|
Publications de 2010
Résultat de la recherche dans la liste des publications :
11 Articles |
11 - A Point Process for Fully Automatic Road Network Detection in Satellite and Aerial Images. P. Cariou et X. Descombes et E. Zhizhina. Problems of Information Transmission, 10(3): pages 247-256, 2010. Mots-clés : Marked point process, birth and death process, Road network extraction.
@ARTICLE{cariou2010,
|
author |
= |
{Cariou, P. and Descombes, X. and Zhizhina, E.}, |
title |
= |
{A Point Process for Fully Automatic Road Network Detection in Satellite and Aerial Images}, |
year |
= |
{2010}, |
journal |
= |
{Problems of Information Transmission}, |
volume |
= |
{10}, |
number |
= |
{3}, |
pages |
= |
{247-256}, |
url |
= |
{ http://www.jip.ru/2010/247-256-2010.pdf}, |
keyword |
= |
{Marked point process, birth and death process, Road network extraction} |
} |
|
haut de la page
Thèse de Doctorat et Habilitation |
1 - Phase fields for network extraction from images. A. El Ghoul. Thèse de Doctorat, Universite de Nice - Sophia-Antipolis, septembre 2010. Mots-clés : Shape prior, Higher-order actif contours, Champ de Phase, Stability analysis, Directed networks, river extraction.
@PHDTHESIS{elghoul10c,
|
author |
= |
{El Ghoul, A.}, |
title |
= |
{Phase fields for network extraction from images}, |
year |
= |
{2010}, |
month |
= |
{septembre}, |
school |
= |
{Universite de Nice - Sophia-Antipolis}, |
url |
= |
{http://tel.archives-ouvertes.fr/docs/00/55/01/34/PDF/ThesisMunuscript2010_EL_GHOUL.pdf}, |
keyword |
= |
{Shape prior, Higher-order actif contours, Champ de Phase, Stability analysis, Directed networks, river extraction} |
} |
Résumé :
Cette thèse décrit la construction d'un modèle de réseaux non-directionnels (e.g. réseaux routiers), fondé sur les contours actifs d'ordre supérieur (CAOSs) et les champs de phase développés récemment, et introduit une nouvelle famille des CAOSs des champs de phase pour des réseaux directionnels (e.g. réseaux hydrographiques en imagerie de télédétection, vaisseaux sanguins en imagerie médicale). Dans la première partie de cette thèse, nous nous intéressons à l'analyse de stabilité d'une énergie de type CAOSs aboutissant à un ‘diagramme de phase'. Les résultats, qui sont confirmés par des expériences numériques, permettent une bonne sélection des valeurs des paramètres pour la modélisation de réseaux non-directionnels.
Au contraire des réseaux routiers, les réseaux hydrographiques sont directionnels, i.e. ils contiennent un ‘flux' monodimensionnel circulant dans chaque branche. Cela implique des propriétés géométriques spécifiques des branches et particulièrement des jonctions, propriétés qu'il est utile de traduire dans un modèle, pour l'extraction de réseaux. Nous développons donc un modèle de champ de phase non-local de réseaux directionnels, qui, en plus du champ de phase scalaire décrivant une région par une fonction caractéristique lisse et qui interagit non-localement afin que des configurations de réseaux linéiques soient favorisées, introduit un champ vectoriel représentant le ‘flux' dans les branches du réseau. Ce champ vectoriel est contraint d'être nul à l'extérieur, et de magnitude égale à 1 à l'intérieur du réseau ; circulant dans le sens longitudinal des branches du réseau ; et de divergence très faible. Cela prolonge les branches du réseau ; contrôle la variation de largeur tout au long une branche ; et forme des jonctions non-symétriques telles que la somme des largeurs entrantes soit approximativement égale à celle des largeurs sortantes. En conjonction avec une nouvelle fonction d'interaction pour le champ de phase scalaire, le modèle assure aussi une vaste gamme de valeurs des largeurs stables des branches. Ce nouveau modèle a été appliqué au problème d'extraction de réseaux hydrographiques à partir d'images satellitaires très haute résolution. |
Abstract :
This thesis describes the construction of an undirected network (e.g. road network) model, based on the recently developed higher-order active contours (HOACs) and phase fields, and introduces a new family of phase field HOACs for directed networks (e.g. hydrographic networks in remote sensing imagery, vascular networks in medical imagery). In the first part of this thesis, we focus on the stability analysis of a HOAC energy leading to a ‘phase diagram'. The results, which are confirmed by numerical experiments, enable the selection of parameter values for the modelling of undirected networks.
