|
Publications de 2008
Résultat de la recherche dans la liste des publications :
20 Articles de conférence |
12 - Extraction of main and secondary roads in VHR images using a higher-order phase field model. T. Peng et I. H. Jermyn et V. Prinet et J. Zerubia. Dans Proc. XXI ISPRS Congress, Part A, pages 215-22, Beijing, China, juillet 2008. Mots-clés : Reseaux routiers, Zones urbaines, Imagerie satellitaire, Segmentation, Modelling, Methodes variationnelles. Copyright : ISPRS
@INPROCEEDINGS{Peng08a,
|
author |
= |
{Peng, T. and Jermyn, I. H. and Prinet, V. and Zerubia, J.}, |
title |
= |
{Extraction of main and secondary roads in VHR images using a higher-order phase field model}, |
year |
= |
{2008}, |
month |
= |
{juillet}, |
booktitle |
= |
{Proc. XXI ISPRS Congress, Part A}, |
pages |
= |
{215-22}, |
address |
= |
{Beijing, China}, |
pdf |
= |
{http://www.isprs.org/proceedings/XXXVII/congress/3_pdf/33.pdf}, |
keyword |
= |
{Reseaux routiers, Zones urbaines, Imagerie satellitaire, Segmentation, Modelling, Methodes variationnelles} |
} |
Abstract :
This paper addresses the issue of extracting main and secondary road networks in dense urban areas from very high resolution (VHR, ~0.61m) satellite images. The difficulty with secondary roads lies in the low discriminative power of the grey-level distributions of road regions and the background, and the greater effect of occlusions and other noise on narrower roads. To tackle this problem, we use a previously developed higher-order active contour (HOAC) phase field model and augment it with an additional non-linear nonlocal term. The additional term allows separate control of road width and road curvature; thus more precise prior knowledge can be incorporated, and better road prolongation can be achieved for the same width. Promising results on QuickBird panchromatic images at reduced resolutions and comparisons with other models demonstrate the role and the efficiency of our new model. |
|
13 - Building reconstruction from a single DEM. F. Lafarge et X. Descombes et J. Zerubia et M. Pierrot-Deseilligny. Dans Proc. IEEE Computer Vision and Pattern Recognition (CVPR), Anchorage, Alaska, U.S., juin 2008.
@INPROCEEDINGS{lafarge_cvpr08,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{Building reconstruction from a single DEM}, |
year |
= |
{2008}, |
month |
= |
{juin}, |
booktitle |
= |
{Proc. IEEE Computer Vision and Pattern Recognition (CVPR)}, |
address |
= |
{Anchorage, Alaska, U.S.}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2008_lafarge_cvpr08.pdf}, |
keyword |
= |
{} |
} |
|
14 - Blind deconvolution for diffraction-limited fluorescence microscopy. P. Pankajakshan et B. Zhang et L. Blanc-Féraud et Z. Kam et J.C. Olivo-Marin et J. Zerubia. Dans Proc. IEEE International Symposium on Biomedical Imaging (ISBI), pages 740-743, Paris, France, mai 2008. Mots-clés : Microscopie confocale, Blind Deconvolution, point spread function, Richardson-Lucy algorithm, total variation regularization. Copyright : This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
@INPROCEEDINGS{ppankajakshan08a,
|
author |
= |
{Pankajakshan, P. and Zhang, B. and Blanc-Féraud, L. and Kam, Z. and Olivo-Marin, J.C. and Zerubia, J.}, |
title |
= |
{Blind deconvolution for diffraction-limited fluorescence microscopy}, |
year |
= |
{2008}, |
month |
= |
{mai}, |
booktitle |
= |
{Proc. IEEE International Symposium on Biomedical Imaging (ISBI)}, |
pages |
= |
{740-743}, |
address |
= |
{Paris, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2008_ppankajakshan08a.pdf}, |
keyword |
= |
{Microscopie confocale, Blind Deconvolution, point spread function, Richardson-Lucy algorithm, total variation regularization} |
} |
Abstract :
Optical Sections of biological samples obtained from a fluorescence Confocal Laser Scanning Microscopes (CLSM) are often degraded by out-of-focus blur and photon counting noise. Such physical constraints on the observation are a result of the diffraction-limited nature of the optical system, and the reduced amount of light detected by the photomultiplier respectively. Hence, the image stacks can benefit from postprocessing restoration methods based on deconvolution. The parameters of the acquisition system’s Point Spread Function (PSF) may vary during the course of experimentation, and so they have to be estimated directly from the observation data. We describe here an alternate minimization algorithm for the simultaneous blind estimation of the specimen 3D distribution of fluorescent sources and the PSF. Experimental results on real data show that the algorithm provides very good deconvolution results in comparison to theoretical microscope PSF models. |
|
15 - Automatic 3D modeling of urban scenes from satellite images. F. Lafarge et X. Descombes et J. Zerubia et M. Pierrot-Deseilligny. Dans Proc. SPACEAPPLI, Toulouse, France, avril 2008.
