|
Publications de 2004
Résultat de la recherche dans la liste des publications :
18 Articles de conférence |
17 - A deconvolution method for confocal microscopy with total variation regularization. N. Dey et L. Blanc-Féraud et C. Zimmer et Z. Kam et J.C. Olivo-Marin et J. Zerubia. Dans Proc. IEEE International Symposium on Biomedical Imaging (ISBI), Arlington, USA, avril 2004. Mots-clés : 3D confocal microscopy, Poisson deconvolution, total variation regularization.
@INPROCEEDINGS{Dey04a,
|
author |
= |
{Dey, N. and Blanc-Féraud, L. and Zimmer, C. and Kam, Z. and Olivo-Marin, J.C. and Zerubia, J.}, |
title |
= |
{A deconvolution method for confocal microscopy with total variation regularization}, |
year |
= |
{2004}, |
month |
= |
{avril}, |
booktitle |
= |
{Proc. IEEE International Symposium on Biomedical Imaging (ISBI)}, |
address |
= |
{Arlington, USA}, |
pdf |
= |
{http://dx.doi.org/10.1109/ISBI.2004.1398765}, |
keyword |
= |
{3D confocal microscopy, Poisson deconvolution, total variation regularization} |
} |
Abstract :
Confocal laser scanning microscopy is a powerful and increasingly popular technique for 3D imaging of biological specimens. However the acquired images are degraded by blur from out-of-focus light and Poisson noise due to photon-limited detection. Several deconvolution methods have been proposed to reduce these degradations, including the Richardson-Lucy algorithm, which computes a maximum likelihood estimation adapted to Poisson statistics. However this method tends to amplify noise if used without regularizing constraint. Here, we propose to combine the Richardson-Lucy algorithm with a regularizing constraint based on total variation, whose smoothing avoids oscillations while preserving edges. We show on simulated images that this constraint improves the deconvolution result both visually and using quantitative measures. |
|
18 - Marked Point Process in Image Analysis : from Context to Geometry. X. Descombes et F. Kruggel et C. Lacoste et M. Ortner et G. Perrin et J. Zerubia. Dans International Conference on Spatial Point Process Modelling and its Application (SPPA), Castellon, Spain, 2004. Mots-clés : RJMCMC, Extraction d'objets, Processus ponctuels marques, Geometrie stochastique.
@INPROCEEDINGS{geostoch04a,
|
author |
= |
{Descombes, X. and Kruggel, F. and Lacoste, C. and Ortner, M. and Perrin, G. and Zerubia, J.}, |
title |
= |
{Marked Point Process in Image Analysis : from Context to Geometry}, |
year |
= |
{2004}, |
booktitle |
= |
{International Conference on Spatial Point Process Modelling and its Application (SPPA)}, |
address |
= |
{Castellon, Spain}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/SPPA_2004.pdf}, |
ps |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/SPPA_2004.ps.gz}, |
keyword |
= |
{RJMCMC, Extraction d'objets, Processus ponctuels marques, Geometrie stochastique} |
} |
Abstract :
We consider the marked point process framework as a natural extension of the Markov random field approach in image analysis. We consider a general model defined by its density allowing us to consider some geometrical constraints on objects and between objects in feature extraction problems. Some examples are derived for small brain lesions detection from MR Images, road network, tree crown and building extraction from remotely sensed images. The results obtained on real data show the relevance of the proposal approach. |
|
haut de la page
9 Rapports de recherche et Rapports techniques |
1 - Détection de Feux de Forêt par Analyse Statistique de la Radiométrie d'Images Satellitaires. F. Lafarge et X. Descombes et J. Zerubia. Rapport de Recherche 5369, INRIA, France, décembre 2004. Mots-clés : Feux de foret, Champs Gaussiens, Évenement rare.
@TECHREPORT{5369,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Détection de Feux de Forêt par Analyse Statistique de la Radiométrie d'Images Satellitaires}, |
year |
= |
{2004}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5369}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070634}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70634/filename/RR-5369.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/06/34/PS/RR-5369.ps}, |
keyword |
= |
{Feux de foret, Champs Gaussiens, Évenement rare} |
} |
Résumé :
Nous proposons, dans ce rapport, une méthode de détection des feux de forêt par imagerie satellitaire fondée sur la théorie des champs aléatoires. L'idée consiste à modéliser l'image par une réalisation d'un champ gaussien afin d'en extraire, par une analyse statistique, les éléments étrangers pouvant correspondre aux feux.
