|
numerix_doc 0.4
|
Definition at line 478 of file affine.hpp.
References Abs_affine, base(), limits(), and slope().
Referenced by implementation< ball_abs, IV, ball_infinities< BV > >::abs(), abs(), abs_down(), abs_up(), add_rough_additive_error(), add_rough_multiplicative_error(), additive_error(), implementation< ball_elementary, W, ball_rounded >::atan2(), implementation< ball_elementary, W, ball_rounded >::cos(), implementation< ball_elementary, W, ball_rounded >::cosh(), implementation< ball_elementary, IV, ball_complex< BV > >::cosh(), as_helper< signed char, integer >::cv(), modulus_mul_int_preinverse< modulus_add_int_naive< modulus_reduction_int_naive< modulus_normalization_int_naive< modulus_maximum_size_int< m > > > > >::dyn_r(), GLUE_14(), GLUE_23(), GLUE_24(), GLUE_35(), GLUE_36(), invert(), implementation< ball_multiplicative, W, ball_rough >::invert(), log(), make_mmx_ball(), implementation< ball_multiplicative, W, ball_rough >::mul(), modulus_normalization_int_naive< modulus_maximum_size_int< size > >::normalize(), operator/(), pow(), implementation< ball_elementary, W, ball_rounded >::sin(), implementation< ball_elementary, W, ball_rounded >::sinh(), implementation< ball_elementary, IV, ball_complex< BV > >::sinh(), and implementation< ball_multiplicative, W, ball_rough >::square().
| C mmx::abs | ( | const complex< C > & | z | ) | [inline] |
Definition at line 390 of file tangent.hpp.
References abs(), Abs_tangent, base(), and slope().
{
// FIXME: this is not really nice
return Abs_tangent (abs (base (z)), abs (slope (z)));
}
| R mmx::abs_down | ( | const ball< C, R, V > & | z | ) | [inline] |
Definition at line 115 of file ball.hpp.
References Rnd.
Referenced by implementation< ball_multiplicative, W, ball_rounded >::invert(), is_non_zero(), is_zero(), implementation< ball_elementary, IV, ball_complex< BV > >::log(), operator!=(), operator==(), implementation< ball_root, W, ball_rounded >::sqrt(), and implementation< ball_root, IV, ball_complex< BV > >::sqrt().
{
typedef implementation<ball_rounding,V> Rnd;
return Rnd::abs_down (z); }
| C mmx::abs_down | ( | const complex< interval< C > > & | z | ) | [inline] |
| C mmx::abs_down | ( | const interval< C, V > & | x | ) | [inline] |
| Abs_type | ( | C | ) | const [inline] |
| R mmx::abs_up | ( | const ball< C, R, V > & | z | ) | [inline] |
Definition at line 118 of file ball.hpp.
References Rnd.
Referenced by blur(), and implementation< ball_multiplicative, W, ball_rounded >::mul().
{
typedef implementation<ball_rounding,V> Rnd;
return Rnd::abs_up (z); }
| C mmx::abs_up | ( | const complex< interval< C > > & | z | ) | [inline] |
| C mmx::abs_up | ( | const interval< C, V > & | x | ) | [inline] |
Definition at line 558 of file ball.hpp.
References Ball, C, Elementary_variant, and V.
Referenced by acos(), GLUE_18(), GLUE_19(), GLUE_23(), GLUE_28(), GLUE_29(), GLUE_32(), and GLUE_51().
{
typedef Elementary_variant(C,V) EV;
typedef implementation<ball_elementary,EV> Impl;
Ball d; Impl::acos (d, z); return d;
}
| void mmx::add | ( | complex< C > & | r, |
| const complex< C > & | z1, | ||
| const complex< C > & | z2 | ||
| ) | [inline] |
Definition at line 417 of file complex.hpp.
Referenced by implementation< ball_rounding, W, ball_rounded >::abs_up(), implementation< ball_additive, W, ball_rounded >::add(), implementation< ball_additive, IV, ball_infinities< BV > >::add(), implementation< ball_rounding, W, ball_rounded >::add_additive_error(), implementation< ball_rounding, W, ball_rounded >::add_elementary_error(), implementation< ball_rounding, W, ball_rounded >::add_multiplicative_error(), implementation< ball_rounding, W, ball_rounded >::add_rounding_error(), implementation< ball_elementary, W, ball_rounded >::atan(), implementation< ball_elementary, W, ball_rounded >::atan2(), blur(), implementation< ball_rounding, W, ball_rounded >::bnd_up(), implementation< ball_multiplicative, W, ball_rounded >::mul(), operator+(), interval< C, V >::operator+=(), operator-(), radius(), implementation< ball_multiplicative, W, ball_rounded >::square(), and implementation< ball_additive, W, ball_rounded >::sub().
| void mmx::add | ( | floating< V > & | r, |
| const floating< V > & | x1, | ||
| const floating< V > & | x2 | ||
| ) | [inline] |
Definition at line 327 of file floating.hpp.
References Rnd.
{
r.secure (); mpfr_add (*r, *x1, *x2, Rnd); }
| void mmx::add_additive_error | ( | ball< C, R, V > & | z | ) | [inline] |
Definition at line 135 of file ball.hpp.
References Rnd.
Referenced by implementation< ball_additive, W, ball_rounded >::add(), ball< C, R, V >::ball(), set_as(), and implementation< ball_additive, W, ball_rounded >::sub().
{
typedef implementation<ball_rounding,V> Rnd;
Rnd::add_additive_error (z); }
| void mmx::add_elementary_error | ( | ball< C, R, V > & | z | ) | [inline] |
Definition at line 141 of file ball.hpp.
References Rnd.
Referenced by implementation< ball_elementary, W, ball_rounded >::acos(), implementation< ball_elementary, W, ball_rounded >::asin(), implementation< ball_elementary, W, ball_rounded >::atan(), implementation< ball_elementary, W, ball_rounded >::atan2(), implementation< ball_elementary, W, ball_rounded >::cos(), implementation< ball_elementary, IV, ball_complex< BV > >::cos(), implementation< ball_elementary, W, ball_rounded >::cosh(), implementation< ball_elementary, IV, ball_complex< BV > >::cosh(), implementation< ball_elementary, W, ball_rounded >::exp(), implementation< ball_elementary, IV, ball_complex< BV > >::exp(), implementation< ball_complex_construct, IV, ball_complex< BV > >::gauss(), implementation< ball_elementary, W, ball_rounded >::log(), implementation< ball_elementary, IV, ball_complex< BV > >::log(), implementation< ball_elementary, W, ball_rounded >::sin(), implementation< ball_elementary, IV, ball_complex< BV > >::sin(), implementation< ball_elementary, W, ball_rounded >::sinh(), and implementation< ball_elementary, IV, ball_complex< BV > >::sinh().
{
typedef implementation<ball_rounding,V> Rnd;
Rnd::add_elementary_error (z); }
| void mmx::add_mod | ( | C & | dest, |
| const C & | s, | ||
| const modulus< C, V > & | m | ||
| ) | [inline] |
Definition at line 118 of file modulus.hpp.
Referenced by add_mod(), operator+(), and operator+=().
{
V::add_mod (dest, s, m); }
| void mmx::add_mod | ( | C & | dest, |
| const C & | s, | ||
| const modulus< C, V > & | m, | ||
| C & | carry | ||
| ) | [inline] |
Definition at line 122 of file modulus.hpp.
References add_mod().
{
V::add_mod (dest, s, m, carry); }
| void mmx::add_mod | ( | C & | dest, |
| const C & | s1, | ||
| const C & | s2, | ||
| const modulus< C, V > & | m | ||
| ) | [inline] |
| void mmx::add_mod | ( | C & | dest, |
| const C & | s1, | ||
| const C & | s2, | ||
| const modulus< C, V > & | m, | ||
| C & | carry | ||
| ) | [inline] |
Definition at line 130 of file modulus.hpp.
References add_mod().
{
V::add_mod (dest, s1, s2, m, carry); }
| void mmx::add_multiplicative_error | ( | ball< C, R, V > & | z | ) | [inline] |
Definition at line 138 of file ball.hpp.
References Rnd.
Referenced by implementation< ball_abs, W, ball_rounded >::abs(), implementation< ball_root, W, ball_rounded >::hypot(), implementation< ball_multiplicative, W, ball_rounded >::invert(), implementation< ball_multiplicative, W, ball_rounded >::mul(), implementation< ball_shift, W, ball_rounded >::shiftl(), implementation< ball_shift, W, ball_rounded >::shiftr(), implementation< ball_root, W, ball_rounded >::sqrt(), implementation< ball_root, IV, ball_complex< BV > >::sqrt(), and implementation< ball_multiplicative, W, ball_rounded >::square().
{
typedef implementation<ball_rounding,V> Rnd;
Rnd::add_multiplicative_error (z); }
| void mmx::add_rough_additive_error | ( | ball< C, R, V > & | d | ) | [inline] |
Definition at line 48 of file ball_rough.hpp.
References additive_error(), center(), R, and radius().
Referenced by implementation< ball_additive, W, ball_rough >::add(), and implementation< ball_additive, W, ball_rough >::sub().
{
radius (d) += additive_error (center (d));
radius (d) *= (1 + incexp2 (Accuracy (R), 2));
}
| void mmx::add_rough_additive_error | ( | ball< double, double, V > & | d | ) | [inline] |
| void mmx::add_rough_multiplicative_error | ( | ball< C, R, V > & | d | ) | [inline] |
Definition at line 117 of file ball_rough.hpp.
References center(), multiplicative_error(), R, and radius().
Referenced by implementation< ball_root, W, ball_rough >::hypot(), implementation< ball_multiplicative, W, ball_rough >::invert(), implementation< ball_multiplicative, W, ball_rough >::mul(), implementation< ball_root, W, ball_rough >::sqrt(), and implementation< ball_multiplicative, W, ball_rough >::square().
| void mmx::add_rough_multiplicative_error | ( | ball< double, double, V > & | d | ) | [inline] |
| void mmx::add_rounding_error | ( | ball< C, R, V > & | z | ) | [inline] |
Definition at line 132 of file ball.hpp.
References Rnd.
{
typedef implementation<ball_rounding,V> Rnd;
Rnd::add_rounding_error (z); }
Definition at line 452 of file affine.hpp.
References Affine, base(), limits(), and slope().
Referenced by implementation< ball_rounding, W, ball_rounded >::add_additive_error(), add_rough_additive_error(), additive_error(), GLUE_45(), and GLUE_54().
{
return Affine (additive_error (base (z)),
additive_error (slope (z)),
limits (z)); }
| double mmx::additive_error | ( | const complex< double > & | z | ) | [inline] |
Definition at line 654 of file ball.hpp.
References Abs_ball, additive_error(), and center().
{
return Abs_ball (additive_error (center (x))); }
Definition at line 367 of file tangent.hpp.
References additive_error(), base(), slope(), and Tangent.
