaires hyperspectrales en zone rurale et périurbaine. O. Pony et X. Descombes et J. Zerubia. Rapport de Recherche 4008, Inria, septembre 2000. Mots-clés : Imagerie hyperspectrale, Champs de Markov, Recuit Simule, Champs de Gibbs, Modele de Potts, Texture.
@TECHREPORT{pony00,
|
author |
= |
{Pony, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Classification d'images satellitaires hyperspectrales en zone rurale et périurbaine}, |
year |
= |
{2000}, |
month |
= |
{septembre}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4008}, |
url |
= |
{https://hal.inria.fr/inria-00072636}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72636/filename/RR-4008.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/26/36/PS/RR-4008.ps}, |
keyword |
= |
{Imagerie hyperspectrale, Champs de Markov, Recuit Simule, Champs de Gibbs, Modele de Potts, Texture} |
} |
Résumé :
L'observation satellitaire en zone rurale et périurbaine fournit des images hyperspectrales exploitables en vue de réaliser une cartographie ou une analyse du paysage. Nous avons appliqué une classification par maximum de vraisemblance sur des images de zone agricole. Afin de régulariser la classification, nous considérons la modélisation d'image par champs de Markov, dont l'équivalence avec les champs de Gibbs nous permet d'utiliser plusieurs algorithmes itératifs d'optimisation : l'ICM et le recuit simulé, qui convergent respectivement vers une classification sous-optimale ou optimale pour une certaine énergie. Un modèle d'énergie est proposé : le modèle de Potts, que nous améliorons pour le rendre adaptatif aux classes présentes dans l'image. L'étude de la texture dans l'image initiale permet d'introduire des critères artificiels qui s'ajoutent à la radiométrie de l'image en vue d'améliorer la classification. Ceci permet de bien segmenter les zones périurbaines, la forêt, la campagne, dans le cadre d'un plan d'occupation des sols. Trois images hyperspectrales et une vérité terrain ont été utilisées pour réaliser des tests, afin de mettre en évidence les méthodes et le paramétrage adéquats pour obtenir les résultats les plus satisfaisants. |
Abstract :
Satellite observation in rural and semiurban areas provides hyperspectral images which enable us to make a map or an analysis of the landscape. Herein, we applied a maximum likelihood classification on agricultural images. In order to improve this procedure, it is possible in each pixel to use contextual information. Thus, we consider Markov random fields image modeling. The equivalence between Markov and Gibbs fields allows us to use some iterative algorithms of optimisation : ICM and simulated annealing, which converge respectively towards a suboptimal or an optimal classification for a given energy. An energy model is proposed : the Potts model, which can be improved to be adaptive to the classes defined in the image. Texture analysis on the initial image is used to introduce artificial criteria, added to the original image, in order to improve classification. This proves to be useful for segmenting semiurban regions, forests, and the countryside, within the framework of a land-use plan. We use three hyperspectral images and a ground truth to carry out tests, in order to highlight the best methods and parameter setting to obtain the most satisfactory results. |
|
31 - Local registration and deformation of a road cartographic database on a SPOT satellite image. G. Rellier et X. Descombes et J. Zerubia. Rapport de Recherche 3939, Inria, mai 2000. Mots-clés : Champs de Markov, Reseaux routiers.