Hydrographic networks, unlike road networks, are directed, i.e. they carry a unidirectional flow in each branch. This leads to specific geometric properties of the branches and particularly of the junctions, that it is useful to capture in a model, for network extraction purposes. We thus develop a nonlocal phase field model of directed networks, which, in addition to a scalar field representing a region by its smoothed characteristic function, and interacting nonlocally so as to favour network configurations, contains a vector field representing the ‘flow' through the network branches. The vector field is strongly encouraged to be zero outside, and of unit magnitude inside the network; and to have zero divergence. This prolongs network branches; controls width variation along a branch; and produces asymmetric junctions for which total incoming branch width approximately equals total outgoing branch width. In conjunction with a new interaction function for the scalar field, it also allows a broad range of stable branch widths. The new proposed model is applied to the problem of hydrographic network extraction from VHR satellite images, and it outperforms the undirected network model. |
|
haut de la page
17 Articles de conférence |
1 - Multiple Birth and Cut Algorithm for Point Process Optimization. A. Gamal Eldin et X. Descombes et J. Zerubia. Dans Proc. IEEE International Conference on Signal-Image Technology and Internet-based Systems (SITIS), Kuala Lumpur, Malaysia, décembre 2010. Mots-clés : Multiple Birth and Cut, Graph Cut, Multiple Birth and Death, Processus ponctuels marques.
@INPROCEEDINGS{MBC_MPP_SITIS10,
|
author |
= |
{Gamal Eldin, A. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Multiple Birth and Cut Algorithm for Point Process Optimization}, |
year |
= |
{2010}, |
month |
= |
{décembre}, |
booktitle |
= |
{Proc. IEEE International Conference on Signal-Image Technology and Internet-based Systems (SITIS)}, |
address |
= |
{Kuala Lumpur, Malaysia}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00516305/fr/}, |
keyword |
= |
{Multiple Birth and Cut, Graph Cut, Multiple Birth and Death, Processus ponctuels marques} |
} |
Abstract :
In this paper, we describe a new optimization method which we call Multiple Birth and Cut (MBC). It combines the recently developed Multiple Birth and Death (MBD) algorithm and the Graph-Cut algorithm. MBD and MBC optimization methods are applied to the energy minimization of an object based model, the marked point process. We compare the MBC to the MBD showing the advantages and disadvantages, where the most important advantage is the reduction of the number of parameters. We validated our algorithm on the counting problem of flamingos in colony, where our algorithm outperforms the performance of the MBD algorithm. |
|
2 - A theoretical and numerical study of a phase field higher-order active contour model of directed networks. A. El Ghoul et I. H. Jermyn et J. Zerubia. Dans The Tenth Asian Conference on Computer Vision (ACCV), Queenstown, New Zealand, novembre 2010. Mots-clés : Champ de Phase, Shape prior, Directed networks, Stability analysis, river extraction, remote sensing. Copyright : Springer-Verlag GmbH Berlin Heidelberg
@INPROCEEDINGS{Elghoul10b,
|
author |
= |
{El Ghoul, A. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{A theoretical and numerical study of a phase field higher-order active contour model of directed networks}, |
year |
= |
{2010}, |
month |
= |
{novembre}, |
booktitle |
= |
{The Tenth Asian Conference on Computer Vision (ACCV)}, |
address |
= |
{Queenstown, New Zealand}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/inria-00522443/fr/}, |
keyword |
= |
{Champ de Phase, Shape prior, Directed networks, Stability analysis, river extraction, remote sensing} |
} |
Abstract :
We address the problem of quasi-automatic extraction of directed networks, which have characteristic geometric features, from images. To include the necessary prior knowledge about these geometric features, we use a phase field higher-order active contour model of directed networks. The model has a large number of unphysical parameters (weights of energy terms), and can favour different geometric structures for different parameter values. To overcome this problem, we perform a stability analysis of a long, straight bar in order to find parameter ranges that favour networks. The resulting constraints necessary to produce
stable networks eliminate some parameters, replace others by physical parameters such as network branch width, and place lower and upper bounds on the values of the rest.We validate the theoretical analysis via numerical experiments, and then apply the model to the problem of hydrographic network extraction from multi-spectral VHR satellite images. |
|
3 - Point-spread function model for fluorescence MACROscopy imaging. P. Pankajakshan et Z. Kam et A. Dieterlen et G. Engler et L. Blanc-Féraud et J. Zerubia et J.C. Olivo-Marin. Dans Asilomar Conference on Signals, Systems and Computers, pages 1364-136, Pacific Grove, CA, USA , novembre 2010. Mots-clés : fluorescence MACROscopy , point-spread function, pupil function, vignetting .
