Next: Contents
Up: No Title
Previous: Conclusion
- OT1
OT1
url
urlprefix
- 1
-
M. Ablowitz et A. Fokas, Complex variables,
introduction and applications, Cambridge Texts in Applied Mathematics
(1997).
- 2
-
V. M. Adamjan, D. Z. Arov et M. G. Krein,
properties of Schmidt pairs for a Hankel operator and
the generalized Schur-Takagi problem, Math. USSR Sbornik
15, 31-73 (1971).
- 3
-
G. Alessandrini, determination of a crack from
boundary measurements, Proc. Royal Soc. Edinb. 123A, no. 3,
497-516 (1993).
- 4
-
G. Alessandrini, E. Beretta et S. Vessella,
linear cracks by boundary measurements - Lipschitz
stability, SIAM J. Math. Anal. 27, no. 2, 361-375 (1996).
- 5
-
G. Alessandrini et E. DiBenedetto,
2-dimensional cracks in 3-dimensional bodies: Uniqueness and stability,
Indiana Univ. Math. J. 46, no. 1, 1-82 (1997).
- 6
-
G. Alessandrini et A. D. Valenzuela,
determination of multiple cracks by two measurements, SIAM J. Control
Optimization 34, no. 3, 913-921 (1996).
- 7
-
J. W. Alexander, which map the interior of the unit
circle upon simple regions, Ann. of Math. 17, 12-22 (1915).
- 8
-
J.-E. Andersson, rational approximation to Markov
functions, J. of Approximation Theory 76, 219-232 (1994).
- 9
-
S. Andrieux et A. Ben Abda, of planar
cracks by complete overdetermined data: inversion formulae, Inverse
Problems 12, 553-563 (1996).
- 10
-
S. Andrieux, A. Ben Abda et M. Jaoua,
the inverse emerging plane crack problem, Rapport de recherche 3012, INRIA
(1996).
- 11
-
L. Baratchart, l'approximation rationnelle L2 pour
les systèmes dynamiques linéaires., Thèse de doctorat, Université de
Nice, 1987.
- 12
-
L. Baratchart, and generic properties for L2
approximants of linear systems, I.M.A. Journal of Math. Control and
Identification 3, 89-101 (1986).
- 13
-
L. Baratchart, M. Cardelli et M. Olivi,
and rational L2 approximation : a gradient
algorithm, Automatica 27, no. 2, 413-418 (1991).
- 14
-
L. Baratchart, R. Küstner, F. Mandréa et
V. Totik, distribution via orthogonality, Rapport de
recherche, INRIA, en préparation.
- 15
-
L. Baratchart, J. Leblond, F. Mandréa et
E. B. Saff, can the meromorphic approximation help to
solve some 2D inverse problems for the Laplacian?, Inverse
Problems 15, 79-90 (1999).
- 16
-
L. Baratchart, J. Leblond et J. R. Partington,
of Adamjan-Arov-Krein type on subsets of the circle
and minimal norm extensions, Constructive Approximation 16,
333-357 (2000).
- 17
-
L. Baratchart, E. B. Saff et F. Wielonsky,
criterion for uniqueness of a critical points in H2 rational
approximation, J. Analyse Mathématique 70, 225-266
(1996).
- 18
-
L. Baratchart et F. Seyfert, Lp analog to
the AAK theory for
,
J. Functional Analysis (2000), a
paraître.
- 19
-
L. Baratchart, H. Stahl et F. Wielonsky,
uniqueness of best rational approximants of given degree
to markov functions in l2 of the circle, Constructive
Approximation (2000), a paraître.
- 20
-
C. Baudelaire, et Idéal, Int. J.
Mathematical Poetry 1, no. 3, 213-228 (1860).
- 21
-
H. G. W. Begehr, Complex analytic methods for partial
differential equations, World Scientific (1994).
- 22
-
A. Ben Abda et M. Kallel, fast algorithms to
recover line segment cracks by overspecified data, En préparation.
- 23
-
M. Brühl, M. Hanke et M. Pidcock,
detection using electrostatic measurements, Prépublication, actuellement
soumis dans Math. Modell. Numer. Anal.