Le canal IRT (InfraRouge Thermique) contient des longueurs d'onde particulièrement sensibles à l'émission de chaleur. L'intensité d'un pixel d'une image IRT est donc d'autant plus forte que la température de la zone associée à ce pixel est élevée. Les feux de forêt peuvent alors être caractérisés par des pics d'intensité sur ce type d'images. Nous proposons une méthode de classification non supervisée et automatique fondée sur la théorie des champs gaussiens. Pour ce faire, nous modélisons dans un premier temps l'image par une réalisation d'un champ gaussien. Les zones de feux, minoritaires et de fortes intensités sont considérées comme des éléments étrangers à ce champ : ce sont des évènements rares. Ensuite, par une analyse statistique, nous déterminons un jeu de probabilités définissant, pour une zone donnée de l'image, un degré d'appartenance au champ gaussien, et par complémentarité aux zones potentiellement en feux. |
Abstract :
We present in this report a method for forest fire detection in satellite images based on random field theory. The idea is to model the image as a realization of a gaussian field in order to extract the rare events, which are potential fires, by a statistical analysis.
The TIR (Thermical InfraRed) channel has a wavelength sensitive to the emission of heat : the higher the heat of a area, the higher the intensity of the corresponding pixel of the image. Then a forest fire can be characterized by peak intensity in TIR images. We present an fully automatic unsupervised classification method based on Gaussian field theory. First we model the image as a realization of a Gaussian field. The fire areas, which have high intensity and are supposed to be a minority, are considered as foreign elements of that field : they are rare events. Then we determine by a statistical analysis a set of probabilities which characterizes the degree of belonging to the Gaussian field of a small area of the image. So, we estimate the probability that the area is a potential fire. |
|
2 - Noyaux Texturaux pour les Problèmes de Classification par SVM en Télédétection. F. Lafarge et X. Descombes et J. Zerubia. Rapport de Recherche 5370, INRIA, France, décembre 2004. Mots-clés : Support Vector Machines, Classification, Feux de foret, Zones urbaines, Base d'apprentissage, Champs de Markov.
@TECHREPORT{5370,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Noyaux Texturaux pour les Problèmes de Classification par SVM en Télédétection}, |
year |
= |
{2004}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5370}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070633}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70633/filename/RR-5370.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/06/33/PS/RR-5370.ps}, |
keyword |
= |
{Support Vector Machines, Classification, Feux de foret, Zones urbaines, Base d'apprentissage, Champs de Markov} |
} |
Résumé :
Nous détaillons dans ce rapport la construction de deux noyaux texturaux s'utilisant dans les problèmes de classification par «Support Vector Machines» en télédétection. Les SVM constituent une méthode de classification supervisée particulièrement bien adaptée pour traiter des données de grande dimension telles que les images satellitaires. Par cette méthode, nous souhaitons réaliser l'apprentissage de paramètres qui permettent la différenciation entre deux ensembles de pixels connexes non-identiques. Nous travaillons pour cela sur des fonctions noyaux, fonctions caractérisant une certaine similarité entre deux données. Dans notre cas, cette similarité sera fondée à la fois sur une notion radiométrique et sur une notion texturale. La principale difficulté rencontrée dans cette étude réside dans l'élaboration de paramètres texturaux pertinents qui modélisent au mieux l'homogénéité d'un ensemble de pixels connexes. Nous appliquons les noyaux proposés à deux problèmes de télédétection: la détection de feux de forêt et la détection de zones urbaines à partir d'images satellitaires haute résolusion. |
Abstract :
We present in this report two textural kernels for «Support Vector Machines» classification applied to remote sensing problems. SVMs constitute a method of supervised classification well adapted to deal with data of high dimension, such as images. We would like to learn parameters which allow the differentiation between two sets of connected pixels. We also introduce kernel functions which characterize a notion of similarity between two pieces of data. In our case this similarity is based on a radiometric charateristic and a textural characteristic. The main difficulty is to elaborate textural parameters which are pertinent and characterize as well as possible the homogeneity of a set of connected pixels. We apply this method to remote sensing problems : the detection of forest fires and the extraction of urban areas in high resolution satellite images. |
|
3 - Detecting Codimension-two Objects in an Image with Ginzburg-Landau Models. G. Aubert et J.F. Aujol et L. Blanc-Féraud. Rapport de Recherche 5254, INRIA, France, juillet 2004. Mots-clés : Modele de Ginzburg-Landau, Images biologiques, Segmentation, Equation aux derivees partielles.
