|
Publications de 2003
Résultat de la recherche dans la liste des publications :
13 Rapports de recherche et Rapports techniques |
9 - Improved RJMCMC Point Process Sampler for Object Detection by Simulated Annealing. M. Ortner et X. Descombes et J. Zerubia. Rapport de Recherche 4900, INRIA, France, août 2003. Mots-clés : Batiments, Extraction d'objets, RJMCMC, Processus ponctuels marques.
@TECHREPORT{4900,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Improved RJMCMC Point Process Sampler for Object Detection by Simulated Annealing}, |
year |
= |
{2003}, |
month |
= |
{août}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{4900}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071683}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71683/filename/RR-4900.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/16/83/PS/RR-4900.ps}, |
keyword |
= |
{Batiments, Extraction d'objets, RJMCMC, Processus ponctuels marques} |
} |
Résumé :
Nous commen ons par résumer l'algorithme de Geyer et Møller qui permet, en utilisant une chaîne de Markov, d'échantillonner des lois de processus ponctuels. Nous rappelons également le cadre théorique proposé par Green qui permet d'imposer la réversibilité d'une chaîne de Markov sous une loi désirée.Dans le cadre de nos applications en traitement d'image, nous sommes intéressés par la simulation de processus ponctuels dont la loi dépend fortement de la localisation géographique des points. Nous présentons donc ici des noyaux de proposition qui améliorent la capacité de l'algorithme de Geyer et Meyer à explorer les bons endroits de l'espace d'état. En particulier, nous proposons une transformation qui permet de faire apparaître ou disparaître des points dans un voisinage quelconque d'un autre point. Nous gardons également la possibilité de générer des points suivant une loi non uniforme.Nous construisons donc de tels noyaux de perturbations grâce au travail de Green de manière à garder la-(.) réversibilité de la chaîne de Markov construite. Nous démontrons ensuite les bonnes propriétés de stabilité qui assurent le bon comportement asymptotique de la chaîne. En particulier, grâce à une condition de «drift», nous montrons l'ergodicité géométrique et la récurrence de la chaîne au sens de Harris.Nous concluons en validant par l'expérience nos résultats théoriques, et en montrons leur utilité sur un exemple concret.Nous proposons d'ultimes améliorations pour conclure. |
Abstract :
We first recall Geyer and Møller algorithm that allows to sample point processes using a Markov chain. We also recall Green's framework that allows to build samplers on general state spaces by imposing reversibility of the designed Markov chain.Since in our image processing applications, we are interested by sampling highly spatially correlated and non-invariant point processes, we adapt these ideas to improve the exploration ability of the algorithm. In particular, we keep the ability of generating points with non-uniform distributions, and design an updating scheme that allows to generate points in some neighborhood of other points. We first design updating schemes under Green's framework to keep (.) reversibility of the Markov chain and then show that stability properties are not loosed. Using a drift condition we prove that the Markov chain is geometrically ergodic and Harris recurrent.We finally show on experimental results that these kinds of updates are usefull and propose other improvements. |
|
10 - Modeling very Oscillating Signals : Application to Image Processing. G. Aubert et J.F. Aujol. Rapport de Recherche 4878, INRIA, France, juillet 2003. Mots-clés : Espace Variations Bornees, Espaces de Sobolev, Decomposition d'images, Optimisation, Equation aux derivees partielles.
@TECHREPORT{4878,
|
author |
= |
{Aubert, G. and Aujol, J.F.}, |
title |
= |
{Modeling very Oscillating Signals : Application to Image Processing}, |
year |
= |
{2003}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{4878}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071705}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71705/filename/RR-4878.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/17/05/PS/RR-4878.ps}, |
keyword |
= |
{Espace Variations Bornees, Espaces de Sobolev, Decomposition d'images, Optimisation, Equation aux derivees partielles} |
} |
Résumé :
Cet article complète le travail présenté dans cite{Aujol[3]} dans lequel nous avions développé l'analyse numérique d'un modéle variationnel, initialement introduit par L. Rudin, S. Osher and E. Fatemi cite{Rudin[1]}, et revisité depuis par Y. Meyer cite{Meyer[1]}, pour supprimer le bruit et isoler les textures dans une image. Dans un tel modèle, on décompose l'image f en deux composantes (u+v), u et v minimisant une énergie. La première composante u appartient à BV et contient l'information géométrique de l'image, alors que la seconde v appartient à un espace G qui contient les signaux à fortes oscillations, i.e. le bruit et les textures. Dans cite{Meyer[1]}, Y. Meyer effectue son étude dans ^2 entier, et son approche repose principalement sur des outils d'analyse harmonique. Nous nous pla ons dans le cas d'un ouvert borné de ^2, ce qui constitue le cadre adapté au traitement d'images, et notre approche repose sur des arguments d'analyse fonctionnelle. Nous définissons l'espace G dans ce cadre puis donnons quelques unes de ses propriétés. Nous étudions ensuite la fonctionnelle permettant de calculer les composantes u et v. |
Abstract :
This article is a companion paper of a previous work cite{Aujol[3]} where we have developed the numerical analysis of a variational model first introduced by L. Rudin, S. Osher and E. Fatemi cite{Rudin[1]} and revisited by Y. Meyer cite{Meyer[1]} for removing the noise and capturing textures in an image. The basic idea in this model is to decompose f into two components (u+v) and then to search for (u,v) as a minimizer of an energy functional. The first component u belongs to BV and contains geometrical informations while the second one v is sought in a space G which contains signals with large oscillations, i.e. noise and textures. In Y. Meyer carried out his study in the whole ^2 and his approach is rather built on harmonic analysis tools. We place ourselves in the case of a bounded set of ^2 which is the proper setting for image processing and our approach is based upon functional analysis arguments. We define in this context the space G, give some of its properties and then study in this continuous setting the energy functional which allows us to recover the components u and v. model signals with strong oscillations. For instance, in an image, this space models noises and textures. case of a bounded open set of ^2 which is the proper setting for image processing. We give a definition of G adapted to our case, and we show that it still has good properties to model signals with strong oscillations. In cite{Meyer[1]}, the author had also paved the way to a new model to decompose an image into two components: one in BV (the space of bounded variations) which contains the geometrical information, and one in G which consists in the noises ad the textures. An algorithm to perform this decomposition has been proposed in cite{Meyer[1]}. We show here its relevance in a continuous setting. |
|
11 - Image Denoising using Stochastic Differential Equations. X. Descombes et E. Zhizhina. Rapport de Recherche 4814, INRIA, France, mai 2003. Mots-clés : Debruitage.