@INPROCEEDINGS{PanjakshanASILOMAR2010,
|
author |
= |
{Pankajakshan, P. and Kam, Z. and Dieterlen, A. and Engler, G. and Blanc-Féraud, L. and Zerubia, J. and Olivo-Marin, J.C.}, |
title |
= |
{Point-spread function model for fluorescence MACROscopy imaging}, |
year |
= |
{2010}, |
month |
= |
{novembre}, |
booktitle |
= |
{Asilomar Conference on Signals, Systems and Computers}, |
pages |
= |
{1364-136}, |
address |
= |
{Pacific Grove, CA, USA }, |
url |
= |
{http://hal.inria.fr/inria-00555940/}, |
keyword |
= |
{fluorescence MACROscopy , point-spread function, pupil function, vignetting } |
} |
Abstract :
In this paper, we model the point-spread function (PSF) of a fluorescence MACROscope with a field aberration. The MACROscope is an imaging arrangement that is designed to directly study small and large specimen preparations without physically sectioning them. However, due to the different optical components of the MACROscope, it cannot achieve the condition of lateral spatial invariance for all magnifications. For example, under low zoom settings, this field aberration becomes prominent, the PSF varies in the lateral field, and is proportional to the distance from the center of the field. On the other hand, for larger zooms, these aberrations become gradually absent. A computational approach to correct this aberration often relies on an accurate knowledge of the PSF. The PSF can be defined either theoretically using a scalar diffraction model or empirically by acquiring a three-dimensional image of a fluorescent bead that approximates a point source. The experimental PSF is difficult to obtain and can change with slight deviations from the physical conditions. In this paper, we model the PSF using the scalar diffraction approach, and the pupil function is modeled by chopping it. By comparing our modeled PSF with an experimentally obtained PSF, we validate our hypothesis that the spatial variance is caused by two limiting optical apertures brought together on different conjugate planes. |
|
4 - Parameter estimation for a marked point process within a framework of multidimensional shape extraction from remote sensing images. S. Ben Hadj et F. Chatelain et X. Descombes et J. Zerubia. Dans Proc. ISPRS Technical Commission III Symposium on Photogrammetry Computer Vision and Image Analysis (PCV), Paris, France, septembre 2010. Mots-clés : Shape extraction, Processus ponctuels marques, RJMCMC, Recuit Simule, EM Stochastique (SEM).
@INPROCEEDINGS{sbenhadj10a,
|
author |
= |
{Ben Hadj, S. and Chatelain, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Parameter estimation for a marked point process within a framework of multidimensional shape extraction from remote sensing images}, |
year |
= |
{2010}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. ISPRS Technical Commission III Symposium on Photogrammetry Computer Vision and Image Analysis (PCV)}, |
address |
= |
{Paris, France}, |
url |
= |
{http://hal.archives-ouvertes.fr/docs/00/52/63/45/PDF/ISPRS_SBH_FC_XD_JZ_Final2.pdf}, |
keyword |
= |
{Shape extraction, Processus ponctuels marques, RJMCMC, Recuit Simule, EM Stochastique (SEM)} |
} |
|
5 - Tree crown detection in high resolution optical and LiDAR images of tropical forest. J. Zhou et C. Proisy et X. Descombes et I. Hedhli et N. Barbier et J. Zerubia et J.-P. Gastellu-Etchegorry et P. Couteron. Dans Proc. SPIE Symposium on Remote Sensing, Toulouse, France, septembre 2010. Mots-clés : Tropical forest, tree detection, Marked point process.
@INPROCEEDINGS{Zhou10,
|
author |
= |
{Zhou, J. and Proisy, C. and Descombes, X. and Hedhli, I. and Barbier, N. and Zerubia, J. and Gastellu-Etchegorry, J.-P. and Couteron, P.}, |
title |
= |
{Tree crown detection in high resolution optical and LiDAR images of tropical forest}, |
year |
= |
{2010}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. SPIE Symposium on Remote Sensing}, |
address |
= |
{Toulouse, France}, |
url |
= |
{http://dx.doi.org/10.1117/12.865068}, |
keyword |
= |
{Tropical forest, tree detection, Marked point process} |
} |
|
6 - Multi-spectral Image Analysis for Skin Pigmentation Classification. S. Prigent et X. Descombes et D. Zugaj et P. Martel et J. Zerubia. Dans Proc. IEEE International Conference on Image Processing (ICIP), Hong-Kong, China, septembre 2010. Mots-clés : skin hyper-pigmentation, Multi-spectral images, Support Vector Machines, Independant Component Analysis, Data reduction.