{
return Tangent (additive_error (base (z)), additive_error (slope (z))); }
Definition at line 483 of file floating.hpp.
References Floating.
{
Floating r (*x);
mpfr_abs (*r, *x, GMP_RNDN);
mpfr_mul_2si (*r, *r, 1-mpfr_get_prec (*x), GMP_RNDN);
mpfr_nextabove (*r);
return r; }
Definition at line 55 of file ball_complex.hpp.
| C mmx::arg | ( | const complex< C > & | z | ) | [inline] |
| interval<C,V> mmx::ARG_HYPER_SUGAR | ( | template< typename C, typename V > | , |
| interval< C, V > | |||
| ) |
| complex<C> mmx::ARG_HYPER_SUGAR | ( | template< typename C > | , |
| complex< C > | |||
| ) | const |
Definition at line 569 of file complex.hpp.
References Im(), is_finite(), and Re().
| mmx::ARITH_INT_SUGAR | ( | template< typename C, typename V > | , |
| interval< C, V > | |||
| ) |
| mmx::ARITH_INT_SUGAR | ( | template< typename C, typename R, typename V > | , |
| ball< C, R, V > | |||
| ) |
| mmx::ARITH_INT_SUGAR | ( | template< typename C, typename VC > | , |
| affine< C, VC > | |||
| ) |
| mmx::ARITH_INT_SUGAR | ( | template< typename V > | , |
| floating< V > | |||
| ) |
| mmx::ARITH_INT_SUGAR | ( | template< typename C, typename D > | , |
| tangent< C, D > | |||
| ) |
| mmx::ARITH_INT_SUGAR | ( | template< typename C, typename D, typename V > | , |
| twin< C, D, V > | |||
| ) |
| mmx::ARITH_SCALAR_INT_SUGAR | ( | template< typename C > | , |
| complex< C > | |||
| ) |
| T mmx::as | ( | const F & | x | ) | [inline] |
Definition at line 86 of file kernel.hpp.
References as_helper< T, F >::cv().
{ return as_helper<T,F>::cv (x); }
| double mmx::as_double | ( | const floating< V > & | x | ) | [inline] |
Definition at line 262 of file floating.hpp.
References Rnd.
Referenced by mmx::let::assign(), as_helper< double, rational >::cv(), as_helper< double, floating<> >::cv(), as_helper< double, integer >::cv(), as_helper< double, floating< V > >::cv(), fast_helper< floating< V > >::dd(), and GLUE_11().
{
return mpfr_get_d (*x, Rnd); }
Definition at line 237 of file floating.hpp.
{
floating<V> r;
mpfr_set_q (*r, *x, V::rnd());
return r;
}
| floating<W> mmx::as_floating | ( | const floating< V > & | x | ) |
Definition at line 221 of file floating.hpp.
{
floating<W> r;
mpfr_set (*r, *x, W::rnd());
return r;
}
| int mmx::as_int | ( | const floating< V > & | x | ) | [inline] |
Definition at line 258 of file floating.hpp.
References Rnd.
Referenced by binomial(), factorial(), GLUE_10(), GLUE_4(), and recompose().
{
return mpfr_get_si (*x, Rnd); }
| integer mmx::as_integer | ( | const floating< V > & | x | ) | [inline] |
| nat mmx::as_nat | ( | const floating< V > & | x | ) | [inline] |
| string mmx::as_string | ( | const floating< V > & | x | ) |
Definition at line 186 of file floating.hpp.
References mpfr_to_string().
Referenced by decompose_range(), binary_helper< integer >::disassemble(), flatten(), GLUE_13(), inc_mantissa(), make_range(), mpfr_to_string(), print(), recompose(), simple_construct_integer(), simple_construct_rational(), and zero_to_string().
{
return mpfr_to_string (*x);
}
| string mmx::as_string | ( | const C & | x, |
| xnat | dd | ||
| ) |
Definition at line 31 of file string_scnot.hpp.
References flatten_as_string(), and trunc_digits().
{
if (dd == 0) return flatten_as_string (x);
else return trunc_digits (flatten_as_string (x), dd);
}
| string mmx::as_string | ( | const integer & | i | ) |
Definition at line 19 of file mmx_gmp.cpp.
{
char* s= mpz_get_str (NULL, 10, *i);
string r= s;
mmx_free (s, strlen (s) + 1);
/* FIXME: for upcoming version of GMP
void (*free_func) (void *, size_t);
mp_get_memory_functions (NULL, NULL, &free_func);
free_func ((void*) s, strlen (s) + 1);
*/
return r;
}
Definition at line 565 of file ball.hpp.
References Ball, C, Elementary_variant, and V.
Referenced by asin(), atan(), GLUE_19(), GLUE_20(), GLUE_24(), GLUE_29(), GLUE_30(), GLUE_33(), and GLUE_52().
{
typedef Elementary_variant(C,V) EV;
typedef implementation<ball_elementary,EV> Impl;
Ball d; Impl::asin (d, z); return d;
}
Definition at line 572 of file ball.hpp.
References Ball, C, Elementary_variant, and V.
Referenced by atan(), atan2(), GLUE_20(), GLUE_21(), GLUE_25(), GLUE_30(), GLUE_31(), GLUE_34(), and GLUE_53().
{
typedef Elementary_variant(C,V) EV;
typedef implementation<ball_elementary,EV> Impl;
Ball d; Impl::atan (d, z); return d;
}
Definition at line 578 of file interval.hpp.
References atan(), C, Interval, lower(), sign(), and upper().
{
if (sign (lower (x)) > 0) return atan (y/x);
if (sign (lower (y)) > 0) return atan (-x/y) + (Pi (Interval) >> 1);
if (sign (upper (y)) < 0) return atan (-x/y) - (Pi (Interval) >> 1);
if (sign (upper (x)) < 0) return atan (y/x) + Pi (Interval);
C pi= Up::template pi<C> ();
return Interval (-pi, pi);
}
Definition at line 579 of file ball.hpp.
References Ball, C, Elementary_variant, and V.
Referenced by arg(), and atan2().
{
typedef Elementary_variant(C,V) EV;
typedef implementation<ball_elementary,EV> Impl;
Ball d; Impl::atan2 (d, y, x); return d;
}
| mmx::ATAN2_SUGAR | ( | template< typename V > | , |
| floating< V > | |||
| ) |
| C base | ( | const tangent< C, D > & | z | ) | [inline] |
Definition at line 69 of file tangent.hpp.
{ return z.c; }
| C & base | ( | tangent< C, D > & | z | ) | [inline] |
Definition at line 71 of file tangent.hpp.
{ return z.c; }
| C base | ( | const affine< C, VC > & | z | ) | [inline] |
Definition at line 104 of file affine.hpp.
Referenced by abs(), acos(), additive_error(), asin(), atan(), atan2(), binary_test(), blur(), CF1(), change_precision(), copy(), cos(), cosh(), binary_helper< tangent< C, D > >::disassemble(), binary_helper< affine< C, VC > >::disassemble(), duplicate(), exp(), exponent(), flatten(), floating< V >::floating(), GLUE_16(), GLUE_3(), GLUE_36(), GLUE_4(), Im(), integer::integer(), invert(), is_finite(), is_fuzz(), is_infinite(), is_nan(), is_reliable(), log(), magnitude(), map(), operator*(), operator+(), operator-(), operator/(), operator<(), operator<<(), operator<=(), operator>(), operator>=(), operator>>(), precision(), Re(), set_accuracy(), set_euler(), set_fuzz(), set_imaginary(), set_infinity(), set_largest(), set_log2(), set_nan(), set_pi(), set_smallest(), sharpen(), sin(), sinh(), sqrt(), square(), truncate(), unary_hash(), binary_helper< tangent< C, D > >::write(), and binary_helper< affine< C, VC > >::write().
{
return z.cst; }
| mmx::BINARY_RETURN_TYPE | ( | template< typename C, typename R, typename V > | , |
| gaussian_op | , | ||
| ball< C, R, V > | , | ||
| ball< C, R, V > | , | ||
| ball< complex< C >, R, V > | |||
| ) |
| bool mmx::binary_test | ( | const affine< C, VC > & | x1, |
| const affine< C, VC > & | x2 | ||
| ) |
| bool mmx::binary_test | ( | const tangent< C, D > & | x1, |
| const tangent< C, D > & | x2 | ||
| ) |
| bool mmx::binary_test | ( | const ball< C, R, V > & | x1, |
| const ball< C, R, V > & | x2 | ||
| ) |
| bool mmx::binary_test | ( | const interval< C, V > & | x1, |
| const interval< C, V > & | x2 | ||
| ) |
| bool mmx::binary_test | ( | const complex< C > & | z1, |
| const complex< C > & | z2 | ||
| ) |
| integer mmx::binomial | ( | nat | i, |
| nat | j | ||
| ) | [inline] |
Definition at line 1137 of file integer.hpp.
Referenced by binomial(), and GLUE_27().
{
integer r; mpz_bin_uiui (*r, i, j); return r; }
| integer mmx::binomial | ( | const integer & | i, |
| const integer & | j | ||
| ) | [inline] |
Definition at line 1144 of file integer.hpp.
References as_int(), and binomial().
| C mmx::binpow | ( | const C & | i, |
| const integer & | n | ||
| ) |
| R mmx::bnd_down | ( | const ball< C, R, V > & | z | ) | [inline] |
Definition at line 121 of file ball.hpp.
References Rnd.
Referenced by implementation< ball_elementary, W, ball_rounded >::acos(), implementation< ball_elementary, W, ball_rounded >::asin(), implementation< ball_elementary, W, ball_rounded >::atan(), implementation< ball_elementary, W, ball_rounded >::atan2(), implementation< ball_elementary, W, ball_rounded >::cos(), is_negative_or_zero(), is_positive(), implementation< ball_elementary, W, ball_rounded >::log(), and implementation< ball_elementary, W, ball_rounded >::sin().
{
typedef implementation<ball_rounding,V> Rnd;
return Rnd::bnd_down (z); }
| C mmx::bnd_down | ( | const interval< C, V > & | x | ) | [inline] |
| R mmx::bnd_up | ( | const ball< C, R, V > & | z | ) | [inline] |
Definition at line 124 of file ball.hpp.
References Rnd.
Referenced by implementation< ball_elementary, W, ball_rounded >::atan2(), implementation< ball_elementary, W, ball_rounded >::cos(), implementation< ball_elementary, IV, ball_complex< BV > >::cos(), implementation< ball_elementary, W, ball_rounded >::cosh(), implementation< ball_elementary, IV, ball_complex< BV > >::cosh(), implementation< ball_elementary, W, ball_rounded >::exp(), implementation< ball_elementary, IV, ball_complex< BV > >::exp(), is_negative(), is_positive_or_zero(), implementation< ball_elementary, W, ball_rounded >::sin(), implementation< ball_elementary, IV, ball_complex< BV > >::sin(), implementation< ball_elementary, W, ball_rounded >::sinh(), and implementation< ball_elementary, IV, ball_complex< BV > >::sinh().
