|
Publications de 2011
Résultat de la recherche dans la liste des publications :
19 Articles de conférence |
13 - Generating compact meshes under planar constraints: an automatic approach for modeling buildings lidar. Y. Verdié et F. Lafarge et J. Zerubia. Dans Proc. IEEE International Conference on Image Processing (ICIP), Brussels, Belgium, septembre 2011. Mots-clés : 3D-Modeling, shape analysis, Mesh processing.
@INPROCEEDINGS{VerdieICIP11,
|
author |
= |
{Verdié, Y. and Lafarge, F. and Zerubia, J.}, |
title |
= |
{Generating compact meshes under planar constraints: an automatic approach for modeling buildings lidar}, |
year |
= |
{2011}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Brussels, Belgium}, |
url |
= |
{http://hal.inria.fr/inria-00605623/fr/}, |
keyword |
= |
{3D-Modeling, shape analysis, Mesh processing} |
} |
Abstract :
We present an automatic approach for modeling buildings from aerial LiDAR data. The method produces accurate, watertight and compact meshes under planar constraints which are especially designed for urban scenes. The LiDAR point cloud is classified through a non-convex energy minimization problem in order to separate the points labeled as building. Roof structures are then extracted from this point subset, and used to control the meshing procedure. Experiments highlight the potential of our method in term of minimal rendering, accuracy and compactness |
|
14 - Morphological road segmentation in urban areas from high resolution satellite images. R. Gaetano et J. Zerubia et G. Scarpa et G. Poggi. Dans International Conference on Digital Signal Processing, Corfu, Greece, juillet 2011. Mots-clés : Segmentation, Classification, skeletonization , pattern recognition, shape analysis.
@INPROCEEDINGS{GaetanoDSP,
|
author |
= |
{Gaetano, R. and Zerubia, J. and Scarpa, G. and Poggi, G.}, |
title |
= |
{Morphological road segmentation in urban areas from high resolution satellite images}, |
year |
= |
{2011}, |
month |
= |
{juillet}, |
booktitle |
= |
{International Conference on Digital Signal Processing}, |
address |
= |
{Corfu, Greece}, |
url |
= |
{http://hal.inria.fr/inria-00618222/fr/}, |
keyword |
= |
{Segmentation, Classification, skeletonization , pattern recognition, shape analysis} |
} |
Abstract :
High resolution satellite images provided by the last generation
sensors significantly increased the potential of almost
all the image information mining (IIM) applications related
to earth observation. This is especially true for the extraction
of road information, task of primary interest for many remote
sensing applications, which scope is more and more extended
to complex urban scenarios thanks to the availability of highly
detailed images. This context is particularly challenging due
to such factors as the variability of road visual appearence
and the occlusions from entities like trees, cars and shadows.
On the other hand, the peculiar geometry and morphology of
man-made structures, particularly relevant in urban areas, is
enhanced in high resolution images, making this kind of information
especially useful for road detection.
In this work, we provide a new insight on the use of morphological
image analysis for road extraction in complex urban
scenarios, and propose a technique for road segmentation
that only relies on this domain. The keypoint of the technique
is the use of skeletons as powerful descriptors for road objects:
the proposed method is based on an ad-hoc skeletonization
procedure that enhances the linear structure of road segments,
and extracts road objects by first detecting their skeletons
and then associating each of them with a region of the
image. Experimental results are presented on two different
high resolution satellite images of urban areas. |
|
15 - Regularizing parameter estimation for Poisson noisy image restoration. M. Carlavan et L. Blanc-Féraud. Dans International ICST Workshop on New Computational Methods for Inverse Problems, Paris, France, mai 2011. Mots-clés : Parameter estimation, discrepancy principle, Poisson noise.
@INPROCEEDINGS{NCMIP11,
|
author |
= |
{Carlavan, M. and Blanc-Féraud, L.}, |
title |
= |
{Regularizing parameter estimation for Poisson noisy image restoration}, |
year |
= |
{2011}, |
month |
= |
{mai}, |
booktitle |
= |
{International ICST Workshop on New Computational Methods for Inverse Problems}, |
address |
= |
{Paris, France}, |
url |
= |
{http://hal.inria.fr/inria-00590906/fr/}, |
keyword |
= |
{Parameter estimation, discrepancy principle, Poisson noise} |
} |
Abstract :
Deblurring images corrupted by Poisson noise is a challeng- ing process which has devoted much research in many ap- plications such as astronomical or biological imaging. This problem, among others, is an ill-posed problem which can be regularized by adding knowledge on the solution. Several methods have therefore promoted explicit prior on the im- age, coming along with a regularizing parameter to moder- ate the weight of this prior. Unfortunately, in the domain of Poisson deconvolution, only a few number of methods have been proposed to select this regularizing parameter which is most of the time set manually such that it gives the best visual results. In this paper, we focus on the use of l1 -norm prior and present two methods to select the regularizing pa- rameter. We show some comparisons on synthetic data using classical image fidelity measures. |
|
16 - A novel algorithm for occlusions and perspective effects using a 3d object process. A. Gamal Eldin et X. Descombes et J. Zerubia. Dans ICASSP 2011 (International Conference on Acoustics, Speech and Signal Processing), Prague, Czech Republic, mai 2011. Mots-clés : Occlusions, 3D object process, multiple object extraction, Multiple Birth and Death, Penguins Counting.