@TECHREPORT{4814,
|
author |
= |
{Descombes, X. and Zhizhina, E.}, |
title |
= |
{Image Denoising using Stochastic Differential Equations}, |
year |
= |
{2003}, |
month |
= |
{mai}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{4814}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071772}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71772/filename/RR-4814.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/17/72/PS/RR-4814.ps}, |
keyword |
= |
{Debruitage} |
} |
Résumé :
Ce rapport concerne le problème de la restauration d'image avec une approche par Équation Différentielle Stochastique. Nous considérons un processus de diffusion convergeant vers une mesure de Gibbs. L'hamiltonien de la mesure de Gibbs contient un terme d'interactions, apportant des contraintes de lissage sur la solution, et un terme d'attache aux données. Nous étudions deux schémas d'approximation discrète de la dynamique de Langevin associée à ce processus de diffusion : les approximation d'Euler et explicite forte de Taylor. La vitesse de convergence des algorithmes correspondants est comparée à celle de l'algorithme de Metropolis-Hasting. Des résultats sont montrés sur des images de synthèse et réelles. Il montrent la supériorité de l'approche proposée lorsque l'on considère un faible nombre d'itérations. |
Abstract :
We address the problem of image denoising using a Stochastic Differential Equation approach. We consider a diffusion process which converges to a Gibbs measure. The Hamiltonian of the Gibbs measure embeds an interaction term, providing smoothing properties, and a data term. We study two discrete approximations of the Langevin dynamics associated with this diffusion process: the Euler and the Explicit Strong Taylor approximations. We compare the convergence speed of the associated algorithms and the Metropolis-Hasting algorithm. Results are shown on synthetic and real data. They show that the proposed approach provides better results when considering a small number of iterations. |
|
12 - The Methodology and Practice of the Evaluation of Image Retrieval Systems and Segmentation Methods. I. H. Jermyn et C. Shaffrey et N. Kingsbury. Rapport de Recherche 4761, INRIA, France, mars 2003. Mots-clés : Base de donnees Image, Segmentation, Semantique.
@TECHREPORT{4761,
|
author |
= |
{Jermyn, I. H. and Shaffrey, C. and Kingsbury, N.}, |
title |
= |
{The Methodology and Practice of the Evaluation of Image Retrieval Systems and Segmentation Methods}, |
year |
= |
{2003}, |
month |
= |
{mars}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{4761}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071825}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71825/filename/RR-4761.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/18/25/PS/RR-4761.ps}, |
keyword |
= |
{Base de donnees Image, Segmentation, Semantique} |
} |
Résumé :
La recherche d'images par le contenu est importante pour deux raisons. Premièrement, la croissance d'archives d'images fréquemment citée dans beaucoup d'applications, et l'expansion rapide du Web, signifient qu'il est nécessaire d'utiliser des systèmes de recherche efficaces pour les bases de données afin que la masse de données accumulée soit utile. Deuxièmement, la recherche dans les bases de données image pose des questions importantes liées à la vision par ordinateur : une recherche efficace demande une véritable compréhension des images. Pour ces raisons, l'évaluation des systèmes de recherche dans les bases de données image devient une priorité. Il existe déjà une littérature importante évaluant des systèmes spécifiques, mais peu de discussions sont publiées sur les méthodes d'évaluation en soi. Dans la première partie de ce rapport, nous proposons un cadre dans lequel ces sujets peuvent être abordés, nous analysons des méthodologies d'évaluation possibles, indiquant quand elles sont pertinentes et quand elles ne le sont pas, et nous critiquons la technique «query-by-example» et les méthodes d'évaluation qui s'y rapportent. Dans la deuxième partie du rapport, nous appliquons les résultats de cette analyse à une collection spécifique d'images. Cette collection est problématique mais typique: il n'existe pas de vérité terrain sémantique. Considérant la recherche fondée sur la segmentation d'image, nous présentons une nouvelle méthode pour son évaluation. Contrairement aux méthodes d'évaluation qui reposent sur l'existence ou la création d'une vérité terrain, la méthodologie proposée utilise des sujets humains pour un test psychovisuel qui compare les résultats des différentes méthodes de segmentation. Le test est con u pour répondre à deux questions : existe-t-il une segmentation «meilleure» que les autres et si oui qu'apprenons-nous des méthodes de segmentation pour la recherche dans des bases de données image? Les résultats confirment la cohérence des jugements humains, permettant ainsi une évaluation significative. |