{
typedef implementation<ball_rounding,V> Rnd;
return Rnd::bnd_up (z); }
| C mmx::bnd_up | ( | const interval< C, V > & | x | ) | [inline] |
| C car | ( | const twin< C, D, V > & | x | ) | [inline] |
Definition at line 77 of file twin.hpp.
Referenced by acos(), acosh(), asin(), asinh(), atan(), atan2(), atanh(), blur(), CF1(), change_precision(), copy(), cos(), cosh(), as_helper< twin< C1, D1, V1 >, twin< C2, D2, V2 > >::cv(), binary_helper< twin< C, D, V > >::disassemble(), duplicate(), exp(), exponent(), hash(), hypot(), is_exact_zero(), is_finite(), is_fuzz(), is_infinite(), is_nan(), is_reliable(), log(), magnitude(), map(), operator!=(), operator*(), operator+(), operator-(), operator/(), operator<(), operator<<(), operator<=(), operator==(), operator>(), operator>=(), operator>>(), pow(), precision(), set_accuracy(), set_euler(), set_fuzz(), set_imaginary(), set_infinity(), set_largest(), set_log2(), set_nan(), set_pi(), set_smallest(), sharpen(), sin(), sinh(), sqrt(), tan(), tanh(), unary_hash(), and binary_helper< twin< C, D, V > >::write().
{ return x.x1; }
| D cdr | ( | const twin< C, D, V > & | x | ) | [inline] |
Definition at line 78 of file twin.hpp.
Referenced by acos(), acosh(), asin(), asinh(), atan(), atan2(), atanh(), blur(), CF2(), change_precision(), copy(), cos(), cosh(), as_helper< twin< C1, D1, V1 >, twin< C2, D2, V2 > >::cv(), binary_helper< twin< C, D, V > >::disassemble(), duplicate(), exact_eq(), exact_hash(), exact_neq(), exp(), flatten(), hard_eq(), hard_hash(), hard_neq(), hypot(), log(), map(), operator*(), operator+(), operator-(), operator/(), operator<<(), operator>>(), pow(), set_accuracy(), set_euler(), set_fuzz(), set_imaginary(), set_infinity(), set_largest(), set_log2(), set_nan(), set_pi(), set_smallest(), sharpen(), sin(), sinh(), sqrt(), tan(), tanh(), and binary_helper< twin< C, D, V > >::write().
{ return x.x2; }
Definition at line 624 of file ball.hpp.
References Ball.
Referenced by ceil(), implementation< ball_ordered, W, ball_rounded >::ceil(), GLUE_28(), GLUE_39(), and GLUE_40().
{
typedef implementation<ball_ordered,V> Impl;
Ball d; Impl::ceil (d, z); return d;
}
Definition at line 386 of file floating.hpp.
References Floating.
{
Floating r (*x1); mpfr_ceil (*r, *x1); return r; }
| C center | ( | const ball< C, R, V > & | z | ) | [inline] |
Definition at line 104 of file ball.hpp.
Referenced by implementation< ball_abs, W, ball_rounded >::abs(), implementation< ball_rounding, W, ball_rounded >::abs_down(), implementation< ball_rounding, W, ball_rounded >::abs_up(), implementation< ball_elementary, W, ball_rounded >::acos(), implementation< ball_additive, W, ball_rounded >::add(), implementation< ball_additive, W, ball_rough >::add(), implementation< ball_additive, IV, ball_infinities< BV > >::add(), implementation< ball_rounding, W, ball_rounded >::add_additive_error(), implementation< ball_rounding, W, ball_rounded >::add_elementary_error(), implementation< ball_rounding, W, ball_rounded >::add_multiplicative_error(), add_rough_additive_error(), add_rough_multiplicative_error(), implementation< ball_rounding, W, ball_rounded >::add_rounding_error(), additive_error(), implementation< ball_elementary, W, ball_rounded >::asin(), implementation< ball_elementary, W, ball_rounded >::atan(), implementation< ball_elementary, W, ball_rounded >::atan2(), binary_test(), blur(), implementation< ball_rounding, W, ball_rounded >::bnd_down(), implementation< ball_rounding, W, ball_rounded >::bnd_up(), change_precision(), conj(), copy(), implementation< ball_elementary, W, ball_rounded >::cos(), implementation< ball_elementary, IV, ball_complex< BV > >::cos(), implementation< ball_elementary, W, ball_rounded >::cosh(), implementation< ball_elementary, IV, ball_complex< BV > >::cosh(), binary_helper< ball< C, R, V > >::disassemble(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::div(), duplicate(), elementary_error(), implementation< ball_elementary, W, ball_rounded >::exp(), implementation< ball_elementary, IV, ball_complex< BV > >::exp(), exponent(), flatten(), flatten_range(), implementation< ball_complex_construct, IV, ball_complex< BV > >::gauss(), GLUE_6(), implementation< ball_root, W, ball_rounded >::hypot(), implementation< ball_root, W, ball_rough >::hypot(), Im(), included(), implementation< ball_multiplicative, W, ball_rounded >::invert(), implementation< ball_multiplicative, W, ball_rough >::invert(), is_exact_zero(), is_finite(), is_fuzz(), is_infinite(), is_nan(), is_negative(), is_negative_or_zero(), is_non_zero(), is_positive(), is_positive_or_zero(), is_zero(), implementation< ball_elementary, W, ball_rounded >::log(), implementation< ball_elementary, IV, ball_complex< BV > >::log(), implementation< ball_rounding, W, ball_rounded >::lower(), magnitude(), implementation< ball_rounding, W, ball_rounded >::make_interval(), implementation< ball_ordered, W, ball_rounded >::max(), implementation< ball_ordered, W, ball_rounded >::min(), implementation< ball_multiplicative, W, ball_rounded >::mul(), implementation< ball_multiplicative, W, ball_rough >::mul(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::mul(), multiplicative_error(), implementation< ball_additive, W, ball_rounded >::neg(), implementation< ball_additive, W, ball_rough >::neg(), over_i(), precision(), radius(), Re(), set_as(), sharpen(), implementation< ball_shift, W, ball_rounded >::shiftl(), implementation< ball_shift, W, ball_rough >::shiftl(), implementation< ball_shift, W, ball_rounded >::shiftr(), implementation< ball_shift, W, ball_rough >::shiftr(), implementation< ball_elementary, W, ball_rounded >::sin(), implementation< ball_elementary, IV, ball_complex< BV > >::sin(), implementation< ball_elementary, W, ball_rounded >::sinh(), implementation< ball_elementary, IV, ball_complex< BV > >::sinh(), implementation< ball_root, W, ball_rounded >::sqrt(), implementation< ball_root, W, ball_rough >::sqrt(), implementation< ball_root, IV, ball_complex< BV > >::sqrt(), implementation< ball_multiplicative, W, ball_rounded >::square(), implementation< ball_multiplicative, W, ball_rough >::square(), implementation< ball_additive, W, ball_rounded >::sub(), implementation< ball_additive, W, ball_rough >::sub(), implementation< ball_additive, IV, ball_infinities< BV > >::sub(), times_i(), unary_hash(), implementation< ball_rounding, W, ball_rounded >::upper(), and binary_helper< ball< C, R, V > >::write().
{ return z.c; }
| C mmx::center | ( | const interval< C, V > & | x | ) | [inline] |
| format<C> mmx::CF | ( | const complex< C > & | z | ) | [inline] |
| format<C> mmx::CF | ( | const interval< C, V > & | x | ) | [inline] |
| format<C> mmx::CF1 | ( | const affine< C, VC > & | z | ) | [inline] |
| format<C> mmx::CF1 | ( | const tangent< C, D > & | z | ) | [inline] |
| format<C> mmx::CF1 | ( | const twin< C, D, V > & | z | ) | [inline] |
| format<VC> mmx::CF2 | ( | const affine< C, VC > & | z | ) | [inline] |
| format<D> mmx::CF2 | ( | const tangent< C, D > & | z | ) | [inline] |
| format<D> mmx::CF2 | ( | const twin< C, D, V > & | z | ) | [inline] |
Definition at line 446 of file affine.hpp.
References Affine, base(), limits(), and slope().
Referenced by change_precision().
{
return Affine (change_precision (base (z), prec),
change_precision (slope (z), prec),
change_precision (limits (z), prec)); }
Definition at line 607 of file interval.hpp.
References change_precision(), Interval, lower(), and upper().
{
return Interval (change_precision (lower (x), prec),
change_precision (upper (x), prec)); }
Definition at line 586 of file complex.hpp.
References change_precision(), Complex, Im(), and Re().
{
return Complex (change_precision (Re (z), prec),
change_precision (Im (z), prec)); }
Definition at line 650 of file ball.hpp.
References Ball, center(), change_precision(), and radius().
{
return Ball (change_precision (center (z), prec), radius (z)); }
Definition at line 362 of file tangent.hpp.
References base(), change_precision(), slope(), and Tangent.
{
return Tangent (change_precision (base (z), prec),
change_precision (slope (z), prec)); }
Definition at line 467 of file floating.hpp.
References Floating, Floating_rep, and Rnd.
{
Floating r (new Floating_rep (prec)); mpfr_set (*r, *x, Rnd); return r; }
Definition at line 279 of file twin.hpp.
References car(), cdr(), change_precision(), and Twin.
{
return Twin (change_precision (car (x), p), cdr (x)); }
| affine_limits_helper<C,VC>::VT mmx::common_limits | ( | const affine< C, VC > & | z1, |
| const affine< C, VC > & | z2 | ||
| ) | [inline] |
Definition at line 117 of file affine.hpp.
References limits().
Referenced by operator*(), and operator+().
| mmx::COMPARE_INT_SUGAR | ( | template< typename C, typename D > | , |
| tangent< C, D > | |||
| ) |
| mmx::COMPARE_INT_SUGAR | ( | template< typename V > | , |
| floating< V > | |||
| ) |
| mmx::COMPARE_INT_SUGAR | ( | template< typename C, typename D, typename V > | , |
| twin< C, D, V > | |||
| ) |
| mmx::COMPARE_INT_SUGAR | ( | template< typename C, typename VC > | , |
| affine< C, VC > | |||
| ) |
| mmx::COMPARE_INT_SUGAR | ( | template< typename C, typename R, typename V > | , |
| ball< C, R, V > | |||
| ) |
| mmx::COMPARE_INT_SUGAR | ( | template< typename C, typename V > | , |
| interval< C, V > | |||
| ) |
Definition at line 23 of file ball_complex.hpp.
References Ball_variant, promote(), R, and V.
Definition at line 30 of file ball_complex.hpp.
References Ball_variant, R, and V.
{
typedef Ball_variant(R) V;
typedef implementation<ball_complex_construct,ball_complex<V> > Impl;
ball<Complex,R> z; Impl::gauss (z, re, im); return z;
}
Definition at line 57 of file ball_complex.hpp.
References center(), Complex_ball, and radius().