@INPROCEEDINGS{lafarge_spaceappli08,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{Automatic 3D modeling of urban scenes from satellite images}, |
year |
= |
{2008}, |
month |
= |
{avril}, |
booktitle |
= |
{Proc. SPACEAPPLI}, |
address |
= |
{Toulouse, France}, |
url |
= |
{http://www.toulousespaceshow.eu/tss08/spaceappli08/index.htm}, |
keyword |
= |
{} |
} |
|
16 - Compression artifacts reduction using variational methods: algorithms and experimental study. P. Weiss et L. Blanc-Féraud et T. Andre et M. Antonini. Dans Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, USA, mars 2008. Mots-clés : compression artifact, fast l1 optimization, Variation totale, contrast enhancement, nesterov scheme, jpeg2000. Copyright :
@INPROCEEDINGS{ICASSP_WEISS,
|
author |
= |
{Weiss, P. and Blanc-Féraud, L. and Andre, T. and Antonini, M.}, |
title |
= |
{Compression artifacts reduction using variational methods: algorithms and experimental study}, |
year |
= |
{2008}, |
month |
= |
{mars}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
address |
= |
{Las Vegas, USA}, |
url |
= |
{http://www.math.univ-toulouse.fr/~weiss/Publis/Conferences/icassp2008.pdf}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2008_ICASSP_WEISS.pdf}, |
keyword |
= |
{compression artifact, fast l1 optimization, Variation totale, contrast enhancement, nesterov scheme, jpeg2000} |
} |
|
17 - AUTOMATIC FLAMINGO DETECTION USING A MULTIPLE BIRTH AND DEATH PROCESS. S. Descamps et X. Descombes et A. Béchet et J. Zerubia. Dans Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, USA, mars 2008. Copyright : copyright IEEE 2008
@INPROCEEDINGS{descamps08,
|
author |
= |
{Descamps, S. and Descombes, X. and Béchet, A. and Zerubia, J.}, |
title |
= |
{AUTOMATIC FLAMINGO DETECTION USING A MULTIPLE BIRTH AND DEATH PROCESS}, |
year |
= |
{2008}, |
month |
= |
{mars}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
address |
= |
{Las Vegas, USA}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2008_descamps08.pdf}, |
keyword |
= |
{} |
} |
|
18 - SATELLITE IMAGE RECONSTRUCTION FROM AN IRREGULAR SAMPLING. E. Bughin et L. Blanc-Féraud et J. Zerubia. Dans Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, USA, mars 2008. Mots-clés : Irregular sampling, Variational methods, Fourier analysis, Satellite imaging. Copyright :
@INPROCEEDINGS{Bughin08,
|
author |
= |
{Bughin, E. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{SATELLITE IMAGE RECONSTRUCTION FROM AN IRREGULAR SAMPLING}, |
year |
= |
{2008}, |
month |
= |
{mars}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
address |
= |
{Las Vegas, USA}, |
url |
= |
{http://hal.inria.fr/docs/00/27/89/19/PDF/bughinICASSP08.pdf}, |
keyword |
= |
{Irregular sampling, Variational methods, Fourier analysis, Satellite imaging} |
} |
|
19 - Mixing Geometric and Radiometric Features for Change Classification. A. Fournier et X. Descombes et J. Zerubia. Dans Proc. SPIE Symposium on Electronic Imaging, San Jose, USA, janvier 2008. Mots-clés : Change detection, directional Statistics, polygonal approximation, Classification. Copyright : Copyright 2008 SPIE and IS&T. This paper was published in the proceedings of IS&T/SPIE 20th Annual Symposium on Electronic Imaging and is made available as an electronic reprint (preprint) with permission of SPIE and IS&T. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
@INPROCEEDINGS{fournier_spie08,
|
author |
= |
{Fournier, A. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Mixing Geometric and Radiometric Features for Change Classification}, |
year |
= |
{2008}, |
month |
= |
{janvier}, |
booktitle |
= |
{Proc. SPIE Symposium on Electronic Imaging}, |
address |
= |
{San Jose, USA}, |
url |
= |
{http://hal.inria.fr/inria-00269853/fr/}, |
keyword |
= |
{Change detection, directional Statistics, polygonal approximation, Classification} |
} |
Abstract :
Most basic change detection algorithms use a pixel-based approach. Whereas such approach is quite well defined for monitoring important area changes (such as urban growth monitoring) in low resolution images, an object based approach seems more relevant when the change detection is specifically aimed toward targets (such as small buildings and vehicles). In this paper, we present an approach that mixes radiometric and geometric features to qualify the changed zones. The goal is to establish bounds (appearance, disappearance, substitution ...) between the detected changes and the underlying objects. We proceed by first clustering the change map (containing each pixel bitemporal radiosity) in different classes using the entropy-kmeans algorithm. Assuming that most man-made objects have a polygonal shape, a polygonal approximation algorithm is then used in order to characterize the resulting zone shapes. Hence allowing us to refine the primary rough classification, by integrating the polygon orientations in the state space. Tests are currently conducted on Quickbird data. |
|
20 - Diagramme de phase d'une énergie de type contours actifs d'ordre supérieur : le cas d'une barre longue. A. El Ghoul et I. H. Jermyn et J. Zerubia. Dans 16ème congrès francophone AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle (RFIA), Amiens, France, janvier 2008. Mots-clés : Diagramme de phase, Contours actifs d'ordre supérieur, Forme, a priori géométrique, Télédétection.