@TECHREPORT{rel00,
|
author |
= |
{Rellier, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Local registration and deformation of a road cartographic database on a SPOT satellite image}, |
year |
= |
{2000}, |
month |
= |
{mai}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3939}, |
url |
= |
{https://hal.inria.fr/inria-00072711}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72711/filename/RR-3939.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/27/11/PS/RR-3939.ps}, |
keyword |
= |
{Champs de Markov, Reseaux routiers} |
} |
Résumé :
Dans ce rapport, nous présentons une méthode pour le recalage local d'un réseau cartographique routier sur une image SPOT, reposant sur l'utilisation des champs de Markov sur graphe. Les données image et cartographique étant obtenues par des sources exogènes, elles sont dégradées par du bruit de nature différente. Ce phénomène peut être à l'origine de différences important- es entre les données. De plus, les cartographes peuvent parfois introduire des distortions dans les cartes afin de souligner certains détails que presente la route (lacets d'une route de montagne) : c'est la généralisation. L'algorithme proposé vise à corriger les erreurs dues au bruit et à la généralisation, et à améliorer la précision du tracé des routes. La méthode proposée consiste à transformer la donnée cartographique en un graphe, et ensuite à définir un champ de Markov afin de faire correspondre le graphe et l'image. |
Abstract :
Herein, we propose a local registration method for cartographic road networks on SPOT satellite images based on Markov Random Fields (MRF) on graphs. Since the cartographic and image data are obtained from exogeneous sources, the noises degrading these data are of different nature. This phenomenon can create important differences between the data. In addition, cartographers sometimes introduce distortions, in the so-called generalization process, in the road map in order to emphasize some details of the road (like the bends of a mountain road). The proposed algorithm aims at correcting the error due to noise and generalization, hence increasing the accuracy of the road map. The proposed method consists in translating the cartographic data into a graph model, and then defining a MRF to fit the graph on the image. |
|
32 - Simulation de processus objets : Etude de faisabilité pour une application à la segmentation d'image. M. Imberty et X. Descombes. Rapport de Recherche 3881, Inria, février 2000. Mots-clés : Processus ponctuels marques, Geometrie stochastique, Segmentation.
@TECHREPORT{xd00im,
|
author |
= |
{Imberty, M. and Descombes, X.}, |
title |
= |
{Simulation de processus objets : Etude de faisabilité pour une application à la segmentation d'image}, |
year |
= |
{2000}, |
month |
= |
{février}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3881}, |
url |
= |
{https://hal.inria.fr/inria-00072772}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72772/filename/RR-3881.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/27/72/PS/RR-3881.ps}, |
keyword |
= |
{Processus ponctuels marques, Geometrie stochastique, Segmentation} |
} |
Résumé :
Dans cette étude, nous comparons l'efficacité de deux techniques de simulation par chaînes de Markov (MCMC) de processus aléatoires sur des ensembles d'objets géométriques : l'algorithme de naissance-mort et celui de Metropolis-- Hastings-Green. Les comparaisons sont effectuées sur différents modèles de processus objets de type attractif présentant un intérêt en traitement d'image. Nous appliquons ensuite ces méthodes de simulation à la segmentation d'image. Pour cela, nous nous plaçons dans le cadre bayésien : nous définisson- s donc un modèle a priori attractif simple sur des objets rectangulaires, ainsi qu'un terme d'attache aux données garantissant l'adéquation des objets à l'image. Nous utilisons ensuite un recuit simulé pour extraire les différentes zones de l'image. Des tests sont effectués sur des images synthétiques. |
Abstract :
In this study, we compare the efficiency of two algorithms using Monte Carlo Markov chains methods in order to simulate random processes of geometric- al objects sets : the algorithm of birth and death and the dynamics of Metropolis-Hastings-Green. The comparisons are carried out on various object models for clustered patterns, which could be of interest in image processing. Then we apply these methods of simulation to image segmentation, using the bayesian approach : thus we define a simple prior model on rectangul- ar objects, as well as a posterior probability guaranteeing the adequacy of the objects to the data. We finally use a stochastic annealing to extract the various zones of the image. Some tests are performed on synthetic data. |
|
33 - A Markov point process for road extraction in remote sensed images. R. Stoica et X. Descombes et J. Zerubia. Rapport de Recherche 3923, Inria, 2000. Mots-clés : Geometrie stochastique, Processus ponctuels marques, Candy model, Reseaux routiers, RJMCMC.