@TECHREPORT{5254,
|
author |
= |
{Aubert, G. and Aujol, J.F. and Blanc-Féraud, L.}, |
title |
= |
{Detecting Codimension-two Objects in an Image with Ginzburg-Landau Models}, |
year |
= |
{2004}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5254}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070744}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70744/filename/RR-5254.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/07/44/PS/RR-5254.ps}, |
keyword |
= |
{Modele de Ginzburg-Landau, Images biologiques, Segmentation, Equation aux derivees partielles} |
} |
Résumé :
Dans cet article, nous proposons a nouveau modèle mathématique pour détecter dans une image les singularités de codimension supérieure ou égale à deux. Cela signifie que nous voulons détecter des points dans des images 2-D, ou des points et des courbes dans des images 3-D. Nous nous inspirons des modèles de Ginzburg-Landau (GL). Ces derniers se sont révélés efficace pour modéliser de nombreux phénomènes physiques. Nous introduisons le modèle, nous énonçons ses propriétés mathématiques, et nous donnons des résultats expérimentaux illustrant les performances du modèle. |
Abstract :
In this paper, we propose a new mathematical model for detecting in an image singularities of codimension greater than or equal to two. This means we want to detect points in a 2-D image or points and curves in a 3-D image. We drew one's inspiration from Ginzburg-Landau (G-L) models which have proved their efficiency for modeling many phenomena in physics. We introduce the model, state its mathematical properties and give some experimental results demonstrating its capability. |
|
4 - 3D Microscopy Deconvolution using Richardson-Lucy Algorithm with Total Variation Regularization. N. Dey et L. Blanc-Féraud et C. Zimmer et P. Roux et Z. Kam et J.C. Olivo-Marin et J. Zerubia. Rapport de Recherche 5272, INRIA, France, juillet 2004. Mots-clés : Microscopie confocale, Deconvolution, Reponse impulsionnelle, Variation totale.
@TECHREPORT{5272,
|
author |
= |
{Dey, N. and Blanc-Féraud, L. and Zimmer, C. and Roux, P. and Kam, Z. and Olivo-Marin, J.C. and Zerubia, J.}, |
title |
= |
{3D Microscopy Deconvolution using Richardson-Lucy Algorithm with Total Variation Regularization}, |
year |
= |
{2004}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5272}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00070726/fr/}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70726/filename/RR-5272.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/07/07/26/PS/RR-5272.ps}, |
keyword |
= |
{Microscopie confocale, Deconvolution, Reponse impulsionnelle, Variation totale} |
} |
Résumé :
La microscopie confocale (Confocal laser scanning microscopy ou microscopie confocale à balayage laser) est une méthode puissante de plus en plus populaire pour l'imagerie 3D de spécimens biologiques. Malheureusement, les images acquises sont dégradées non seulement par du flou dû à la lumière provenant de zones du spécimen non focalisées, mais aussi par un bruit de Poisson dû à la détection, qui se fait à faible flux de photons. Plusieurs méthodes de déconvolution ont été proposées pour réduire ces dégradations, avec en particulier l'algorithme itératif de Richardson-Lucy, qui calcule un maximum de vraisemblance adapté à une statistique poissonienne. Mais cet algorithme utilisé comme tel ne converge pas nécessairement vers une solution adaptée, car il tend à amplifier le bruit. Si par contre on l'utilise avec une contrainte de régularisation (connaissance a priori sur l'objet que l'on cherche à restaurer, par exemple), Richardson-Lucy régularisé converge toujours vers une solution adaptée, sans amplification du bruit. Nous proposons ici de combiner l'algorithme de Richardson-Lucy avec une contrainte de régularisation basée sur la Variation Totale, dont l'effet d'adoucissement permet d'éviter les oscillations d'intensité tout en préservant les bords des objets. Nous montrons sur des images synthétiques et sur des images réelles que cette contrainte de régularisation améliore les résultats de la déconvolution à la fois qualitativement et quantitativement. Nous comparons plusieurs méthodes de déconvolution bien connues à la méthode que nous proposons, comme Richardson-Lucy standard (pas de régularisation), Richardson-Lucy régularisé avec Tikhonov-Miller, et un algorithme basé sur la descente de gradients (sous l'hypothèse d'un bruit additif gaussien). |
Abstract :
Confocal laser scanning microscopy is a powerful and increasingly popular technique for 3D imaging of biological specimens. However the acquired images are degraded by blur from out-of-focus light and Poisson noise due to photon-limited detection. Several deconvolution methods have been proposed to reduce these degradations, including the Richardson-Lucy iterative algorithm, which computes a maximum likelihood estimation adapted to Poisson statistics. However this algorithm does not necessarily converge to a suitable solution, as it tends to amplify noise. If it is used with a regularizing constraint (some prior knowledge on the data), Richardson-Lucy regularized with a well-chosen constraint, always converges to a suitable solution. Here, we propose to combine the Richardson-Lucy algorithm with a regularizing constraint based on Total Variation, whose smoothing avoids oscillations while preserving object edges. We show on simulated and real images that this constraint improves the deconvolution results both visually and using quantitative measures. We compare several well-known deconvolution methods to the proposed method, such as standard Richardson-Lucy (no regularization), Richardson-Lucy with Tikhonov-Miller regularization, and an additive gradient-based algorithm. |
|
5 - Dual Norms and Image Decomposition Models. J.F. Aujol et A. Chambolle. Rapport de Recherche 5130, INRIA, France, mars 2004. Mots-clés : Variation totale, Espace Variations Bornees, Decomposition d'images.