@INPROCEEDINGS{sp02,
|
author |
= |
{Prigent, S. and Descombes, X. and Zugaj, D. and Martel, P. and Zerubia, J.}, |
title |
= |
{Multi-spectral Image Analysis for Skin Pigmentation Classification}, |
year |
= |
{2010}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Hong-Kong, China}, |
pdf |
= |
{http://hal.inria.fr/docs/00/49/94/92/PDF/Article_ICIP.pdf}, |
keyword |
= |
{skin hyper-pigmentation, Multi-spectral images, Support Vector Machines, Independant Component Analysis, Data reduction} |
} |
Abstract :
In this paper, we compare two different approaches for semi-automatic detection of skin hyper-pigmentation on multi-spectral images. These two methods are support vector machine (SVM) and blind source separation. To apply SVM, a dimension reduction method adapted to data classification is proposed. It allows to improve the quality of SVM classification as well as to have reasonable computation time. For the blind source separation approach we show that, using independent component analysis, it is possible to extract a relevant cartography of skin pigmentation.
|
|
7 - Segmentation of networks from VHR remote sensing images using a directed phase field HOAC model. A. El Ghoul et I. H. Jermyn et J. Zerubia. Dans Proc. ISPRS Technical Commission III Symposium on Photogrammetry Computer Vision and Image Analysis (PCV), Paris, France, septembre 2010. Mots-clés : Champ de Phase, Shape prior, Directed networks, Road network extraction, river extraction, remote sensing. Copyright : ISPRS
@INPROCEEDINGS{Elghoul10a,
|
author |
= |
{El Ghoul, A. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Segmentation of networks from VHR remote sensing images using a directed phase field HOAC model}, |
year |
= |
{2010}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. ISPRS Technical Commission III Symposium on Photogrammetry Computer Vision and Image Analysis (PCV)}, |
address |
= |
{Paris, France}, |
pdf |
= |
{https://hal.inria.fr/inria-00491017}, |
keyword |
= |
{Champ de Phase, Shape prior, Directed networks, Road network extraction, river extraction, remote sensing} |
} |
Abstract :
We propose a new algorithm for network segmentation from VHR remote sensing images. The algorithm performs this task quasi-automatically,
that is, with no human intervention except to fix some parameters. The task is made difficult by the amount of prior knowledge about network region geometry needed to perform the task, knowledge that is usually provided by a human being. To include such prior knowledge, we make use of methodological advances in region modelling: a phase field higher-order active contour of directed networks is used as the prior model for region geometry. By adjoining an approximately conserved flow to a phase field model encouraging network shapes (i.e. regions composed of branches meeting at junctions), the model favours network regions in which different branches may have very different widths, but in which width change along a branch is slow; in which branches do not
come to an end, hence tending to close gaps in the network; and in which junctions show approximate ‘conservation of width’. We also introduce image models for network and background, which are validated using maximum likelihood segmentation against other possibilities. We then test the full model on VHR optical and multispectral satellite images. |
|
8 - Classification of very high resolution SAR images of urban areas by dictionary-based mixture models, copulas and Markov random fields using textural features. A. Voisin et G. Moser et V. Krylov et S.B. Serpico et J. Zerubia. Dans Proc. of SPIE (SPIE Symposium on Remote Sensing 2010), Vol. 7830, Toulouse, France, septembre 2010. Mots-clés : Images SAR, Supervised classification, Zones urbaines, Textural features, Copulas, Markov Random Fields. Copyright : SPIE
@INPROCEEDINGS{7830-23,
|
author |
= |
{Voisin, A. and Moser, G. and Krylov, V. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{Classification of very high resolution SAR images of urban areas by dictionary-based mixture models, copulas and Markov random fields using textural features}, |
year |
= |
{2010}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. of SPIE (SPIE Symposium on Remote Sensing 2010)}, |
volume |
= |
{7830}, |
address |
= |
{Toulouse, France}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00516333/en}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/51/63/33/PDF/Classification_of_VHR_SAR_SPIE_sept2010_Toulouse_Voisin.pdf}, |
keyword |
= |
{Images SAR, Supervised classification, Zones urbaines, Textural features, Copulas, Markov Random Fields} |
} |
Abstract :
This paper addresses the problem of the classification of very high resolution SAR amplitude images of urban areas. The proposed supervised method combines a finite mixture technique to estimate class-conditional probability density functions, Bayesian classification, and Markov random fields (MRFs). Textural features, such as those extracted by the grey-level co-occurrency method, are also integrated in the technique, as they allow improving the discrimination of urban areas. Copula theory is applied to estimate bivariate joint class-conditional statistics, merging the marginal distributions of both textural and SAR amplitude features. The resulting joint distribution estimates are plugged into a hidden MRF model, endowed with a modified Metropolis dynamics scheme for energy minimization. Experimental results with COSMO-SkyMed images point out the accuracy of the proposed method, also as compared with previous contextual classifiers. |
|
haut de la page
Ces pages sont générées par
|