@INPROCEEDINGS{ICASSP_2011,
|
author |
= |
{Gamal Eldin, A. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A novel algorithm for occlusions and perspective effects using a 3d object process}, |
year |
= |
{2011}, |
month |
= |
{mai}, |
booktitle |
= |
{ICASSP 2011 (International Conference on Acoustics, Speech and Signal Processing)}, |
address |
= |
{Prague, Czech Republic}, |
url |
= |
{http://hal.inria.fr/inria-00592449/fr/}, |
keyword |
= |
{Occlusions, 3D object process, multiple object extraction, Multiple Birth and Death, Penguins Counting} |
} |
Abstract :
In this paper, we introduce a novel probabilistic approach to handle occlusions and perspective effects. The proposed method is an object based method embedded in a marked point process framework. We apply it for the size estimation of a penguin colony, where we model a penguin colony as an unknown number of 3D objects. The main idea of the proposed approach is to sample some candidate configurations consisting of 3D objects lying in the real plane. A Gibbs energy is define on the configuration space, which takes into account both prior and data information. These configurations are projected onto the image plane. The configurations are modified until convergence using the multiple birth and death optimization algorithm and by measuring the similarity between the projected image of the configuration and the real image. During optimization, the proposed configuration is modeled by a mixed graph which represents all dependencies between the objects, including interaction between neighbor objects and parent-child dependency for occluded objects. We tested our model on synthetic image, and real images. |
|
17 - A new variational method for preserving point-like and curve-like singularities in 2d images. D. Graziani et L. Blanc-Féraud et G. Aubert. Dans Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, mai 2011. Mots-clés : Convex optimization, nesterov scheme, laplacian operator.
@INPROCEEDINGS{ICASSP_Graziani11,
|
author |
= |
{Graziani, D. and Blanc-Féraud, L. and Aubert, G.}, |
title |
= |
{A new variational method for preserving point-like and curve-like singularities in 2d images}, |
year |
= |
{2011}, |
month |
= |
{mai}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
address |
= |
{Prague, Czech Republic}, |
url |
= |
{http://hal.inria.fr/inria-00592603/fr/}, |
keyword |
= |
{Convex optimization, nesterov scheme, laplacian operator} |
} |
Abstract :
We propose a new variational method to restore point-like and curve-like singularities in 2-D images. As points and open curves are fine structures, they are difficult to restore by means of first order derivative operators computed in the noisy image. In this paper we propose to use the Laplacian operator of the observed intensity, since it becomes singular at points and curves. Then we propose to restore these singularities by introducing suitable regularization involving the l-1-norm of the Laplacian operator. Results are shown on synthetic an real data.
|
|
18 - Wavefront sensing for aberration modeling in fluorescence MACROscopy. P. Pankajakshan et A. Dieterlen et G. Engler et Z. Kam et L. Blanc-Féraud et J. Zerubia et J.C. Olivo-Marin. Dans Proc. IEEE International Symposium on Biomedical Imaging (ISBI), Chicago, USA, avril 2011. Mots-clés : fluorescence MACROscopy , phase retrieval, field aberration.
@INPROCEEDINGS{PanjakshanISBI2011,
|
author |
= |
{Pankajakshan, P. and Dieterlen, A. and Engler, G. and Kam, Z. and Blanc-Féraud, L. and Zerubia, J. and Olivo-Marin, J.C.}, |
title |
= |
{Wavefront sensing for aberration modeling in fluorescence MACROscopy}, |
year |
= |
{2011}, |
month |
= |
{avril}, |
booktitle |
= |
{Proc. IEEE International Symposium on Biomedical Imaging (ISBI)}, |
address |
= |
{Chicago, USA}, |
url |
= |
{http://hal.inria.fr/inria-00563988/en/}, |
keyword |
= |
{fluorescence MACROscopy , phase retrieval, field aberration} |
} |
Abstract :
In this paper, we present an approach to calculate the wavefront in
the back pupil plane of an objective in a fluorescent MACROscope.