@TECHREPORT{5130,
|
author |
= |
{Aujol, J.F. and Chambolle, A.}, |
title |
= |
{Dual Norms and Image Decomposition Models}, |
year |
= |
{2004}, |
month |
= |
{mars}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5130}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071453}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71453/filename/RR-5130.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/14/53/PS/RR-5130.ps}, |
keyword |
= |
{Variation totale, Espace Variations Bornees, Decomposition d'images} |
} |
Résumé :
Inspiré par [16], de nombreux modèles de décomposition d'images en une composante géométrique et une composante texturée ont été proposés en traitement d'images. Dans de telles approches, les normes d'espaces de Sobolev d'exposant négatif ont paru intéressantes pour modéliser les éléments oscillants. Dans ce papier, nous comparons les propriétés de différentes normes qui sont duales de normes de Sobolev ou de Besov. Nous proposons ensuite un modèle de décomposition qui sépare une image en deux composantes, une première contenant les structures de l'image, une seconde les textures de l'image, et une troisième le bruit. Notre modèle de décomposition repose sur l'utilisation de trois semi-normes différentes: la variation totale pour la composante géométrique, une norme de Sobolev négative pour la texture, et une norme de Besov négative pour le bruit. Nous illustrons notre étude par des exemples numériques. |
Abstract :
Following [16], decomposition models into a geometrical component and a textured component have recently been proposed in image processing. In such approaches, negative Sobolev norms have seemed to be useful to modelize oscillating patterns. In this paper, we compare the properties of various norms that are dual of Sobolev or Besov norms. We then propose a decomposition model which splits an image into three components: a first one containing the structure of the image, a second one the texture of the image, and a third one the noise. Our decomposition model relies on the use of three different semi-norms: the total variation for the geometrical componant, a negative Sobolev norm for the texture, and a negative Besov norm for the noise. We illustrate our study with numerical examples. |
|
6 - SAR Amplitude Probability Density Function Estimation based on a Generalized Gaussian Scattering Model. G. Moser et J. Zerubia et S.B. Serpico. Rapport de Recherche 5153, INRIA, France, mars 2004. Mots-clés : Radar a Ouverture Synthetique (SAR), Gaussiennes generalisees.
