|
Publications de Antonin Chambolle
Résultat de la recherche dans la liste des publications :
2 Articles |
1 - Dual Norms and Image Decomposition Models. J.F. Aujol et A. Chambolle. International Journal of Computer Vision, 63(1): pages 85-104, juin 2005. Mots-clés : Decomposition d'images.
@ARTICLE{AujolChambolle,
|
author |
= |
{Aujol, J.F. and Chambolle, A.}, |
title |
= |
{Dual Norms and Image Decomposition Models}, |
year |
= |
{2005}, |
month |
= |
{juin}, |
journal |
= |
{International Journal of Computer Vision}, |
volume |
= |
{63}, |
number |
= |
{1}, |
pages |
= |
{85-104}, |
pdf |
= |
{http://link.springer.com/article/10.1007/s11263-005-4948-3}, |
keyword |
= |
{Decomposition d'images} |
} |
|
2 - Image Decomposition into a Bounded Variation Component and an Oscillating Component. J.F. Aujol et G. Aubert et L. Blanc-Féraud et A. Chambolle. Journal of Mathematical Imaging and Vision, 22(1): pages 71--88, janvier 2005.
@ARTICLE{BLA05,
|
author |
= |
{Aujol, J.F. and Aubert, G. and Blanc-Féraud, L. and Chambolle, A.}, |
title |
= |
{Image Decomposition into a Bounded Variation Component and an Oscillating Component}, |
year |
= |
{2005}, |
month |
= |
{janvier}, |
journal |
= |
{Journal of Mathematical Imaging and Vision}, |
volume |
= |
{22}, |
number |
= |
{1}, |
pages |
= |
{71--88}, |
pdf |
= |
{http://link.springer.com/article/10.1007/s10851-005-4783-8}, |
keyword |
= |
{} |
} |
|
haut de la page
3 Articles de conférence |
1 - A $l^1$-unified variational framework for image restoration. J. Bect et L. Blanc-Féraud et G. Aubert et A. Chambolle. Dans Proc. European Conference on Computer Vision (ECCV), Vol. LNCS 3024, pages 1--13, Ed. T. Pajdla and J. Matas, Publ. Springer, Prague, Czech Republic, mai 2004.
@INPROCEEDINGS{eccv04,
|
author |
= |
{Bect, J. and Blanc-Féraud, L. and Aubert, G. and Chambolle, A.}, |
title |
= |
{A $l^1$-unified variational framework for image restoration}, |
year |
= |
{2004}, |
month |
= |
{mai}, |
booktitle |
= |
{Proc. European Conference on Computer Vision (ECCV)}, |
volume |
= |
{LNCS 3024}, |
pages |
= |
{1--13}, |
editor |
= |
{T. Pajdla and J. Matas}, |
publisher |
= |
{Springer}, |
address |
= |
{Prague, Czech Republic}, |
url |
= |
{http://link.springer.com/chapter/10.1007%2F978-3-540-24673-2_1}, |
keyword |
= |
{} |
} |
|
2 - Décomposition D'images: Application Aux Images RSO. J.F. Aujol et G. Aubert et L. Blanc-Féraud et A. Chambolle. Dans Proc. GRETSI Symposium on Signal and Image Processing, Paris, France, septembre 2003.
@INPROCEEDINGS{jf_gretsi,
|
author |
= |
{Aujol, J.F. and Aubert, G. and Blanc-Féraud, L. and Chambolle, A.}, |
title |
= |
{Décomposition D'images: Application Aux Images RSO}, |
year |
= |
{2003}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. GRETSI Symposium on Signal and Image Processing}, |
address |
= |
{Paris, France}, |
url |
= |
{http://documents.irevues.inist.fr/handle/2042/13577}, |
keyword |
= |
{} |
} |
|
3 - Decomposing an Image: Application to SAR Images. J.F. Aujol et G. Aubert et L. Blanc-Féraud et A. Chambolle. Dans Proc. Scale-Space, Vol. 2695, series Lecture No, juin 2003.
@INPROCEEDINGS{jf_scalespace,
|
author |
= |
{Aujol, J.F. and Aubert, G. and Blanc-Féraud, L. and Chambolle, A.}, |
title |
= |
{Decomposing an Image: Application to SAR Images}, |
year |
= |
{2003}, |
month |
= |
{juin}, |
booktitle |
= |
{Proc. Scale-Space}, |
volume |
= |
{2695}, |
series |
= |
{Lecture No}, |
url |
= |
{http://link.springer.com/chapter/10.1007%2F3-540-44935-3_21}, |
keyword |
= |
{} |
} |
|
haut de la page
2 Rapports de recherche et Rapports techniques |
1 - Dual Norms and Image Decomposition Models. J.F. Aujol et A. Chambolle. Rapport de Recherche 5130, INRIA, France, mars 2004. Mots-clés : Variation totale, Espace Variations Bornees, Decomposition d'images.