@TECHREPORT{rs00,
|
author |
= |
{Stoica, R. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A Markov point process for road extraction in remote sensed images}, |
year |
= |
{2000}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3923}, |
url |
= |
{https://hal.inria.fr/inria-00072729}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72729/filename/RR-3923.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/27/29/PS/RR-3923.ps}, |
keyword |
= |
{Geometrie stochastique, Processus ponctuels marques, Candy model, Reseaux routiers, RJMCMC} |
} |
Résumé :
Nous proposons une nouvelle méthode pour extraire les routes dans les images satellitales et aériennes. Notre approche est basée sur la géométrie stochastique et les dynamiques MCMC à saut réversible. Nous considérons que le réseau routier est un réseau fin, et que ce réseau peut être approximé par des segments connectés. Nous construisons un processus ponctuel marqué qui peut simuler et détecter des réseaux fins. La densité de probabilité de ce processus comporte deux termes : le terme d'attache aux données et le terme a priori. Pour former un réseau, les segments doivent être connectés. Nous souhaitons que les segments soient bien alignés et qu'ils ne se superposent pas. Toutes ces contraintes sont prises en compte par le modèle a priori (Candy modèle). L'emplacement du réseau est donné par le terme d'attache aux données. Ce terme est construit à partir des tests d'hypothèses. Notre modèle probabiliste permet de construire le MAP de l'estimateur du réseau linéique. Pour éviter les minima locaux, nous utilisons un algorithme de type recuit simulé, construit sur une dynamique MCMC à sauts réversibles. Nous montrons des résultats sur des images SPOT, ERS et aériennes. |
Abstract :
In this paper we propose a new method to extract roads in remote sensed images. Our approach is based on stochastic geometry theory and reversible jump Monte Carlo Markov Chains dynamic. We consider that roads consist of a thin network in the image. We make the hypothesis that such a network can be approximated by a network composed of connected line segments. We build a marked point process, which is able to simulate and detect thin networks. The segments have to be connected, in order to form a line-netw- ork. Aligned segments are favored whereas superposition is penalized. Those constraints are taken in account by the prior model (Candy model), which is an area-interaction point process.The location of the network and the specifities of a road network in the image are given by the likelihood term. This term is based on statistical hypothesis tests. The proposed probabilistic model yelds a MAP estimator of the road network. In order to avoid local minima, a simulated annealing algorithm, using a reversible jump MCMC dynamic is designed. Results are shown on SPOT, ERS and aerial images. |
|
34 - Isotropic Properties of Some Multi-body Interaction Models: Two Quality Criteria for Markov Priors in Image Processing. X. Descombes et E. Pechersky. Rapport de Recherche 3752, Inria, août 1999. Mots-clés : Champs de Gibbs, Segmentation, Restauration.
@TECHREPORT{xd99k,
|
author |
= |
{Descombes, X. and Pechersky, E.}, |
title |
= |
{Isotropic Properties of Some Multi-body Interaction Models: Two Quality Criteria for Markov Priors in Image Processing}, |
year |
= |
{1999}, |
month |
= |
{août}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3752}, |
url |
= |
{http://hal.inria.fr/inria-00072910}, |
pdf |
= |
{http://hal.inria.fr/docs/00/07/29/10/PDF/RR-3752.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/29/10/PS/RR-3752.ps}, |
keyword |
= |
{Champs de Gibbs, Segmentation, Restauration} |
} |
Résumé :
Les champs de Gibbs sont très utilisés en traitement d'image à la fois pour la segmentation et la restauration. Définis sur la trâme discrète sous-jacente à l'image, ils présentent un comportement non isotrope. Dans ce rapport, nous étudions et quantifions cette non-isotropie, pour des modèles avec des interactions 3x3, en calculant la tension de bord en fonction de l'angle d'une droite séparant le plan en deux parties contenant une phase différente. De cette étude, nous dérivons deux critères quantitatifs d'anisotropie des modèles. Nous calculons ensuite la forme d'une goutte d'une phase immergée dans une autre phase à la température nulle pour les différents modèles, et étudions la non isotropie des formes obtenues. Pour finir, les artéfacts induits par cette non-isotropie sont mis en évidence sur des exemples de segmentation et de restauration d'image. |
Abstract :
Gibbs Fields are widely used in image processing for both segmentation and restoration. Defined on a discrete lattice representing the image they exhibit a non-isotropic behavior. Herein, we study and quantify this non-isotropy by computing the boundary tension as a function of the angle of a line separating the plane in two parts containing a different phase. From this study, we derive two quantitative criteria of the non isotropy of the model. We then compute the shape at zero temperature of a droplet of one phase within the other phase and study the non-isotropy of the shape for the different models. Finally, we show the artifacts due to this non-isotropic behavior for image segmentation and restoration. |
|
35 - Mise en correspondance et recalage de graphes : application aux réseaux routiers extraits d'un couple carte/image. C. Hivernat et X. Descombes et S. Randriamasy et J. Zerubia. Rapport de Recherche 3529, Inria, octobre 1998. Mots-clés : Champs de Markov, Reseaux routiers, Correspondance de graphes.