@TECHREPORT{5153,
|
author |
= |
{Moser, G. and Zerubia, J. and Serpico, S.B.}, |
title |
= |
{SAR Amplitude Probability Density Function Estimation based on a Generalized Gaussian Scattering Model}, |
year |
= |
{2004}, |
month |
= |
{mars}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5153}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071430}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71430/filename/RR-5153.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/14/30/PS/RR-5153.ps}, |
keyword |
= |
{Radar a Ouverture Synthetique (SAR), Gaussiennes generalisees} |
} |
Résumé :
En télédetection, un problème important est celui de développer des modèles précis pour representer les statistiques des intensités des pixels. En ce qui concerne les données du type Radar à Synthèse d'Ouverture (RSO), cette modélisation constitue un point capital pour la classification ou le débruitage d'une image, par exemple. Dans ce rapport de recherche, une nouvelle méthode d'estimation paramétrique pour les amplitudes d'images RSO est proposée. Elle tient compte de la nature physique des phénomènes de diffusion qui générent une image RSO en adoptant une modèle de gaussiennes generalisées pour les phénomènes de rétrodiffusion. Une expression, sous forme explicite, de la densité de probabilité de l'amplitude est obtenue et un algorithme spécifique d'estimation des paramètres est proposé afin de pouvoir utiliser le modèle proposé. Une mèthode récente fondée sur les «logs-cumulants» est appliquée, dérivant de l'utilisation d'une transformée de Mellin (à la place de la transformée de Fourier usuelle) dans le calcul des fonctions caractéristiques et de la généralisation des concepts de moment et de cumulant correspondante. Les estimées obtenues par la mèthode des log-cumulants pour le modèle d'amplitude fondé sur des gaussiennes généralisées se révelent être calculables numériquement et également consistantes. Dans ce rapport de recherche, l'approche paramètrique proposée est validée sur diverses images radar RSO (ERS, XSAR, ESAR et des radar aéroportés). Les résultats expérimentaux montrent que la mèthode proposée modèlise mieux la densité de probabilité de l'amplitude que beaucoup de modèles paramétriques proposés précédemment pour les phénomènes de rétrodiffusion. |
Abstract :
In the context of remotely sensed data analysis, an important problem is the development of accurate models for the statistics of the pixel intensities. Focusing on Synthetic Aperture Radar (SAR) data, this modelling process turns out to be a crucial task, for instance, for classification or for denoising purposes. In the present report, an innovative parametric estimation methodology for SAR amplitude data is proposed, which takes into account the physical nature of the scattering phenomena generating a SAR image by adopting a generalized Gaussian (GG) model for the backscattering phenomena. A closed form expression for the corresponding amplitude probability density function (PDF) is derived and a specific parameter estimation algorithm is developed in order to deal with the proposed model. Specifically, the recently proposed «method-of-log-cumulants» (MoLC) is applied, which stems from the adoption of the Mellin transform (instead of the usual Fourier transform) in the computation of characteristic functions, and from the corresponding generalization of the concepts of moment and of cumulant. For the developed GG-based amplitude model, the resulting MoLC estimates turn out to be numerically feasible and are also proved to be consistent. The proposed parametric approach is validated using several real ERS-1, XSAR, ESAR and airborne SAR images and the experimental results prove that the method models the amplitude probability density function better than several previously proposed parametric models for the backscattering phenomena. |
|
7 - Dictionary-based Stochastic Expectation-Maximization for SAR amplitude probability density function estimation. G. Moser et J. Zerubia et S.B. Serpico. Rapport de Recherche 5154, INRIA, France, mars 2004. Mots-clés : Radar a Ouverture Synthetique (SAR), EM Stochastique (SEM), Modeles de melange fini.
@TECHREPORT{5154,
|
author |
= |
{Moser, G. and Zerubia, J. and Serpico, S.B.}, |
title |
= |
{Dictionary-based Stochastic Expectation-Maximization for SAR amplitude probability density function estimation}, |
year |
= |
{2004}, |
month |
= |
{mars}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5154}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071429}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71429/filename/RR-5154.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/14/29/PS/RR-5154.ps}, |
keyword |
= |
{Radar a Ouverture Synthetique (SAR), EM Stochastique (SEM), Modeles de melange fini} |
} |
Résumé :