- 24
-
K. Bryan et M. Vogelius, uniqueness result
concerning the identification of a collection of cracks from finitely many
electrostatic boundary measurements, SIAM J. Math. Anal. 23,
no. 4, 950-958 (1992).
- 25
-
R. Douady et A. Douady, Algèbre et théories
galoisiennes, tome 2, F. Nathan (1979).
- 26
-
P. L. Duren, Theory of Hp-spaces, Academic Press (1970).
- 27
-
A. R. Elcrat, V. Isakov et O. Neculoiu,
finding a surface crack from boundary measurements, Inverse Problems
11, no. 2, 343-351 (1995).
- 28
-
K. Friedman et M. Vogelius, cracks by
boundary measurements, Indiana Univ. Math. J. 38, no. 3,
527-556 (1989).
- 29
-
P. Fulcheri et M. Olivi, and matrix
rational H2 approximation: a gradient algorithm based on Schur
analysis, Rapport de recherche 2520, INRIA (1995).
- 30
-
J. B. Garnett, Bounded Analytic Functions, Academic Press
(1981).
- 31
-
J. Grimm, approximation of transfer functions in the
Hyperion software, Rapport de recherche 4002, INRIA (2000).
- 32
-
P. Grisvard, Singularities in boudary value problems,
Springer-Verlag (1992).
- 33
-
E. Hayashi, L. N. Trefethen et M. H. Gutknecht,
CF Table, Constructive Approximation 6,
195-223 (1990).
- 34
-
P. Henrici, Applied and Computational Complex Analysis, tome 3,
J. Wiley and Sons (1993).
- 35
-
S. Kakeya, zeros of a polynomial and its derivative,
Tôhoku Math. J. 11, 5-16 (1917).
- 36
-
H. Kim et J. K. Seo, determination of a
collection of a finite number of cracks from two boundary measurements,
SIAM J. Math. Anal. 27, no. 5, 1336-1340 (1996).
- 37
-
J. L. Lions et E. Magenes, Problèmes aux limites non
homogènes et applications, tome 1, Dunod (1968).
- 38
-
O. G. Parfenov, of the singular numbers of a
Carleson operator, Math USSR Sbornik 59, no. 2, 497-514
(1988).
- 39
-
J. R. Partington, An Introduction to Hankel Operators,
Cambridge University Press (1988).
- 40
-
J. R. Partington, identification and interpolation in
,
Int. J. Control 54, no. 5, 1281-1290 (1991).
- 41
-
V. V. Peller, operators and continuity properties of
the operators of best approximation, Leningrad Math. J. 2,
no. 1, 139-160 (1991).
- 42
-
V. V. Peller et S. V. Khrushchev, operators,
best approximations, and stationary Gaussian processes, Russ. Math.
Surv. 37, no. 1, 61-144 (1982).
- 43
-
C. Pommerenke, Boundary behaviour of conformal maps,
Springer-Verlag (1991).
- 44
-
T. Ransford, Potential Theory in the Complex Plane, Cambridge
University Press (1995).
- 45
-
L. Rondi, and stability for the determination of
boundary defects by electrostatic measurements, Proc. Royal Soc.
Edinb. A paraître.
- 46
-
W. Rudin, Real and Complex analysis, Mc Graw-Hill (1982).
- 47
-
E. B. Saff et V. Totik, Logarithmic Potentials with
External Fields, tome 316 de Grundlehren der Math. Wissenschaften,
Springer-Verlag (1997).
- 48
-
F. Santosa et M. Vogelius, computational algorithm
to determine cracks from electrostatic boundary measurements, Int. J.
Engng. Sci. 29, no. 8, 917-937 (1991).
- 49
-
G. Szegö, zu einem Satz von J.H. Grace
über die Wurzeln algebraischer Gleichungen, Math. Z.
13, 28-55 (1922).
- 50
-
N. J. Young, An introduction to Hilbert space, Cambridge
University Press (1988).
Frederic Mandrea
2001-01-21