@TECHREPORT{hiv98,
|
author |
= |
{Hivernat, C. and Descombes, X. and Randriamasy, S. and Zerubia, J.}, |
title |
= |
{Mise en correspondance et recalage de graphes : application aux réseaux routiers extraits d'un couple carte/image}, |
year |
= |
{1998}, |
month |
= |
{octobre}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3529}, |
url |
= |
{https://hal.inria.fr/inria-00073156}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/73156/filename/RR-3529.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/31/56/PS/RR-3529.ps}, |
keyword |
= |
{Champs de Markov, Reseaux routiers, Correspondance de graphes} |
} |
Résumé :
Nous considérons le problème de la mise en correspondance du réseau routier extrait d'une image SPOT avec celui fourni par une base de données cartographi- que. Cette mise en correspondance comprend deux étapes principales fondées sur des modélisations markoviennes. Dans la première étape, les pixels de l'image sont appariés aux segments cartographiques. Le résultat de cette étape permet de découper le réseau obtenu sur l'image sous forme de chaînes. Ces chaînes sont ensuite mises en correspondance avec les segments cartographiques. Pour finir, une étape de qualification des résultats permet de fournir les primitives fiables afin d'affiner le recalage initial. En bouclant l'algorithme sur la mise en correspondance nous obtenons un processus itératif permettant d'améliorer à la fois le recalage et la mise en correspondance. La qualification automatique des résultats est également une aide à l'interprétation pour la mise à jour cartographique. |
Abstract :
We consider herein the matching problem between the road network extracted from a SPOT image and the roads contained in a cartographic database. This matching consists of two main steps based on a Markovian modelling. During the first step, the image road pixels are associated to the map segments. the derived result allows us to split the image network into chains. These chains are matched with the map segments. Finally, an automatic validation procedure provides matched chains/segments which are used to improve the initial registration. An iterative scheme is obtained by performin- g a new matching. The automatic result validation is also helpful for map updating. |
|
36 - Extraction des zones urbaines fondée sur une analyse de la texture par modélisation markovienne. A. Lorette et X. Descombes et J. Zerubia. Rapport de Recherche 3423, Inria, mai 1998. Mots-clés : Texture, Champs de Markov, Zones urbaines, Entropie.