En télédetection, un problème vital est le besoin de développer des modèles précis pour représenter les statistiques des intensités des images. Dans ce rapport de recherche, nous traitons le problème de l'estimation de la densité de probabilité de l'amplitude d'une image de type Radar à Synthèse d'Ouverture (RSO). Plusieurs modèles théoriques ou heuristiques, ultilisés pour représenter l'amplitude d'un signal du type RSO, ont été proposés dans la littérature et ce sont révelés être efficaces pour différentes types de classes dans le contexte des cartes d'occupation des sols, rendant ainsi difficile le choix d'une seule densité de probabilité paramétrique. Dans ce rapport de recherche, un algorithme d'estimation innovant est proposé, se fondant sur un modèle de mélange fini pour la densité de probabilité de l'amplitude, les diverses composantes du mélange appartenant à un dictionnaire specifique. La mèthode proposée dans ce rapport intégre, de fa on automatique, les procédures de sélection d'un modèle optimal pour chaque composante, d'estimation de paramètres et d'optimisation du nombre de composantes, en combinant un algorithme EM stochastique et la méthode des logs-cumulants pour l'estimation de la densité de probabilité paramètrique. Des resultats expérimentaux sur plusieurs images RSO réelles sont présentés, montrant ainsi que la mèthode proposée est suffisamment précise pour modéliser les statistiques du signal d'amplitude radar de type RSO. |
Abstract :
In the context of remotely sensed data analysis, a crucial problem is represented by the need to develop accurate models for the statistics of the pixel intensities. In the current research report, we address the problem of parametric probability density function (PDF) estimation in the context of Synthetic Aperture Radar (SAR) amplitude data analysis. Specifically, several theoretical and heuristic models for the PDFs of SAR data have been proposed in the literature, and have been proved to be effective for different land-cover typologies, thus making the choice of a single optimal SAR parametric PDF a hard task. In thia report, an innovative estimation algorithm is proposed, which addresses this problem by adopting a finite mixture model (FMM) for the amplitude PDF, with mixture components belonging to a given dictionary of SAR-specific PDFs. The proposed method automatically integrates the procedures of selection of the optimal model for each component, of parameter estimation, and of optimization of the number of components, by combining the Stochastic Expectation Maximization (SEM) iterative methodology and the recently proposed «method-of-log-cumulants» (MoLC) for parametric PDF estimation for non-negative random variables. Experimental results on several real SAR images are presented, showing the proposed method is accurately modelling the statistics of SAR amplitude data. |
|
8 - Models of the Unimodal and Multimodal Statistics of Adaptive Wavelet Packet Coefficients. R. Cossu et I. H. Jermyn et K. Brady et J. Zerubia. Rapport de Recherche 5122, INRIA, France, février 2004. Mots-clés : Paquet d'ondelettes, Texture.
@TECHREPORT{5122,
|
author |
= |
{Cossu, R. and Jermyn, I. H. and Brady, K. and Zerubia, J.}, |
title |
= |
{Models of the Unimodal and Multimodal Statistics of Adaptive Wavelet Packet Coefficients}, |
year |
= |
{2004}, |
month |
= |
{février}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5122}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071461}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71461/filename/RR-5122.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/14/61/PS/RR-5122.ps}, |
keyword |
= |
{Paquet d'ondelettes, Texture} |
} |
Résumé :
De récents travaux ont montré que bien que les histogrammes de sous-bandes pour les coefficients d'ondelettes standards ont une forme de gaussienne généralisée, ce n'est plus vrai pour les bases de paquets d'ondelettes adaptés à une certaine texture. Trois types de statistiques sont alors observés pour les sous-bandes: gaussienne, gaussienne generalisée et dans certaines sous-bandes des histogrammes multimodaux sans mode en zéro. Dans ce rapport, nous démontrons que ces sous-bandes sont étroitement liées à la structure de la texture et sont ainsi primordiales dans les applications dans lesquelles la texture joue un rôle important. Fort de ces observations, nous étendons l'approche de modélisation de textures proposée par en incluant ces sous-bandes. Nous modifions l'hypothèse gaussienne pour inclure les gaussiennes généralisées et les mixtures de gaussiennes contraintes. Nous utilisons une méthodologie bayésienne, définissant des estimateurs MAP pour la base adaptative, pour la sélection du modèle de la sous-bande et pour les paramètres de ce modèle. Les résultats confirment l'efficacité de la méthode proposée et soulignent l'importance des sous-bandes multimodales pour la discrimination et la modélisation de textures. |
Abstract :
In recent work, it was noted that although the subband histograms for standard wavelet coefficients take on a generalized Gaussian form, this is no longer true for wavelet packet bases adapted to a given texture. Instead, three types of subband statistics are observed: Gaussian, generalized Gaussian, and most interestingly, in some subbands, multimodal histograms with no mode at zero. As will be demonstrated in this report, these latter subbands are closely linked to the structure of the texture, and are thus likely to be important for many applications in which texture plays a role. Motivated by these observations, we extend the approach to texture modelling proposed by to include these subbands. We relax the Gaussian assumption to include generalized Gaussians and constrained Gaussian mixtures. We use a Bayesian methodology, finding MAP estimates for the adaptive basis, for subband model selection, and for subband model parameters. Results confirm the effectiveness of the proposed approach, and highlight the importance of multimodal subbands for texture discrimination and modelling. |
|
haut de la page
Ces pages sont générées par
|