Referenced by GLUE_5(), and GLUE_6().
{
return Complex_ball (conj (center (z)), radius (z)); }
| generic construct | ( | const rational & | x | ) |
Definition at line 37 of file mmx_gmp.cpp.
References construct().
{
return construct (as<generic> (x));
}
| generic mmx::construct | ( | const twin< C, D, V > & | x | ) |
Definition at line 66 of file twin.hpp.
References construct().
{
return construct (as<generic> (x));
}
| generic construct | ( | const integer & | i | ) |
Definition at line 32 of file mmx_gmp.cpp.
Referenced by construct().
{
return construct (as<generic> (i));
}
| rational mmx::copy | ( | const rational & | i | ) |
Definition at line 72 of file rational.hpp.
{
rational r; mpq_set (*r, *x1); return r; }
| integer mmx::copy | ( | const integer & | i | ) |
Definition at line 104 of file integer.hpp.
{
integer r; mpz_set (*r, *x1); return r; }
Definition at line 496 of file interval.hpp.
References C, cos(), Interval, lower(), max(), min(), promote(), sign(), sin(), sub(), and upper().
{
C pi_lo= promote (314159, lower (x)) / promote (100000, lower (x));
if (Up::sub (upper (x), lower (x)) >= pi_lo)
return Interval (promote (-1, lower (x)), promote (1, lower (x)));
else {
int s1= -sign (sin (lower (x)));
int s2= -sign (sin (upper (x)));
if (s1 >= 0 && s2 >= 0)
return Interval (Down::cos (lower (x)), Up::cos (upper (x)));
else if (s1 <= 0 && s2 <= 0)
return Interval (Down::cos (upper (x)), Down::cos (lower (x)));
else if (s1 >= 0)
return Interval (min (Down::cos (lower (x)), Down::cos (upper (x))),
promote (1, lower (x)));
else
return Interval (promote (-1, lower (x)),
max (Down::cos (lower (x)), Down::cos (upper (x))));
}
}
Definition at line 516 of file ball.hpp.
References Ball, C, Elementary_variant, and V.
Referenced by cos(), cosh(), GLUE_15(), GLUE_16(), GLUE_20(), GLUE_25(), GLUE_26(), GLUE_29(), GLUE_48(), polar(), implementation< ball_complex_construct, IV, ball_complex< BV > >::polar(), sin(), implementation< ball_elementary, W, ball_rounded >::sin(), sinh(), and tan().
{
typedef Elementary_variant(C,V) EV;
typedef implementation<ball_elementary,EV> Impl;
Ball d; Impl::cos (d, z); return d;
}
Definition at line 537 of file ball.hpp.
References Ball, C, Elementary_variant, and V.
Referenced by cos(), cosh(), sin(), implementation< ball_elementary, IV, ball_complex< BV > >::sin(), sinh(), implementation< ball_elementary, W, ball_rounded >::sinh(), implementation< ball_elementary, IV, ball_complex< BV > >::sinh(), and tanh().
{
typedef Elementary_variant(C,V) EV;
typedef implementation<ball_elementary,EV> Impl;
Ball d; Impl::cosh (d, z); return d;
}
| void mmx::decode_mod | ( | C & | dest, |
| const C & | s, | ||
| const modulus< C, V > & | m | ||
| ) | [inline] |
Definition at line 98 of file modulus.hpp.
Referenced by modular< M, modular_local >::operator*(), and modular< M, V >::operator*().
{
V::decode_mod (dest, s, m); }
| static void mmx::decompose | ( | const string & | s, |
| int & | sign, | ||
| string & | mant, | ||
| integer & | expo | ||
| ) | [static] |
Definition at line 18 of file string_scnot.cpp.
Referenced by decompose_range(), make_range(), and trunc_digits().
{
// Sign
if (N(s) > 0 && (s[0] == '+' || s[0] == '-')) {
decompose (s (1, N(s)), sign, mant, expo);
if (s[0] == '-') sign= -sign;
return;
}
// Special values
sign= 1; mant= ""; expo= 0;
if (locase (s) == "nan") { mant= "NaN"; return; }
if (locase (s) == "fuzz") { mant= "Fuzz"; return; }
if (locase (s) == "infty") { mant= "Infty"; return; }
if (locase (s) == "infinity") { mant= "Infty"; return; }
// Get mantissa and decimal point
int dot= -1;
nat i= 0, n= N(s);
while (i<n && (s[i] == '.' || (s[i] >= '0' && s[i] <= '9'))) {
if (s[i] == '.') {
if (dot != -1) { mant= "NaN"; return; }
dot= i++;
}
else mant << s[i++];
}
if (dot == -1) dot= i;
// Get exponent
if (i<n && (s[i] == 'e' || s[i] == 'E')) {
i++;
int expo_sign= 1;
while (i<n && (s[i] == '+' || s[i] == '-')) {
if (s[i] == '-') expo_sign= -expo_sign;
i++;
}
while (i<n && s[i] >= '0' && s[i] <= '9') {
expo= 10*expo + ((int) (s[i] - '0'));
i++;
}
expo= expo_sign * expo;
}
// Finish
if (i != n) { mant= "NaN"; return; }
if (mant == "") { mant= "0"; dot++; }
expo += (dot - 1);
while (N(mant) > 1 && mant[0] == '0') {
mant= mant (1, N(mant));
expo= expo - 1;
}
if (s == "0") sign= 0;
}
| void decompose_range | ( | const string & | s, |
| string & | l, | ||
| string & | r | ||
| ) |
Definition at line 154 of file string_scnot.cpp.
References as_string(), decompose(), recompose(), and sign().
{
int sign;
string mant;
integer expo;
decompose (s, sign, mant, expo);
if (locase (mant) == "fuzz") { l= "-Infty"; r= "Infty"; return; }
if (locase (mant) == "nan") { l= "NaN"; r= "NaN"; return; }
if (locase (mant) == "infty") { l= r= recompose (sign, mant, 0); return; }
if (sign == 0) { l= r= "0"; }
if (mant == "0") {
l= recompose (-1, "1", expo);
r= recompose (1, "1", expo);
}
else {
string mant1= as_string (integer (mant) - 1) * "5";
string mant2= mant * "5";
l= recompose (sign, sign>0? mant1: mant2, expo);
r= recompose (sign, sign>0? mant2: mant1, expo);
}
}
| mmx::DEFINE_BINARY_FORMAT_2 | ( | tangent | ) |
| mmx::DEFINE_BINARY_FORMAT_2 | ( | affine | ) |
| mmx::DEFINE_BINARY_FORMAT_2 | ( | twin | ) |
| mmx::DEFINE_UNARY_FORMAT_1 | ( | complex | ) |
| mmx::DEFINE_UNARY_FORMAT_1 | ( | interval | ) |
| void mmx::div | ( | complex< C > & | r, |
| const complex< C > & | z, | ||
| const C & | c | ||
| ) | [inline] |
Definition at line 441 of file complex.hpp.
Referenced by implementation< ball_elementary, W, ball_rounded >::acos(), implementation< ball_elementary, W, ball_rounded >::asin(), implementation< ball_elementary, W, ball_rounded >::atan(), implementation< ball_elementary, W, ball_rounded >::atan2(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::div(), implementation< ball_multiplicative, W, ball_rounded >::invert(), implementation< ball_elementary, W, ball_rounded >::log(), implementation< ball_elementary, IV, ball_complex< BV > >::log(), operator/(), implementation< ball_root, W, ball_rounded >::sqrt(), and implementation< ball_root, IV, ball_complex< BV > >::sqrt().
| void mmx::div | ( | floating< V > & | r, |
| const floating< V > & | x1, | ||
| const floating< V > & | x2 | ||
| ) | [inline] |
Definition at line 333 of file floating.hpp.
References Rnd.
{
r.secure (); mpfr_div (*r, *x1, *x2, Rnd); }
| void mmx::div_mod | ( | C & | dest, |
| const C & | s, | ||
| const modulus< C, V > & | m | ||
| ) | [inline] |
Definition at line 174 of file modulus.hpp.
Referenced by div_mod(), operator/(), and operator/=().
{
V::div_mod (dest, s, m); }
| void mmx::div_mod | ( | C & | dest, |
| const C & | s1, | ||
| const C & | s2, | ||
| const modulus< C, V > & | m | ||
| ) | [inline] |
| VC mmx::domain | ( | const affine< C, VC > & | z | ) | [inline] |
Definition at line 125 of file affine.hpp.
References limits().
{
typedef affine_limits_helper<C,VC> Helper;
return Helper::get_domain (limits (z)); }
| C mmx::dot | ( | const C & | x, |
| const C & | y | ||
| ) | [inline] |
Definition at line 37 of file affine.hpp.
Referenced by decompose(), and affine_limits_helper< C, VC >::truncate().
{ return x * y; }
| rational mmx::duplicate | ( | const rational & | x | ) | [inline] |
| integer mmx::duplicate | ( | const integer & | i | ) | [inline] |
| nat mmx::dyadic_valuation | ( | const integer & | i | ) | [inline] |
Definition at line 1174 of file integer.hpp.
{
if (i == integer (0)) return (nat) -1;
return mpz_scan1 (* i, 0);
}
| nat mmx::dyadic_valuation | ( | const signed char & | i | ) | [inline] |
Definition at line 1187 of file integer.hpp.
| nat mmx::dyadic_valuation | ( | const unsigned char & | i | ) | [inline] |
Definition at line 1188 of file integer.hpp.
| nat mmx::dyadic_valuation | ( | const signed short & | i | ) | [inline] |
Definition at line 1189 of file integer.hpp.
| nat mmx::dyadic_valuation | ( | const unsigned short & | i | ) | [inline] |
Definition at line 1190 of file integer.hpp.
| nat mmx::dyadic_valuation | ( | const signed int & | i | ) | [inline] |
Definition at line 1191 of file integer.hpp.
| nat mmx::dyadic_valuation | ( | const unsigned int & | i | ) | [inline] |
Definition at line 1192 of file integer.hpp.
| nat mmx::dyadic_valuation | ( | const signed long & | i | ) | [inline] |
Definition at line 1193 of file integer.hpp.
| nat mmx::dyadic_valuation | ( | const unsigned long & | i | ) | [inline] |
Definition at line 1194 of file integer.hpp.
| nat mmx::dyadic_valuation | ( | const signed long long & | i | ) | [inline] |
Definition at line 1195 of file integer.hpp.
| nat mmx::dyadic_valuation | ( | const unsigned long long & | i | ) | [inline] |
Definition at line 1196 of file integer.hpp.
Definition at line 658 of file ball.hpp.
References Abs_ball, and center().
Referenced by implementation< ball_rounding, W, ball_rounded >::add_elementary_error(), GLUE_47(), and GLUE_56().
{
return Abs_ball (elementary_error (center (x))); }
| void mmx::encode_mod | ( | C & | dest, |
| const C & | s, | ||
| const modulus< C, V > & | m | ||
| ) | [inline] |
Definition at line 94 of file modulus.hpp.