@INPROCEEDINGS{ElGhoul08,
|
author |
= |
{El Ghoul, A. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Diagramme de phase d'une énergie de type contours actifs d'ordre supérieur : le cas d'une barre longue}, |
year |
= |
{2008}, |
month |
= |
{janvier}, |
booktitle |
= |
{16ème congrès francophone AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle (RFIA)}, |
address |
= |
{Amiens, France}, |
url |
= |
{https://hal.inria.fr/inria-00319575}, |
pdf |
= |
{http://hal.inria.fr/docs/00/31/95/75/PDF/rfia08aymenelghoul.pdf}, |
keyword |
= |
{Diagramme de phase, Contours actifs d'ordre supérieur, Forme, a priori géométrique, Télédétection} |
} |
Résumé :
Dans cet article, nous présentons l’analyse de stabilité du modèle des “contours actifs d’ordre supérieur” (CAOS), pour l’extraction des réseaux routiers présents dans des images de télédétection. Le modèle énergétique des CAOS à minimiser présente des comportements différents en fonction des valeurs des paramètres du modèle.
Il s’est avéré que deux structures géométriques sont favorisées
par ce modèle : des structures linéiques et circulaires. Nous nous intéressons ici à la détermination du diagramme de phase, qui définit les gammes des valeurs des paramètres du modèle des CAOS, permettant d’obtenir des structures linéiques. |
Abstract :
In this paper, we present a stability analysis of a “higher-order active contour” (HOAC) model for road network extraction from remotely sensed images. The HOAC energy presents several different behaviours depending on the model parameter values. Two types of geometric structure are favoured, namely line networks and circles. In this
work, we derive the phase diagram giving the parameter ranges of the HOAC model that allow stable linear structures. |
|
haut de la page
4 Rapports de recherche et Rapports techniques |
1 - Modeling the statistics of high resolution SAR images. V. Krylov et G. Moser et S.B. Serpico et J. Zerubia. Research Report 6722, INRIA, novembre 2008. Mots-clés : Synthetic Aperture Radar (SAR) image, Probability density function, parametric estimation, finite mixture models, EM Stochastique (SEM). Copyright : INRIA/ARIANA, 2008
@TECHREPORT{krylovDSEM08,
|
author |
= |
{Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{Modeling the statistics of high resolution SAR images}, |
year |
= |
{2008}, |
month |
= |
{novembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6722}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00342681/en/}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/35/76/27/PDF/RR-6722.pdf}, |
keyword |
= |
{Synthetic Aperture Radar (SAR) image, Probability density function, parametric estimation, finite mixture models, EM Stochastique (SEM)} |
} |
Abstract :
In the context of remotely sensed data analysis, a crucial problem is represented by the need to develop accurate models for the statistics of pixel intensities. In this work, we develop a parametric finite mixture model for modelling the statistics of intensities in high resolution Synthetic Aperture Radar (SAR) images. Along with the models we design an efficient parameter estimation scheme by integrating the Stochastic Expectation Maximization scheme and the Method of log-cumulants with an automatic technique to select, for each mixture component, an optimal parametric model taken from a predefined dictionary of parametric probability density functions (pdf). In particular, the proposed dictionary consists of eight most efficient state-of-the-art SAR-specific pdfs: Nakagami, log-normal, generalized Gaussian Rayleigh, Heavy-tailed Rayleigh, Weibull, K-root, Fisher and generalized Gamma. The experiment results with a set of several real SAR (COSMO-SkyMed) images demonstrate the high accuracy of the designed algorithm, both from the viewpoint of a visual comparison of the histograms, and from the viewpoint of quantitive measures such as correlation coefficient (always above 99,5%) . We stress, in particular, that the method proves to be effective on all the considered images, remaining accurate for multimodal and highly heterogeneous images. |
|
haut de la page
Ces pages sont générées par
|