Definition in file Rank.h.
Go to the source code of this file.
Namespaces | |
| namespace | lapack |
Functions | |
| template<class R> | |
| R::size_type | Rank (const R &m) |
| template<class R, class MTH> | |
| R::size_type | Rank (const R &m, const MTH &mth) |
| template<class R, class V> | |
| R::size_type | Rank (const R &M, V &I, V &J) |
| template<class R, class I> | |
| R | Extract (R &M, const I &ipvt, const I &jpvt, const typename R::size_type &rank) |
| R Extract | ( | R & | M, | |
| const I & | ipvt, | |||
| const I & | jpvt, | |||
| const typename R::size_type & | rank | |||
| ) |
| R::size_type Rank | ( | const R & | M, | |
| V & | I, | |||
| V & | J | |||
| ) |
Compute the rank of M, using MATRIX::rank. The columns (resp. row) indices of a permutation which put the non-zero minor in the upper corner are stored in permut_col and permut_row. They have to be initialized before, to a size larger than min(M.nbcol(), M.nbrow()).
Definition at line 48 of file Rank.h.
References assign().
| R::size_type Rank | ( | const R & | m, | |
| const MTH & | mth | |||
| ) |
Compute the rank of M, using MATRIX::rank(m.rep()).
Definition at line 36 of file Rank.h.
References MATRIX::rank().
| R::size_type Rank | ( | const R & | m | ) |
Compute the rank of M, using MATRIX::rank(m.rep()).
![]() |