Guided Fine-Tuning for Large-Scale Material Transfer
Presentation | Team members | Collaborations | Publications | Job offers | Contact


Guided Fine-Tuning for Large-Scale Material Transfer

Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering), Volume 39, Number 4 - 2020
Download the publication : guided_acquisition_svbrdf.pdf [57.5Mo]  
We present a method to transfer the appearance of one or a few exemplar SVBRDFs to a target image representing similar materials. Our solution is extremely simple: we fine-tune a deep appearance-capture network on the provided exemplars, such that it learns to extract similar SVBRDF values from the target image. We introduce two novel material capture and design workflows that demonstrate the strength of this simple approach. Our first workflow allows to produce plausible SVBRDFs of large-scale objects from only a few pictures. Specifically, users only need take a single picture of a large surface and a few close-up flash pictures of some of its details. We use existing methods to extract SVBRDF parameters from the close-ups, and our method to transfer these parameters to the entire surface, enabling the lightweight capture of surfaces several meters wide such as murals, floors and furniture. In our second workflow, we provide a powerful way for users to create large SVBRDFs from internet pictures by transferring the appearance of existing, pre-designed SVBRDFs. By selecting different exemplars, users can control the materials assigned to the target image, greatly enhancing the creative possibilities offered by deep appearance capture.

Images and movies


See also

More information

Project Webpage.

Acknowledgements and Funding

We thank Simon Rodriguez for his help with video editing. This work was partially funded by an ANRT( CIFRE scholarship between Inria and Optis for Ansys, ERC Advanced Grant FUNGRAPH (No. 788065,, EPSRC Early Career Fellowship (EP/N006259/1) and by software donations from Adobe. The authors are grateful to Inria Sophia Antipolis - Mediterranee "Nef" computation cluster for providing resources and support (

BibTex references

  author       = "Deschaintre, Valentin and Drettakis, George and Bousseau, Adrien",
  title        = "Guided Fine-Tuning for Large-Scale Material Transfer",
  journal      = "Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering)",
  number       = "4",
  volume       = "39",
  year         = "2020",
  keywords     = "material transfer, material capture, appearance capture, SVBRDF, deep learning, fine tuning",
  url          = ""

Other publications in the database

» Valentin Deschaintre
» George Drettakis
» Adrien Bousseau