Referenced by modular< M, modular_local >::modular(), and modular< M, V >::modular().
{
V::encode_mod (dest, s, m); }
| mmx::EQUAL_INT_SUGAR | ( | template< typename C, typename D > | , |
| tangent< C, D > | |||
| ) |
| mmx::EQUAL_INT_SUGAR | ( | template< typename C, typename D, typename V > | , |
| twin< C, D, V > | |||
| ) |
| mmx::EQUAL_INT_SUGAR | ( | template< typename C, typename VC > | , |
| affine< C, VC > | |||
| ) |
| mmx::EQUAL_INT_SUGAR | ( | template< typename C, typename V > | , |
| interval< C, V > | |||
| ) |
| mmx::EQUAL_INT_SUGAR | ( | template< typename C, typename R, typename V > | , |
| ball< C, R, V > | |||
| ) |
| bool mmx::exact_eq | ( | const scalar_set< C > & | R1, |
| const scalar_set< C > & | R2 | ||
| ) | [inline] |
Definition at line 53 of file kernel.hpp.
Referenced by exact_eq(), and exact_neq().
{
return R1==R2;
}
| bool mmx::exact_eq | ( | const modular< M, modular_local > & | c1, |
| const modular< M, modular_local > & | c2 | ||
| ) |
Definition at line 399 of file modular.hpp.
References exact_eq(), and get_modulus().
{
return exact_eq (*c1, *c2) &&
exact_eq (get_modulus (c1), get_modulus (c2)); }
| bool mmx::exact_eq | ( | const twin< C, D, V > & | x, |
| const twin< C, D, V > & | y | ||
| ) |
| int mmx::exact_hash | ( | const scalar_set< C > & | R | ) | [inline] |
| nat mmx::exact_hash | ( | const modular< M, modular_local > & | c | ) |
Definition at line 391 of file modular.hpp.
References exact_hash(), and get_modulus().
{
nat h= exact_hash (*c);
return (h<<1) ^ (h<<5) ^ (h>>29) ^ exact_hash (get_modulus (c)); }
| nat mmx::exact_hash | ( | const twin< C, D, V > & | x | ) |
Definition at line 151 of file twin.hpp.
References cdr(), and exact_hash().
{ return exact_hash (cdr (x)); }
| mmx::EXACT_IDENTITY_OP_SUGAR | ( | template< typename C, typename R, typename V > | , |
| ball< C, R, V > | |||
| ) |
| mmx::EXACT_IDENTITY_OP_SUGAR | ( | template< typename C, typename V > | , |
| interval< C, V > | |||
| ) |
| bool mmx::exact_neq | ( | const modular< M, modular_local > & | c1, |
| const modular< M, modular_local > & | c2 | ||
| ) |
Definition at line 403 of file modular.hpp.
References exact_eq().
Referenced by exact_neq().
{
return ! exact_eq (c1, c2); }
| bool mmx::exact_neq | ( | const twin< C, D, V > & | x, |
| const twin< C, D, V > & | y | ||
| ) |
Definition at line 481 of file ball.hpp.
References Ball, C, Elementary_variant, and V.
Referenced by exp(), implementation< ball_elementary, W, ball_rounded >::exp(), implementation< ball_elementary, IV, ball_complex< BV > >::exp(), GLUE_12(), GLUE_13(), GLUE_17(), GLUE_23(), GLUE_26(), GLUE_45(), and pow().
{
typedef Elementary_variant(C,V) EV;
typedef implementation<ball_elementary,EV> Impl;
Ball d; Impl::exp (d, z); return d;
}
| xint mmx::exponent | ( | const affine< C, VC > & | z | ) | [inline] |
Definition at line 459 of file affine.hpp.
References base().
Referenced by exponent(), GLUE_27(), GLUE_40(), GLUE_48(), GLUE_49(), GLUE_59(), mpfr_to_string(), and zero_to_string().
| xint mmx::exponent | ( | const interval< C, V > & | x | ) | [inline] |
| xint mmx::exponent | ( | const complex< C > & | z | ) | [inline] |
| xint mmx::exponent | ( | const ball< C, R, V > & | z | ) | [inline] |
| xint mmx::exponent | ( | const tangent< C, D > & | z | ) | [inline] |
Definition at line 372 of file tangent.hpp.
References base(), and exponent().
| xint mmx::exponent | ( | const floating< V > & | x | ) | [inline] |
Definition at line 490 of file floating.hpp.
References mpfr_safe_get_exp().
{
return mpfr_safe_get_exp (*x); }
| xint mmx::exponent | ( | const twin< C, D, V > & | x | ) | [inline] |
| integer mmx::factorial | ( | nat | i | ) | [inline] |
Definition at line 1134 of file integer.hpp.
Referenced by factorial(), and GLUE_26().
{
integer r; mpz_fac_ui (*r, i); return r; }
| integer mmx::factorial | ( | const integer & | i | ) | [inline] |
Definition at line 1140 of file integer.hpp.
References as_int(), and factorial().
| syntactic mmx::flatten | ( | const scalar_set< double > & | Z | ) | [inline] |
Definition at line 74 of file kernel.hpp.
{ static inline T cv (const F& x) { return x; } };
| syntactic mmx::flatten | ( | const scalar_set< integer > & | Z | ) | [inline] |
Definition at line 75 of file kernel.hpp.
{ static inline T cv (const F& x) { return x; } };
| syntactic mmx::flatten | ( | const scalar_set< rational > & | Z | ) | [inline] |
Definition at line 76 of file kernel.hpp.
{ static inline T cv (const F& x) { return x; } };
| syntactic mmx::flatten | ( | const scalar_set< complex< double > > & | Z | ) | [inline] |
Definition at line 78 of file kernel.hpp.
{ static inline T cv (const F& x) { return x; } };
| syntactic mmx::flatten | ( | const scalar_set< floating<> > & | Z | ) | [inline] |
Definition at line 77 of file kernel.hpp.
{ static inline T cv (const F& x) { return x; } };
| syntactic mmx::flatten | ( | const scalar_set< complex< floating<> > > & | Z | ) | [inline] |
Definition at line 79 of file kernel.hpp.
{ static inline T cv (const F& x) { return x; } };
| syntactic mmx::flatten | ( | const floating< V > & | g | ) |
Definition at line 191 of file floating.hpp.
References as_string(), and flatten_number().
{
return flatten_number (as_string (g));
}
| syntactic mmx::flatten | ( | const floating< V > & | g, |
| xnat | dd | ||
| ) |
Definition at line 196 of file floating.hpp.
References as_string(), and flatten_number().
{
return flatten_number (as_string (g, dd));
}
| syntactic mmx::flatten | ( | const modulus< unsigned char, V > & | c | ) | [inline] |
Definition at line 190 of file modulus.hpp.
{
return as_syntactic ((int) (*c)); }
| syntactic mmx::flatten | ( | const modulus< char, V > & | c | ) | [inline] |
Definition at line 186 of file modulus.hpp.
{
return as_syntactic ((int) (*c)); }
| syntactic flatten | ( | const rational & | x | ) |
| syntactic mmx::flatten | ( | const ball< C, R, V > & | z, |
| xnat | dd | ||
| ) |
| syntactic mmx::flatten | ( | const twin< C, D, V > & | x | ) | [inline] |
| syntactic mmx::flatten | ( | const ball< double, R, V > & | z | ) | [inline] |
| syntactic mmx::flatten | ( | const ball< double, R, V > & | z, |
| xnat | dd | ||
| ) | [inline] |
Definition at line 199 of file ball.hpp.
References flatten_range().
{
return flatten_range (z, dd); }
| syntactic mmx::flatten | ( | const ball< floating< FV >, R, V > & | z | ) | [inline] |
| syntactic mmx::flatten | ( | const ball< complex< C >, R, V > & | z | ) |
Definition at line 100 of file ball_complex.hpp.
References flatten(), Im(), is_exact_zero(), is_fuzz(), is_infinite(), is_nan(), and Re().
{
if (is_nan (z)) return Nan (syntactic);
if (is_fuzz (z)) return Fuzz (syntactic);
if (is_infinite (z)) return Infinity (syntactic);
if (is_exact_zero (z)) return 0;
if (Re (z) != 0 && Im (z) == 0)
return flatten (Re (z));
if (Re (z) == 0 && Im (z) != 0)
return flatten (Im (z)) * Imaginary (syntactic);
return flatten (Re (z)) + flatten (Im (z)) * Imaginary (syntactic);
}
| syntactic mmx::flatten | ( | const ball< floating< FV >, R, V > & | z, |
| xnat | dd | ||
| ) | [inline] |
Definition at line 205 of file ball.hpp.
References flatten_range().
{
return flatten_range (z, dd); }
| syntactic mmx::flatten | ( | const ball< complex< C >, R, V > & | z, |
| nat | dd | ||
| ) |
Definition at line 113 of file ball_complex.hpp.
References flatten(), Im(), is_exact_zero(), is_fuzz(), is_infinite(), is_nan(), and Re().
{
if (is_nan (z)) return Nan (syntactic);
if (is_fuzz (z)) return Fuzz (syntactic);
if (is_infinite (z)) return Infinity (syntactic);
if (is_exact_zero (z)) return 0;
if (Re (z) != 0 && Im (z) == 0)
return flatten (Re (z), dd);
if (Re (z) == 0 && Im (z) != 0)
return flatten (Im (z), dd) * Imaginary (syntactic);
return flatten (Re (z), dd) + flatten (Im (z), dd) * Imaginary (syntactic);
}
| syntactic flatten | ( | const integer & | i | ) |
Definition at line 42 of file mmx_gmp.cpp.
References as_string().
{
return syntactic (as_string (i));
}
| syntactic mmx::flatten | ( | const interval< C, V > & | x | ) |
Definition at line 164 of file interval.hpp.
References flatten_range(), is_nan(), lower(), and upper().
| syntactic mmx::flatten | ( | const interval< C, V > & | x, |
| xnat | dd | ||
| ) |
Definition at line 172 of file interval.hpp.
References flatten_range(), is_nan(), lower(), and upper().
| syntactic mmx::flatten | ( | const complex< C > & | z | ) |
Definition at line 146 of file complex.hpp.
References flatten(), Im(), is_exact_zero(), is_fuzz(), is_infinite(), is_nan(), and Re().
{
if (is_nan (z)) return Nan (syntactic);
if (is_fuzz (z)) return Fuzz (syntactic);
if (is_infinite (z)) return Infinity (syntactic);
if (is_exact_zero (z)) return 0;
if (Re (z) != 0 && Im (z) == 0)
return flatten (Re (z));
if (Re (z) == 0 && Im (z) != 0)
return flatten (Im (z)) * Imaginary (syntactic);
return flatten (Re (z)) + flatten (Im (z)) * Imaginary (syntactic);
}
| syntactic mmx::flatten | ( | const complex< C > & | z, |
| xnat | dd | ||
| ) |
Definition at line 159 of file complex.hpp.