Abstract :
Content-Based Image Retrieval is important for two reasons. First, the oft-cited growth of image archives in many fields, and the rapid expansion of the Web, mean that successful image retrieval systems are fast becoming a necessity if the mass of accumulated data is to be useful. Second, database retrieval provides a framework within which the important questions of machine vision are brought into focus: successful retrieval is likely to require genuine image understanding. In view of these points, the evaluatio- n of retrieval systems becomes a matter of priority. There is already a substantial literature evaluating specific systems, but little high-level discussion of the evaluation methodologies themselves seems to have taken place. In the first part of the report, we propose a framework within which such issues can be addressed, analyse possible evaluation methodologies, indicate where they are appropriate and where they are not, and critique query-by-example and evaluation methodologies related to it. In the second part of the report, we apply the results of this analysis to a particular dataset. The dataset is problematic but typical: no ground truth is available for its semantics. Considering retrieval based on image segmentation- s, we present a novel method for its evaluation. Unlike methods of evaluation that rely on the existence or creation of ground truth, the proposed evaluatio- n procedure subjects human subjects to a psychovisual test comparing the results of different segmentation schemes. The test is designed to answer two questions: does consensus about a `best' segmentation exist, and if it does, what do we learn about segmentation schemes for retrieval? The results confirm that human subjects are consistent in their judgements, thus allowing meaningful evaluation. |
|
13 - Image Decomposition : Application to Textured Images and SAR Images. J.F. Aujol et G. Aubert et L. Blanc-Féraud et A. Chambolle. Rapport de Recherche 4704, INRIA, France, janvier 2003. Mots-clés : Variation totale, Espace Variations Bornees, Texture, Classification, Restauration, Radar a Ouverture Synthetique (SAR).
@TECHREPORT{4704,
|
author |
= |
{Aujol, J.F. and Aubert, G. and Blanc-Féraud, L. and Chambolle, A.}, |
title |
= |
{Image Decomposition : Application to Textured Images and SAR Images}, |
year |
= |
{2003}, |
month |
= |
{janvier}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{4704}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071882}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71882/filename/RR-4704.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/18/82/PS/RR-4704.ps}, |
keyword |
= |
{Variation totale, Espace Variations Bornees, Texture, Classification, Restauration, Radar a Ouverture Synthetique (SAR)} |
} |
Résumé :
Dans ce rapport, nous présentons un nouvel algorithme pour décomposer une imagef en u+v, u étant à variation bornée, et v contenant les textures et le bruit de l'image originale. Nous introduisons une fonctionnelle adaptée à ce problème. Le minimum de cette fonctionnelle correspond à la décomposition cherchée de l'image. Le calcul de ce minimum se fait par minimisation successive par rapport à chacune des variables, chaque minimisati- on étant réalisée à l'aide d'un algorithme de projection. Nous faisons l'étude théorique de notre modèle, et nous présentons des résultats numériques. D'une part, nous montrons comment la composante v peut être utilisée pour faire de la classification d'images texturées, et d'autre part nous montrons comment la composante u peut être utilisée en restauration d'images SAR. |
Abstract :
In this report, we present a new algorithm to split an image f into a component u belonging to BV and a component v made of textures and noise of the initial image. We introduce a functional adapted to this problem. The minimum of this functional corresponds to the image decomposition we want to get. We compute this minimum by minimizing successively our functional with respect to u and v. We carry out the mathematical study of our algorithm. We present some numerical results. On the one hand, we show how the v component can be used to classify textured images, and on the other hand, we show how the u component can be used in SAR image restoration. |
|
haut de la page
Livre |
1 - Energy Minimization Methods in Computer Vision and Pattern Recognition. A. Rangarajan et M. Figueiredo et J. Zerubia. Publ. Springer Verlag, (LNCS 2683), juillet 2003.
@BOOK{Rangarajan03,
|
author |
= |
{Rangarajan, A. and Figueiredo, M. and Zerubia, J.}, |
title |
= |
{Energy Minimization Methods in Computer Vision and Pattern Recognition}, |
year |
= |
{2003}, |
month |
= |
{juillet}, |
publisher |
= |
{Springer Verlag}, |
number |
= |
{LNCS 2683}, |
url |
= |
{http://www.springer.com/us/book/9783540404989}, |
keyword |
= |
{} |
} |
|
haut de la page
Ces pages sont générées par
|