@TECHREPORT{5130,
|
author |
= |
{Aujol, J.F. and Chambolle, A.}, |
title |
= |
{Dual Norms and Image Decomposition Models}, |
year |
= |
{2004}, |
month |
= |
{mars}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5130}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071453}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71453/filename/RR-5130.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/14/53/PS/RR-5130.ps}, |
keyword |
= |
{Variation totale, Espace Variations Bornees, Decomposition d'images} |
} |
Résumé :
Inspiré par [16], de nombreux modèles de décomposition d'images en une composante géométrique et une composante texturée ont été proposés en traitement d'images. Dans de telles approches, les normes d'espaces de Sobolev d'exposant négatif ont paru intéressantes pour modéliser les éléments oscillants. Dans ce papier, nous comparons les propriétés de différentes normes qui sont duales de normes de Sobolev ou de Besov. Nous proposons ensuite un modèle de décomposition qui sépare une image en deux composantes, une première contenant les structures de l'image, une seconde les textures de l'image, et une troisième le bruit. Notre modèle de décomposition repose sur l'utilisation de trois semi-normes différentes: la variation totale pour la composante géométrique, une norme de Sobolev négative pour la texture, et une norme de Besov négative pour le bruit. Nous illustrons notre étude par des exemples numériques. |
Abstract :
Following [16], decomposition models into a geometrical component and a textured component have recently been proposed in image processing. In such approaches, negative Sobolev norms have seemed to be useful to modelize oscillating patterns. In this paper, we compare the properties of various norms that are dual of Sobolev or Besov norms. We then propose a decomposition model which splits an image into three components: a first one containing the structure of the image, a second one the texture of the image, and a third one the noise. Our decomposition model relies on the use of three different semi-norms: the total variation for the geometrical componant, a negative Sobolev norm for the texture, and a negative Besov norm for the noise. We illustrate our study with numerical examples. |
|
2 - Image Decomposition : Application to Textured Images and SAR Images. J.F. Aujol et G. Aubert et L. Blanc-Féraud et A. Chambolle. Rapport de Recherche 4704, INRIA, France, janvier 2003. Mots-clés : Variation totale, Espace Variations Bornees, Texture, Classification, Restauration, Radar a Ouverture Synthetique (SAR).
@TECHREPORT{4704,
|
author |
= |
{Aujol, J.F. and Aubert, G. and Blanc-Féraud, L. and Chambolle, A.}, |
title |
= |
{Image Decomposition : Application to Textured Images and SAR Images}, |
year |
= |
{2003}, |
month |
= |
{janvier}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{4704}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071882}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71882/filename/RR-4704.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/18/82/PS/RR-4704.ps}, |
keyword |
= |
{Variation totale, Espace Variations Bornees, Texture, Classification, Restauration, Radar a Ouverture Synthetique (SAR)} |
} |
Résumé :
Dans ce rapport, nous présentons un nouvel algorithme pour décomposer une imagef en u+v, u étant à variation bornée, et v contenant les textures et le bruit de l'image originale. Nous introduisons une fonctionnelle adaptée à ce problème. Le minimum de cette fonctionnelle correspond à la décomposition cherchée de l'image. Le calcul de ce minimum se fait par minimisation successive par rapport à chacune des variables, chaque minimisati- on étant réalisée à l'aide d'un algorithme de projection. Nous faisons l'étude théorique de notre modèle, et nous présentons des résultats numériques. D'une part, nous montrons comment la composante v peut être utilisée pour faire de la classification d'images texturées, et d'autre part nous montrons comment la composante u peut être utilisée en restauration d'images SAR. |
Abstract :
In this report, we present a new algorithm to split an image f into a component u belonging to BV and a component v made of textures and noise of the initial image. We introduce a functional adapted to this problem. The minimum of this functional corresponds to the image decomposition we want to get. We compute this minimum by minimizing successively our functional with respect to u and v. We carry out the mathematical study of our algorithm. We present some numerical results. On the one hand, we show how the v component can be used to classify textured images, and on the other hand, we show how the u component can be used in SAR image restoration. |
|
haut de la page
Ces pages sont générées par
|