References flatten(), Im(), is_exact_zero(), is_fuzz(), is_infinite(), is_nan(), and Re().
{
if (is_nan (z)) return Nan (syntactic);
if (is_fuzz (z)) return Fuzz (syntactic);
if (is_infinite (z)) return Infinity (syntactic);
if (is_exact_zero (z)) return 0;
if (Re (z) != 0 && Im (z) == 0)
return flatten (Re (z), dd);
if (Re (z) == 0 && Im (z) != 0)
return flatten (Im (z), dd) * Imaginary (syntactic);
return flatten (Re (z), dd) + flatten (Im (z), dd) * Imaginary (syntactic);
}
| string mmx::flatten_as_mmx | ( | const generic & | g | ) |
Referenced by flatten_as_string().
| string mmx::flatten_as_string | ( | const C & | x | ) |
Definition at line 26 of file string_scnot.hpp.
References flatten_as_mmx().
Referenced by as_string(), and flatten_range().
{
return flatten_as_mmx (as_generic (x));
}
| syntactic flatten_number | ( | const string & | s | ) |
Definition at line 205 of file string_scnot.cpp.
References is_integer(), mmx_pretty_exponents, and pow().
Referenced by flatten(), and flatten_range().
{
if (N(s) == 0) return 0;
if (s[0] == '-') return -flatten_number (s (1, N(s)));
if (!mmx_pretty_exponents) return syntactic (s);
nat i;
for (i=N(s)-1; i!=0; i--)
if (s[i] == 'e') break;
if (i > 0 && is_integer (s (i+1, N(s))))
return syntactic (s (0, i)) *
pow (syntactic (10), syntactic (s (i+1, N(s))));
return syntactic (s);
}
| syntactic mmx::flatten_range | ( | const C & | x, |
| const C & | y | ||
| ) |
Definition at line 37 of file string_scnot.hpp.
References flatten_as_string(), flatten_number(), and make_range().
{
const string s= make_range (flatten_as_string (x), flatten_as_string (y));
return flatten_number (s);
}
| syntactic mmx::flatten_range | ( | const C & | x, |
| const C & | y, | ||
| xnat | dd | ||
| ) |
Definition at line 43 of file string_scnot.hpp.
References flatten_as_string(), flatten_number(), make_range(), mmx_significant_digits, and trunc_digits().
{
xnat old= mmx_significant_digits;
mmx_significant_digits= 0;
const string s= make_range (flatten_as_string (x), flatten_as_string (y));
mmx_significant_digits= old;
return flatten_number (trunc_digits (s, dd));
}
| syntactic mmx::flatten_range | ( | const ball< C, R, V > & | z | ) |
Definition at line 178 of file ball.hpp.
References center(), is_exact_zero(), is_fuzz(), is_nan(), lower(), precision(), and upper().
Referenced by flatten(), and flatten_range().
{
mmx_local_bit_precision tmp (precision (center (z)));
if (is_nan (z)) return Nan (syntactic);
if (is_fuzz (z)) return Fuzz (syntactic);
if (is_exact_zero (z)) return 0;
return flatten_range (lower (z), upper (z));
}
| syntactic mmx::flatten_range | ( | const ball< C, R, V > & | z, |
| xnat | dd | ||
| ) |
Definition at line 187 of file ball.hpp.
References center(), flatten_range(), is_exact_zero(), is_fuzz(), is_nan(), lower(), precision(), and upper().
{
mmx_local_bit_precision tmp (precision (center (z)));
if (is_nan (z)) return Nan (syntactic);
if (is_fuzz (z)) return Fuzz (syntactic);
if (is_exact_zero (z)) return 0;
return flatten_range (lower (z), upper (z), dd);
}
Definition at line 382 of file floating.hpp.
References Floating.
{
Floating r (*x1); mpfr_floor (*r, *x1); return r; }
Definition at line 84 of file ball_complex.hpp.
References Complex_ball.
Referenced by gaussian_as().
{
typedef implementation<ball_complex_construct,ball_complex<V> > Impl;
Complex_ball z; Impl::gauss (z, re, im); return z;
}
| void mmx::gaussian_as | ( | C & | z, |
| const R & | x, | ||
| const R & | y | ||
| ) | [inline] |
Definition at line 201 of file complex.hpp.
References gaussian().
Referenced by implementation< ball_complex_construct, IV, ball_complex< BV > >::gauss().
{
z= gaussian (x, y);
}
Definition at line 273 of file modular.hpp.
Referenced by GLUE_17(), and GLUE_18().
{
if (a == 0) return b;
return a; }
| mmx::GCD_SUGAR | ( | template< typename C > | , |
| complex< C > | |||
| ) |
| rational mmx::GCD_SUGAR | ( | rational | ) |
| M mmx::get_modulus | ( | const modular< M, V > & | x | ) | [inline] |
Definition at line 151 of file modular.hpp.
Referenced by as_helper< modular< TM, modular_local >, modular< SM, SV > >::cv(), exact_eq(), exact_hash(), hard_eq(), hard_hash(), hash(), invert(), operator*(), operator*=(), operator+(), operator+=(), operator-(), operator-=(), operator/(), and operator/=().
{
(void) x; return Modular::get_modulus (); }
| M mmx::get_modulus | ( | const modular< M, modular_local > & | x | ) | [inline] |
Definition at line 371 of file modular.hpp.
References modular< M, modular_local >::get_local_modulus().
{
return x.get_local_modulus (); }
| static mmx_floating mmx::GLUE_1 | ( | const literal & | arg_1 | ) | [static] |
Definition at line 11 of file glue_floating.cpp.
References make_literal_floating.
{
return make_literal_floating (arg_1);
}
| static generic mmx::GLUE_1 | ( | const int & | arg_1 | ) | [static] |
Definition at line 12 of file glue_modular_int.cpp.
References integer_construct.
{
return integer_construct (arg_1);
}
| static rational mmx::GLUE_1 | ( | const integer & | arg_1 | ) | [static] |
Definition at line 8 of file glue_rational.cpp.
{
return rational (arg_1);
}
| static complex<double> mmx::GLUE_1 | ( | const double & | arg_1 | ) | [static] |
Definition at line 13 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return complex<double > (arg_1);
}
| static complex<mmx_floating> mmx::GLUE_1 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 14 of file glue_complex_floating.cpp.
{
return complex<mmx_floating > (arg_1);
}
| static complex<generic> mmx::GLUE_1 | ( | const generic & | arg_1 | ) | [static] |
Definition at line 7 of file glue_complex_generic.cpp.
{
return complex<generic > (arg_1);
}
Definition at line 9 of file glue_complex_rational.cpp.
{
return complex<rational > (arg_1);
}
Definition at line 54 of file glue_complex_rational.cpp.
References square().
{
return square (arg_1);
}
| static int mmx::GLUE_10 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static integer mmx::GLUE_10 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 53 of file glue_integer.cpp.
{
return arg_1 + arg_2;
}
| static interval<double> mmx::GLUE_10 | ( | const interval< double > & | arg_1, |
| const interval< double > & | arg_2 | ||
| ) | [static] |
Definition at line 55 of file glue_interval_double.cpp.
{
return arg_1 + arg_2;
}
| static interval<mmx_floating> mmx::GLUE_10 | ( | const interval< mmx_floating > & | arg_1, |
| const interval< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 58 of file glue_interval_floating.cpp.
{
return arg_1 + arg_2;
}
| static rational mmx::GLUE_10 | ( | const rational & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
Definition at line 53 of file glue_rational.cpp.
{
return arg_1 + arg_2;
}
| static tangent<double, double> mmx::GLUE_10 | ( | const tangent< double, double > & | arg_1, |
| const tangent< double, double > & | arg_2 | ||
| ) | [static] |
Definition at line 59 of file glue_tangent_double.cpp.
{
return arg_1 * arg_2;
}
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_10 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1, |
| const tangent< mmx_floating, mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 60 of file glue_tangent_floating.cpp.
{
return arg_1 * arg_2;
}
| static tangent<generic, generic> mmx::GLUE_10 | ( | const tangent< generic, generic > & | arg_1, |
| const tangent< generic, generic > & | arg_2 | ||
| ) | [static] |
Definition at line 52 of file glue_tangent_generic.cpp.
{
return arg_1 / arg_2;
}
| static tangent<rational, rational> mmx::GLUE_10 | ( | const tangent< rational, rational > & | arg_1, |
| const tangent< rational, rational > & | arg_2 | ||
| ) | [static] |
Definition at line 55 of file glue_tangent_rational.cpp.
{
return arg_1 * arg_2;
}
| static complex<double> mmx::GLUE_10 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 58 of file glue_complex_double.cpp.
References square().
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return square (arg_1);
}
| static complex<mmx_floating> mmx::GLUE_10 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 59 of file glue_complex_floating.cpp.
References square().
{
return square (arg_1);
}
| static complex<generic> mmx::GLUE_10 | ( | const complex< generic > & | arg_1, |
| const complex< generic > & | arg_2 | ||
| ) | [static] |
Definition at line 52 of file glue_complex_generic.cpp.
{
return arg_1 + arg_2;
}
| static complex<rational> mmx::GLUE_11 | ( | const complex< rational > & | arg_1, |
| const complex< rational > & | arg_2 | ||
| ) | [static] |
Definition at line 59 of file glue_complex_rational.cpp.
{
return arg_1 + arg_2;
}
| static double mmx::GLUE_11 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 61 of file glue_floating.cpp.
References as_double().
{
return as_double (arg_1);
}
| static integer mmx::GLUE_11 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 58 of file glue_integer.cpp.
{
return arg_1 - arg_2;
}
| static interval<double> mmx::GLUE_11 | ( | const interval< double > & | arg_1, |
| const interval< double > & | arg_2 | ||
| ) | [static] |
Definition at line 60 of file glue_interval_double.cpp.
{
return arg_1 - arg_2;
}
| static interval<mmx_floating> mmx::GLUE_11 | ( | const interval< mmx_floating > & | arg_1, |
| const interval< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 63 of file glue_interval_floating.cpp.
{
return arg_1 - arg_2;
}
| static rational mmx::GLUE_11 | ( | const rational & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
Definition at line 58 of file glue_rational.cpp.
{
return arg_1 - arg_2;
}
| static tangent<double, double> mmx::GLUE_11 | ( | const tangent< double, double > & | arg_1, |
| const tangent< double, double > & | arg_2 | ||
| ) | [static] |
Definition at line 64 of file glue_tangent_double.cpp.
{
return arg_1 / arg_2;
}
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_11 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1, |
| const tangent< mmx_floating, mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 65 of file glue_tangent_floating.cpp.
{
return arg_1 / arg_2;
}
| static tangent<generic, generic> mmx::GLUE_11 | ( | const tangent< generic, generic > & | arg_1 | ) | [static] |
| static tangent<rational, rational> mmx::GLUE_11 | ( | const tangent< rational, rational > & | arg_1, |
| const tangent< rational, rational > & | arg_2 | ||
| ) | [static] |
Definition at line 60 of file glue_tangent_rational.cpp.
