French version



Researcher in applied mathematics

Inria Center at Université Côte d'Azur and Laboratoire J. A. Dieudonné
Projet-team : Acumes
E-mail : laurent.monasse@inria.fr
Address in Sophia Antipolis :
    Bureau G36, bâtiment Galois
    Inria Sophia Antipolis – Méditerranée
    2004, route des Lucioles – BP93
    06902 Sophia Antipolis Cedex
    France
Address in Nice :
    Bureau 620
    Laboratoire J. A. Dieudonné
    Université Nice Sophia Antipolis
    Parc Valrose
    06108 Nice
    France




Research themes:

  • Discrete Elements, numerical time integration
  • Fluid-structure interaction
  • Application of Riemannian geometry in structure mechanics
  • Geometrical shock dynamics
  • Growth of mycelium network (ANR NEMATIC)

  • Brief curriculum vitae:

    2017 - present  Researcher, project-team COFFEE then Acumes, Inria Sophia Antipolis and Université Nice Sophia-Antipolis
    2012 - 2017  Researcher, CERMICS, Ecole des Ponts ParisTech.
    2011 - 2012  Post-doc position in Prof. Charbel Farhat's group in Stanford, Aero/Astro department.
    2008 - 2011  PhD thesis, CERMICS, Ecole des Ponts ParisTech (manuscript)
                          Analysis of a Discrete Element Method for structure dynamics and coupling with a compressible fluid flow method.
                          Advisors: Serge Piperno, Virginie Daru

    Detailed CV (pdf format)

    Publications

    Book:


    C. Mariotti and L. Monasse, From general mechanics to discontinuity: Unified approach to elasticity, Presses des Ponts, 2011.

    Articles:

    1. L. Monasse and C. Mariotti, An energy-preserving Discrete Element Method for elastodynamics, ESAIM: Mathematical Modelling and Numerical Analysis 46, pp. 1527-1553, 2012, published version

    2. L. Monasse, V. Daru, C. Mariotti, S. Piperno, C. Tenaud, A conservative coupling algorithm between a compressible flow and a rigid body using an Embedded Boundary method, Journal of Computational Physics 231, pp. 2977-2994, 2012, final version

    3. L. Monasse, R. Monneau, Gradient entropy estimate and convergence of a semi-explicit scheme for diagonal hyperbolic systems, SIAM Journal on Numerical Analysis 52:6, pp. 2792-2814, 2014, published version

    4. M. A. Puscas, L. Monasse, A three-dimensional conservative coupling method between an inviscid compressible flow and a moving rigid solid body, SIAM Journal on Scientific Computing 37, pp. 884-909, 2015, accepted version

    5. M. A. Puscas, L. Monasse, A. Ern, C. Tenaud, C. Mariotti, V. Daru, A time semi-implicit scheme for the energy-balanced coupling of a shocked fluid flow with a deformable structure, Journal of Computational Physics 296, pp. 241-262, 2015, final version

    6. M. A. Puscas, L. Monasse, A. Ern, C. Tenaud, C. Mariotti, A conservative embedded boundary method for an inviscid compressible flow coupled with a fragmenting structure, International Journal for Numerical methods in Engineering 103(13), pp. 970-995, 2015, preprint

    7. Y. Masson, L. Monasse, Existence of global Chebyshev nets on surfaces of absolute Gaussian curvature less than 2π, Journal of Geometry 108(1), pp. 25-32, 2017, doi:10.1007/s00022-016-0319-1, preprint

    8. T. Jourdan, G. Stoltz, F. Legoll, L. Monasse, An accurate scheme to solve cluster dynamics equations using a Fokker-Planck approach, Computer Physics Communications 207, pp. 170-178, 2016, preprint.

    9. H. Nassar, A. Lebée, L. Monasse, Curvature, metric and parametrization of origami tessellations: Theory and application to the eggbox pattern, Proceedings of the Royal Society A 473, 2017, doi:10.1098/rspa.2016.0705, preprint.

    10. J. Ridoux, N. Lardjane, L. Monasse, F. Coulouvrat, Comparison of Geometrical Shock Dynamics and Kinematic models for shock wave propagation, Shock Waves 28(2), pp. 401-416, 2018, preprint.

    11. J. Ridoux, N. Lardjane, L. Monasse, F. Coulouvrat, Beyond the limitation of geometrical shock dynamics for diffraction over wedges, Shock Waves, 29, pp. 833-855, 2019, pre-print.

    12. F. Marazzato, A. Ern, C. Mariotti, L. Monasse, An explicit pseudo-energy conserving time-integration scheme for Hamiltonian dynamics , Computer Methods in Applied Mechanics and Engineering 347, pp. 906-927, 2019, pre-print.
    13. T. Goudon, L. Monasse, Fokker-Planck approach of Ostwald ripening: simulation of a modified Lifschitz-Slyozov-Wagner system with a diffusive correction, SIAM Journal on Scientific Computing 42, pp. B157-B184, 2020, preprint.

    14. J. Dikec, A. Olivier, C. Bobée, Y. D’Angelo, R. Catellier, P. David, F. Filaine, S. Herbert, Ch. Lalanne, H. Lalucque, L. Monasse, M. Rieu, G. Ruprich-Robert, A. V´eber, F. Chapeland-Leclerc, E. Herbert, Hyphal network whole field imaging allows for accurate estimation of anastomosis rates and branching dynamics of the filamentous fungus Podospora anserina, Scientific reports, 3131, 2020, lien.

    15. F. Marazzato, A. Ern, L. Monasse, A variational discrete element method for quasistatic and dynamic elastoplasticity, International Journal for Numerical Methods in Engineering, 121(23), pp. 5295–5319, 2020.

    16. J. Ridoux, N. Lardjane, L. Monasse, F. Coulouvrat, Extension of geometrical shock dynamics for blast wave propagation, Shock Waves, 30, pp. 563–583, 2020.

    17. F. Marazzato, A. Ern, L. Monasse, Quasi-static crack propagation with a Griffith criterion using a variational discrete element method, Computational Mechanics, 69(2), pp. 527–539, 2021.

    18. C. Cancès, V. Ehrlacher, L. Monasse, Finite volumes for the Stefan–Maxwell cross-diffusion system, IMA Journal of Numerical Analysis, drad032, 2023.

    19. N. Dirani, L. Monasse, An explicit pseudo-energy conservative scheme for contact between deformable solids, International Journal for Numerical Methods in Engineering, 125(4), pp. e7395, 2024.

    Simulation codes:

    • Mka3D: simulation code for an elastic solid using discrete elements (academic version of CeaMka3d©, developed at CEA by Christian Mariotti and Ludovic Aubry).
    • CELIA3D: simulation code for fluid-structure interaction between a compressible fluid and a deformable structure using immersed boundaries, developed with Adela Puscas.