We use the three-dimensional image of a fluorescent bead because it
contains potential pupil information in the ‘far’ out-of-focus planes
for sensing the wavefront at the back focal plane of the objective.
Wavefront sensing by phase retrieval technique is needed for several
reasons. Firstly, the point-spread function of the imaging system
can be calculated from the estimated pupil phase and used for image
restoration. Secondly, the aberrations in the optics of the objective
can be determined by studying this phase. Finally, the estimated
wavefront can be used to correct the aberrated optical path with-
out a wavefront sensor. In this paper, we estimate the wavefront of
a MACROscope optical system by using Bayesian inferencing and
derive the Gerchberg-Saxton algorithm as a special case. |
|
19 - Brain tumor vascular network segmentation from micro-tomography. X. Descombes et F. Plouraboue et El Boustani Habdelhkim et Fonta Caroline et |LeDuc Geraldine et Serduc Raphael et Weitkamp Timm. Dans Internation Symposium of Biomedical Imaging (ISBI), Chicago, USA, avril 2011. Mots-clés : Segmentation, Markov random field, Tomography, Brain, vascular network. Copyright : IEEE
@INPROCEEDINGS{isbi11,
|
author |
= |
{Descombes, X. and Plouraboue, F. and Boustani Habdelhkim, El and Caroline, Fonta and Geraldine, |LeDuc and Raphael, Serduc and Timm, Weitkamp}, |
title |
= |
{Brain tumor vascular network segmentation from micro-tomography}, |
year |
= |
{2011}, |
month |
= |
{avril}, |
booktitle |
= |
{Internation Symposium of Biomedical Imaging (ISBI)}, |
address |
= |
{Chicago, USA}, |
url |
= |
{http://dx.doi.org/10.1109/ISBI.2011.5872596}, |
keyword |
= |
{Segmentation, Markov random field, Tomography, Brain, vascular network} |
} |
Abstract :
Micro-tomography produces high resolution images of biological structures such as vascular networks. In this paper, we present a new approach for segmenting vascular network into pathological and normal regions from considering their micro-vessel 3D structure only. We define and use a conditional random field for segmenting the output of a watershed algorithm. The tumoral and normal classes are thus characterized by their respective distribution of watershed region size interpreted as local vascular territories. |
|
haut de la page
4 Rapports de recherche et Rapports techniques |
1 - Classification of very high resolution SAR images of urban areas. A. Voisin et V. Krylov et G. Moser et S.B. Serpico et J. Zerubia. Rapport de recherche 7758, INRIA, octobre 2011. Mots-clés : Synthetic Aperture Radar (SAR) image, Supervised classification, Bayesian, finite mixture models, hierarchical Markov random fields, wavelet.
@TECHREPORT{RR-7758,
|
author |
= |
{Voisin, A. and Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{Classification of very high resolution SAR images of urban areas}, |
year |
= |
{2011}, |
month |
= |
{octobre}, |
institution |
= |
{INRIA}, |
type |
= |
{Rapport de recherche}, |
number |
= |
{7758}, |
url |
= |
{http://hal.inria.fr/docs/00/63/10/38/PDF/RR-7758.pdf}, |
keyword |
= |
{Synthetic Aperture Radar (SAR) image, Supervised classification, Bayesian, finite mixture models, hierarchical Markov random fields, wavelet} |
} |
Résumé :
Dans le cadre d’une approche face aux risques environnementaux, nous proposons une nouvelle méthode de classification bayésienne supervisée. Celle-ci combine une modélisation statistique des images avec une prise en compte contextuelle via des champs de Markov hiérarchiques. Ce rapport de recherche vise à détailler plus amplement cette modélisation contextuelle, à savoir expliciter le modèle mathématique sur quad-arbre et l’obtention des observations par décomposition en ondelettes de l’image originale. Il met également en exergue certaines modifications apportées en
vue d’améliorer la classification finale. |
Abstract :
In the framework of the assessment of environmental risks, we propose herein a new supervised Bayesian classification method. It combines statistical image modeling with a contextual approach via hierarchical Markov random fields. This research report aims to further focus on this kind of contextual classification approach by detailing both the quad-tree mathematical model and the statistics of the observations, obtained by wavelet transform. We therefore introduce modifications to a classical Markovian single-scale algorithm that lead to more accurate classification results. |
|
2 - On the Method of Logarithmic Cumulants for Parametric Probability Density Function Estimation. V. Krylov et G. Moser et S.B. Serpico et J. Zerubia. Rapport de Recherche 7666, INRIA, juillet 2011. Mots-clés : Probability density function, Parameter estimation, generalized gamma distribution, K-distribution, Radar a Ouverture Synthetique (SAR), Classification. Copyright : INRIA/ARIANA
@TECHREPORT{RR-7666,
|
author |
= |
{Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{On the Method of Logarithmic Cumulants for Parametric Probability Density Function Estimation}, |
year |
= |