{
return arg_1 / arg_2;
}
| static complex<double> mmx::GLUE_11 | ( | const complex< double > & | arg_1, |
| const complex< double > & | arg_2 | ||
| ) | [static] |
Definition at line 63 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return arg_1 + arg_2;
}
| static complex<mmx_floating> mmx::GLUE_11 | ( | const complex< mmx_floating > & | arg_1, |
| const complex< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 64 of file glue_complex_floating.cpp.
{
return arg_1 + arg_2;
}
| static complex<generic> mmx::GLUE_11 | ( | const complex< generic > & | arg_1, |
| const complex< generic > & | arg_2 | ||
| ) | [static] |
Definition at line 57 of file glue_complex_generic.cpp.
{
return arg_1 - arg_2;
}
| static complex<rational> mmx::GLUE_12 | ( | const complex< rational > & | arg_1, |
| const complex< rational > & | arg_2 | ||
| ) | [static] |
Definition at line 64 of file glue_complex_rational.cpp.
{
return arg_1 - arg_2;
}
| static integer mmx::GLUE_12 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 66 of file glue_floating.cpp.
References as_integer().
{
return as_integer (arg_1);
}
| static integer mmx::GLUE_12 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 63 of file glue_integer.cpp.
{
return arg_1 * arg_2;
}
| static interval<double> mmx::GLUE_12 | ( | const interval< double > & | arg_1, |
| const interval< double > & | arg_2 | ||
| ) | [static] |
Definition at line 65 of file glue_interval_double.cpp.
{
return arg_1 * arg_2;
}
| static interval<mmx_floating> mmx::GLUE_12 | ( | const interval< mmx_floating > & | arg_1, |
| const interval< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 68 of file glue_interval_floating.cpp.
{
return arg_1 * arg_2;
}
| static rational mmx::GLUE_12 | ( | const rational & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
Definition at line 63 of file glue_rational.cpp.
{
return arg_1 * arg_2;
}
| static tangent<double, double> mmx::GLUE_12 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_12 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 70 of file glue_tangent_floating.cpp.
References sqrt().
{
return sqrt (arg_1);
}
| static tangent<generic, generic> mmx::GLUE_12 | ( | const tangent< generic, generic > & | arg_1 | ) | [static] |
| static tangent<generic, generic> mmx::GLUE_12 | ( | const tangent< rational, rational > & | arg_1 | ) | [static] |
Definition at line 65 of file glue_tangent_rational.cpp.
{
return as<tangent<generic, generic> > (arg_1);
}
| static complex<double> mmx::GLUE_12 | ( | const complex< double > & | arg_1, |
| const complex< double > & | arg_2 | ||
| ) | [static] |
Definition at line 68 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return arg_1 - arg_2;
}
| static complex<mmx_floating> mmx::GLUE_12 | ( | const complex< mmx_floating > & | arg_1, |
| const complex< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 69 of file glue_complex_floating.cpp.
{
return arg_1 - arg_2;
}
| static complex<generic> mmx::GLUE_12 | ( | const complex< generic > & | arg_1, |
| const complex< generic > & | arg_2 | ||
| ) | [static] |
Definition at line 62 of file glue_complex_generic.cpp.
{
return arg_1 * arg_2;
}
| static complex<rational> mmx::GLUE_13 | ( | const complex< rational > & | arg_1, |
| const complex< rational > & | arg_2 | ||
| ) | [static] |
Definition at line 69 of file glue_complex_rational.cpp.
{
return arg_1 * arg_2;
}
| static string mmx::GLUE_13 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 71 of file glue_floating.cpp.
References as_string().
{
return as_string (arg_1);
}
| static integer mmx::GLUE_13 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 68 of file glue_integer.cpp.
{
return arg_1 / arg_2;
}
| static interval<double> mmx::GLUE_13 | ( | const double & | arg_1, |
| const interval< double > & | arg_2 | ||
| ) | [static] |
Definition at line 70 of file glue_interval_double.cpp.
{
return arg_1 + arg_2;
}
| static interval<mmx_floating> mmx::GLUE_13 | ( | const mmx_floating & | arg_1, |
| const interval< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 73 of file glue_interval_floating.cpp.
{
return arg_1 + arg_2;
}
| static rational mmx::GLUE_13 | ( | const rational & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
Definition at line 68 of file glue_rational.cpp.
{
return arg_1 / arg_2;
}
| static tangent<complex<rational> , complex<rational> > mmx::GLUE_13 | ( | const complex< rational > & | arg_1 | ) | [static] |
Definition at line 70 of file glue_tangent_rational.cpp.
{
return tangent<complex<rational>, complex<rational> > (arg_1);
}
| static tangent<double, double> mmx::GLUE_13 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_13 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
| static tangent<generic, generic> mmx::GLUE_13 | ( | const tangent< generic, generic > & | arg_1 | ) | [static] |
| static complex<double> mmx::GLUE_13 | ( | const complex< double > & | arg_1, |
| const complex< double > & | arg_2 | ||
| ) | [static] |
Definition at line 73 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return arg_1 * arg_2;
}
| static complex<mmx_floating> mmx::GLUE_13 | ( | const complex< mmx_floating > & | arg_1, |
| const complex< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 74 of file glue_complex_floating.cpp.
{
return arg_1 * arg_2;
}
| static complex<generic> mmx::GLUE_13 | ( | const complex< generic > & | arg_1, |
| const complex< generic > & | arg_2 | ||
| ) | [static] |
Definition at line 67 of file glue_complex_generic.cpp.
{
return arg_1 / arg_2;
}
| static complex<rational> mmx::GLUE_14 | ( | const rational & | arg_1, |
| const complex< rational > & | arg_2 | ||
| ) | [static] |
Definition at line 74 of file glue_complex_rational.cpp.
{
return arg_1 + arg_2;
}
| static mmx_floating mmx::GLUE_14 | ( | const mmx_floating & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 76 of file glue_floating.cpp.
References uniform_deviate().
{
return uniform_deviate (arg_1, arg_2);
}
| static integer mmx::GLUE_14 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 73 of file glue_integer.cpp.
{
return quo (arg_1, arg_2);
}
| static interval<double> mmx::GLUE_14 | ( | const interval< double > & | arg_1, |
| const double & | arg_2 | ||
| ) | [static] |
Definition at line 75 of file glue_interval_double.cpp.
{
return arg_1 + arg_2;
}
| static interval<mmx_floating> mmx::GLUE_14 | ( | const interval< mmx_floating > & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 78 of file glue_interval_floating.cpp.
{
return arg_1 + arg_2;
}
| static tangent<double, double> mmx::GLUE_14 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_14 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
| static tangent<complex<rational> , complex<rational> > mmx::GLUE_14 | ( | const complex< rational > & | arg_1 | ) | [static] |
Definition at line 75 of file glue_tangent_rational.cpp.
{
return tangent<complex<rational>, complex<rational> > (arg_1);
}
| static tangent<generic, generic> mmx::GLUE_14 | ( | const tangent< generic, generic > & | arg_1, |
| const tangent< generic, generic > & | arg_2 | ||
| ) | [static] |
Definition at line 72 of file glue_tangent_generic.cpp.
References pow().
{
return pow (arg_1, arg_2);
}
| static complex<double> mmx::GLUE_14 | ( | const double & | arg_1, |
| const complex< double > & | arg_2 | ||
| ) | [static] |
Definition at line 78 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return arg_1 + arg_2;
}
| static complex<mmx_floating> mmx::GLUE_14 | ( | const mmx_floating & | arg_1, |
| const complex< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 79 of file glue_complex_floating.cpp.
{
return arg_1 + arg_2;
}
| static generic mmx::GLUE_14 | ( | const complex< generic > & | arg_1 | ) | [static] |
| static complex<rational> mmx::GLUE_15 | ( | const complex< rational > & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
Definition at line 79 of file glue_complex_rational.cpp.
{
return arg_1 + arg_2;
}
| static mmx_floating mmx::GLUE_15 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 81 of file glue_floating.cpp.
{
return -arg_1;
}
| static tangent<complex<rational> , complex<rational> > mmx::GLUE_15 | ( | const complex< rational > & | arg_1, |
| const complex< rational > & | arg_2 | ||
| ) | [static] |
Definition at line 80 of file glue_tangent_rational.cpp.
{
return tangent<complex<rational>, complex<rational> > (arg_1, arg_2);
}
| static integer mmx::GLUE_15 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 78 of file glue_integer.cpp.
{
return rem (arg_1, arg_2);
}
| static interval<double> mmx::GLUE_15 | ( | const double & | arg_1, |
| const interval< double > & | arg_2 | ||
| ) | [static] |
Definition at line 80 of file glue_interval_double.cpp.
{
return arg_1 - arg_2;
}
| static interval<mmx_floating> mmx::GLUE_15 | ( | const mmx_floating & | arg_1, |
| const interval< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 83 of file glue_interval_floating.cpp.
{
return arg_1 - arg_2;
}
| static rational mmx::GLUE_15 | ( | const rational & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_15 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1, |
| const tangent< mmx_floating, mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 85 of file glue_tangent_floating.cpp.
References pow().
{
return pow (arg_1, arg_2);
}
| static tangent<generic, generic> mmx::GLUE_15 | ( | const tangent< generic, generic > & | arg_1 | ) | [static] |
| static complex<double> mmx::GLUE_15 | ( | const complex< double > & | arg_1, |
| const double & | arg_2 | ||
| ) | [static] |
Definition at line 83 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return arg_1 + arg_2;
}
| static tangent<double, double> mmx::GLUE_15 | ( | const tangent< double, double > & | arg_1, |
| const tangent< double, double > & | arg_2 | ||
| ) | [static] |
Definition at line 84 of file glue_tangent_double.cpp.
References pow().
{
return pow (arg_1, arg_2);
}
| static complex<mmx_floating> mmx::GLUE_15 | ( | const complex< mmx_floating > & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 84 of file glue_complex_floating.cpp.
{
return arg_1 + arg_2;
}
| static generic mmx::GLUE_15 | ( | const complex< generic > & | arg_1 | ) | [static] |
| static complex<rational> mmx::GLUE_16 | ( | const rational & | arg_1, |
| const complex< rational > & | arg_2 | ||
| ) | [static] |
Definition at line 84 of file glue_complex_rational.cpp.
{
return arg_1 - arg_2;
}
| static mmx_floating mmx::GLUE_16 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static bool mmx::GLUE_16 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 83 of file glue_integer.cpp.
{
return divides (arg_1, arg_2);
}
| static interval<double> mmx::GLUE_16 | ( | const interval< double > & | arg_1, |
| const double & | arg_2 | ||
| ) | [static] |
Definition at line 85 of file glue_interval_double.cpp.
{
return arg_1 - arg_2;
}
| static interval<mmx_floating> mmx::GLUE_16 | ( | const interval< mmx_floating > & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 88 of file glue_interval_floating.cpp.