@TECHREPORT{loretteRR98,
|
author |
= |
{Lorette, A. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Extraction des zones urbaines fondée sur une analyse de la texture par modélisation markovienne}, |
year |
= |
{1998}, |
month |
= |
{mai}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3423}, |
url |
= |
{http://hal.inria.fr/inria-00073267}, |
pdf |
= |
{http://hal.inria.fr/docs/00/07/32/67/PDF/RR-3423.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/32/67/PS/RR-3423.ps}, |
keyword |
= |
{Texture, Champs de Markov, Zones urbaines, Entropie} |
} |
Résumé :
Pour délimiter un masque urbain précis à partir d'une image satellitaire la seule information du niveau de gris est insuffisante. Laplupart des méthodes font donc appel à une analyse de la texture de l'image. Nous nous sommes placés dans ce cadre. Dans une première étape, nous avons défini un nouveau paramètre de texture à partir d'un modèle markovien gaussien. Nous obtenons ce nouveau paramètre en calculant la variance conditionnelle de l'image dans huit directions. Ainsi, nous éliminons la mauvaise classification d'objets ayant une orientation privilégiée tels que les vignes et les serres par exemple. Dans une seconde étape, nous proposons un algorithme de emphfuzzy Cmeans modifié incluant un terme d'entropie et pour lequel le nombre de classes n'est pas fixé a priori. Cet algorithme nous permet d'obtenir une première classification de l'image. Enfin, nous régularisons l'image ainsi obtenue grâce à une modélisation par champs de Markov. Des résultats obtenus sur des simulations d'images SPOT5 fournies par le CNES sont présentés. |
Abstract :
Urban areas cannot be extracted from satellite images through only grey level information. Hence most methods analyze the texture of the image to discriminate between urban areas and non urban areas. We define a new texture parameter derived from a Markovian Gaussian model. This new parameter takes into account the variance of the image in eight directions- . Consequently it copes with the misclassification of objects with a privileged orientation like vineyards or greenhouses for instance. Afterwards we develop a modified fuzzy Cmeans algorithm including an entropy term. The advantage of such an algorithm is that the number of classes does not need to be known a priori. By applying this modified fuzzy Cmeans algorithm on the parameter image we obtain a first classification. Finally we regularize the segmented image by using a Markov random field modelling. Some results on SPOT5 simulated images are presented. These images are provided by the CNES (French Space Agency). |
|
haut de la page
7 Articles de collection ou Chapitres de livres |
1 - Detection and Recognition of a Collection of Objects in a Scene. X. Descombes et I. H. Jermyn et J. Zerubia. Dans Inverse Problems in Vision and 3D Tomography, pages 155--189, series DSIP, Ed. ISTE, London ; John Wiley and Sons, New York, 2010.
@INCOLLECTION{Wiley10,
|
author |
= |
{Descombes, X. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Detection and Recognition of a Collection of Objects in a Scene}, |
year |
= |
{2010}, |
booktitle |
= |
{Inverse Problems in Vision and 3D Tomography}, |
pages |
= |
{155--189}, |
series |
= |
{DSIP}, |
editor |
= |
{ISTE, London ; John Wiley and Sons, New York}, |
url |
= |
{http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1848211724.html}, |
pdf |
= |
{http://onlinelibrary.wiley.com/doi/10.1002/9781118603864.ch5/summary}, |
keyword |
= |
{} |
} |
|
2 - Detection d’objets dans une scene. X. Descombes et I. H. Jermyn et J. Zerubia. Dans Problemes inverses en imagerie et en vision, pages 167--204, series Tr. IC2, Ed. Ali Mohammad-Djafari, Publ. Ed. Hermes, 2009. Copyright : Ed. Hermes
@INCOLLECTION{DESCOMBES_DETECTION,
|
author |
= |
{Descombes, X. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Detection d’objets dans une scene}, |
year |
= |
{2009}, |
booktitle |
= |
{Problemes inverses en imagerie et en vision}, |
pages |
= |
{167--204}, |
series |
= |
{Tr. IC2}, |
editor |
= |
{Ali Mohammad-Djafari}, |
publisher |
= |
{Ed. Hermes}, |
url |
= |
{http://www.lavoisier.fr/livre/electricite-electronique/problemes-inverses-en-imagerie-et-en-vision-en-2-volumes-inseparables/mohammad-djafari/descriptif-9782746219977}, |
keyword |
= |
{} |
} |
|
haut de la page
Ces pages sont générées par
|