{2011}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7666}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00605274/en/}, |
keyword |
= |
{Probability density function, Parameter estimation, generalized gamma distribution, K-distribution, Radar a Ouverture Synthetique (SAR), Classification} |
} |
Résumé :
L'estimation de paramètres de fonctions de densité de probabilité est une étape majeure dans le domaine du traitement statistique du signal et des images. Dans ce rapport, nous étudions les propriétés et les limites de l'estimation de paramètres par la méthode des cumulants logarithmiques (MoLC), qui est une alternative à la fois au maximum de vraisemblance (MV) classique et à la méthode des moments. Nous dérivons la condition générale suffisante de consistance forte de l'estimation par la méthode MoLC, qui représente une propriété asymptotique importante de tout estimateur statistique. Grâce à cela, nous démontrons la consistance forte de l'estimation par la méthode MoLC pour une sélection de familles de distributions particulièrement adaptées (mais non restreintes) au traitement d'images acquises par radar à synthèse d'ouverture (RSO). Nous dérivons ensuite les conditions analytiques d'applicabilité de la méthode MoLC à des échantillons générés qui suivent les lois des différentes familles de distribution de notre sélection. Enfin, nous testons la méthode MoLC sur des données synthétiques et réelles afin de comparer les différentes propriétés inhérentes aux différents types d'images, l'applicabilité de la méthode et les effets d'un nombre restreint d'échantillons. Nous avons, en particulier, considéré les distributions gamma généralisée et K. Comme exemple d'application, nous avons réalisé des classifications supervisées d'images médicales à ultrason ainsi que d'images de télédétection acquises par des capteurs RSO. Les résultats obtenus montrent que la méthode MoLC est une bonne alternative à la méthode des moments, bien qu'elle contienne certaines limitations. Elle est particulièrement utile lorsqu'une approche directe par MV n'est pas possible. |
Abstract :
Parameter estimation of probability density functions is one of the major steps in the mainframe of statistical image and signal processing. In this report we explore the properties and limitations of the recently proposed method of logarithmic cumulants (MoLC) parameter estimation approach which is an alternative to the classical maximum likelihood (ML) and method of moments (MoM) approaches. We derive the general sufficient condition of strong consistency of MoLC estimates which represents an important asymptotic property of any statistical estimator. With its help we demonstrate the strong consistency of MoLC estimates for a selection of widely used distribution families originating (but not restricted to) synthetic aperture radar (SAR) image processing. We then derive the analytical conditions of applicability of MoLC to samples generated from several distribution families in our selection. Finally, we conduct various synthetic and real data experiments to assess the comparative properties, applicability and small sample performance of MoLC notably for the generalized gamma and K family of distributions. Supervised image classification experiments are considered for medical ultrasound and remote sensing SAR imagery. The obtained results suggest MoLC to be a feasible yet not universally applicable alternative to MoM that can be considered when the direct ML approach turns out to be unfeasible. |
|
3 - Unsupervised amplitude and texture based classification of SAR images with multinomial latent model. K. Kayabol et J. Zerubia. Rapport de Recherche 7700, INRIA, juillet 2011. Mots-clés : High resolution SAR, Classification, Texture.
@TECHREPORT{Kayabol11,
|
author |
= |
{Kayabol, K. and Zerubia, J.}, |
title |
= |
{Unsupervised amplitude and texture based classification of SAR images with multinomial latent model}, |
year |
= |
{2011}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7700}, |
url |
= |
{http://hal.archives-ouvertes.fr/hal-00612491/fr/}, |
keyword |
= |
{High resolution SAR, Classification, Texture} |
} |
Abstract :
We combine both amplitude and texture statistics of the Synthetic Aperture Radar (SAR) images using Products of Experts (PoE) approach for classification purpose. We use Nakagami density to model the class amplitudes and a non-Gaussian Markov Random Field (MRF) texture model with t-distributed regression error to model the textures of the classes. A non-stationary Multinomial Logistic (MnL) latent class label model is used as a mixture density to obtain spatially smooth class segments. The Classification Expectation-Maximization (CEM) algorithm is performed to estimate the class parameters and to classify the pixels. We resort to Integrated Classification Likelihood (ICL) criterion to determine the number of classes in the model. We obtained some classification results of water, land and urban areas in both supervised and unsupervised cases on TerraSAR-X, as well as COSMO-SkyMed data.
|
|
haut de la page
Ces pages sont générées par
|