{
return arg_1 - arg_2;
}
| static rational mmx::GLUE_16 | ( | const rational & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
Definition at line 83 of file glue_rational.cpp.
{
return arg_1 / arg_2;
}
| static tangent<double, double> mmx::GLUE_16 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
| static tangent<generic, generic> mmx::GLUE_16 | ( | const tangent< generic, generic > & | arg_1 | ) | [static] |
| static complex<rational> mmx::GLUE_16 | ( | const tangent< complex< rational >, complex< rational > > & | arg_1 | ) | [static] |
Definition at line 85 of file glue_tangent_rational.cpp.
References base().
{
return base (arg_1);
}
| static complex<double> mmx::GLUE_16 | ( | const double & | arg_1, |
| const complex< double > & | arg_2 | ||
| ) | [static] |
Definition at line 88 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return arg_1 - arg_2;
}
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_16 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
| static complex<mmx_floating> mmx::GLUE_16 | ( | const mmx_floating & | arg_1, |
| const complex< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 89 of file glue_complex_floating.cpp.
{
return arg_1 - arg_2;
}
| static complex<generic> mmx::GLUE_16 | ( | const complex< generic > & | arg_1 | ) | [static] |
| static complex<rational> mmx::GLUE_17 | ( | const complex< rational > & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
Definition at line 89 of file glue_complex_rational.cpp.
{
return arg_1 - arg_2;
}
| static mmx_floating mmx::GLUE_17 | ( | const mmx_floating & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 91 of file glue_floating.cpp.
{
return arg_1 + arg_2;
}
| static integer mmx::GLUE_17 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
| static interval<double> mmx::GLUE_17 | ( | const double & | arg_1, |
| const interval< double > & | arg_2 | ||
| ) | [static] |
Definition at line 90 of file glue_interval_double.cpp.
{
return arg_1 * arg_2;
}
| static bool mmx::GLUE_17 | ( | const rational & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
Definition at line 88 of file glue_rational.cpp.
{
return divides (arg_1, arg_2);
}
| static tangent<double, double> mmx::GLUE_17 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_17 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
| static interval<mmx_floating> mmx::GLUE_17 | ( | const mmx_floating & | arg_1, |
| const interval< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 93 of file glue_interval_floating.cpp.
{
return arg_1 * arg_2;
}
| static tangent<generic, generic> mmx::GLUE_17 | ( | const tangent< generic, generic > & | arg_1 | ) | [static] |
| static complex<rational> mmx::GLUE_17 | ( | const tangent< complex< rational >, complex< rational > > & | arg_1 | ) | [static] |
Definition at line 90 of file glue_tangent_rational.cpp.
References slope().
{
return slope (arg_1);
}
| static complex<double> mmx::GLUE_17 | ( | const complex< double > & | arg_1, |
| const double & | arg_2 | ||
| ) | [static] |
Definition at line 93 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return arg_1 - arg_2;
}
| static complex<mmx_floating> mmx::GLUE_17 | ( | const complex< mmx_floating > & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 94 of file glue_complex_floating.cpp.
{
return arg_1 - arg_2;
}
| static complex<generic> mmx::GLUE_17 | ( | const complex< generic > & | arg_1 | ) | [static] |
| static complex<rational> mmx::GLUE_18 | ( | const rational & | arg_1, |
| const complex< rational > & | arg_2 | ||
| ) | [static] |
Definition at line 94 of file glue_complex_rational.cpp.
{
return arg_1 * arg_2;
}
| static mmx_floating mmx::GLUE_18 | ( | const mmx_floating & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 96 of file glue_floating.cpp.
{
return arg_1 - arg_2;
}
| static interval<double> mmx::GLUE_18 | ( | const interval< double > & | arg_1, |
| const double & | arg_2 | ||
| ) | [static] |
Definition at line 95 of file glue_interval_double.cpp.
{
return arg_1 * arg_2;
}
| static integer mmx::GLUE_18 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
| static interval<mmx_floating> mmx::GLUE_18 | ( | const interval< mmx_floating > & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 98 of file glue_interval_floating.cpp.
{
return arg_1 * arg_2;
}
| static rational mmx::GLUE_18 | ( | const rational & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
| static tangent<double, double> mmx::GLUE_18 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
| static tangent<generic, generic> mmx::GLUE_18 | ( | const tangent< generic, generic > & | arg_1 | ) | [static] |
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_18 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
| static tangent<complex<rational> , complex<rational> > mmx::GLUE_18 | ( | const tangent< complex< rational >, complex< rational > > & | arg_1 | ) | [static] |
Definition at line 95 of file glue_tangent_rational.cpp.
{
return -arg_1;
}
| static complex<double> mmx::GLUE_18 | ( | const double & | arg_1, |
| const complex< double > & | arg_2 | ||
| ) | [static] |
Definition at line 98 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return arg_1 * arg_2;
}
| static complex<mmx_floating> mmx::GLUE_18 | ( | const mmx_floating & | arg_1, |
| const complex< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 99 of file glue_complex_floating.cpp.
{
return arg_1 * arg_2;
}
| static complex<generic> mmx::GLUE_18 | ( | const complex< generic > & | arg_1 | ) | [static] |
| static complex<rational> mmx::GLUE_19 | ( | const complex< rational > & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
Definition at line 99 of file glue_complex_rational.cpp.
{
return arg_1 * arg_2;
}
| static mmx_floating mmx::GLUE_19 | ( | const mmx_floating & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 101 of file glue_floating.cpp.
{
return arg_1 * arg_2;
}
| static bool mmx::GLUE_19 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 98 of file glue_integer.cpp.
{
return arg_1 < arg_2;
}
| static interval<double> mmx::GLUE_19 | ( | const interval< double > & | arg_1, |
| const double & | arg_2 | ||
| ) | [static] |
Definition at line 100 of file glue_interval_double.cpp.
{
return arg_1 / arg_2;
}
| static interval<mmx_floating> mmx::GLUE_19 | ( | const interval< mmx_floating > & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 103 of file glue_interval_floating.cpp.
{
return arg_1 / arg_2;
}
| static rational mmx::GLUE_19 | ( | const rational & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_19 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 105 of file glue_tangent_floating.cpp.
References acos().
{
return acos (arg_1);
}
| static tangent<complex<rational> , complex<rational> > mmx::GLUE_19 | ( | const tangent< complex< rational >, complex< rational > > & | arg_1 | ) | [static] |
Definition at line 100 of file glue_tangent_rational.cpp.
References square().
{
return square (arg_1);
}
| static tangent<generic, generic> mmx::GLUE_19 | ( | const tangent< generic, generic > & | arg_1 | ) | [static] |
| static tangent<double, double> mmx::GLUE_19 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
| static complex<double> mmx::GLUE_19 | ( | const complex< double > & | arg_1, |
| const double & | arg_2 | ||
| ) | [static] |
Definition at line 103 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return arg_1 * arg_2;
}
| static complex<mmx_floating> mmx::GLUE_19 | ( | const complex< mmx_floating > & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 104 of file glue_complex_floating.cpp.
{
return arg_1 * arg_2;
}
| static complex<generic> mmx::GLUE_19 | ( | const complex< generic > & | arg_1, |
| const complex< generic > & | arg_2 | ||
| ) | [static] |
Definition at line 97 of file glue_complex_generic.cpp.
References pow().
{
return pow (arg_1, arg_2);
}
| static mmx_floating mmx::GLUE_2 | ( | const int & | arg_1 | ) | [static] |
Definition at line 16 of file glue_floating.cpp.
References mmx_floating.
{
return mmx_floating (arg_1);
}
| static rational mmx::GLUE_2 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 13 of file glue_rational.cpp.
References rational_new.
{
return rational_new (arg_1, arg_2);
}
| static tangent<double, double> mmx::GLUE_2 | ( | const double & | arg_1 | ) | [static] |
Definition at line 19 of file glue_tangent_double.cpp.
{
return tangent<double, double > (arg_1);
}
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_2 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 20 of file glue_tangent_floating.cpp.
{
return tangent<mmx_floating, mmx_floating > (arg_1);
}
Definition at line 15 of file glue_tangent_rational.cpp.
{
return tangent<rational, rational > (arg_1);
}
| static complex<double> mmx::GLUE_2 | ( | const double & | arg_1, |
| const double & | arg_2 | ||
| ) | [static] |
Definition at line 18 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return complex<double > (arg_1, arg_2);
}
| static complex<mmx_floating> mmx::GLUE_2 | ( | const mmx_floating & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 19 of file glue_complex_floating.cpp.
{
return complex<mmx_floating > (arg_1, arg_2);
}
| static complex<generic> mmx::GLUE_2 | ( | const generic & | arg_1, |
| const generic & | arg_2 | ||
| ) | [static] |
Definition at line 12 of file glue_complex_generic.cpp.
{
return complex<generic > (arg_1, arg_2);
}
Definition at line 14 of file glue_complex_rational.cpp.
{
return complex<rational > (arg_1, arg_2);
}
| static complex<rational> mmx::GLUE_20 | ( | const complex< rational > & | arg_1, |
| const complex< rational > & | arg_2 | ||
| ) | [static] |
Definition at line 104 of file glue_complex_rational.cpp.
{
return arg_1 / arg_2;
}
| static mmx_floating mmx::GLUE_20 | ( | const mmx_floating & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 106 of file glue_floating.cpp.
{
return arg_1 / arg_2;
}
| static bool mmx::GLUE_20 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 103 of file glue_integer.cpp.
{
return arg_1 <= arg_2;
}
| static interval<double> mmx::GLUE_20 | ( | const interval< double > & | arg_1, |
| const interval< double > & | arg_2 | ||
| ) | [static] |
Definition at line 105 of file glue_interval_double.cpp.
{
return arg_1 / arg_2;
}
| static interval<mmx_floating> mmx::GLUE_20 | ( | const interval< mmx_floating > & | arg_1, |
| const interval< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 108 of file glue_interval_floating.cpp.
{
return arg_1 / arg_2;
}
| static tangent<double, double> mmx::GLUE_20 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
| static bool mmx::GLUE_20 | ( | const rational & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
Definition at line 103 of file glue_rational.cpp.
{
return arg_1 < arg_2;
}
| static tangent<generic, generic> mmx::GLUE_20 | ( | const tangent< generic, generic > & | arg_1 | ) | [static] |
Definition at line 102 of file glue_tangent_generic.cpp.
References atan().
{
return atan (arg_1);
}
| static tangent<complex<rational> , complex<rational> > mmx::GLUE_20 | ( | const tangent< complex< rational >, complex< rational > > & | arg_1, |
| const tangent< complex< rational >, complex< rational > > & | arg_2 | ||
| ) | [static] |
Definition at line 105 of file glue_tangent_rational.cpp.
{
return arg_1 + arg_2;
}
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_20 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 110 of file glue_tangent_floating.cpp.
References asin().
{
return asin (arg_1);
}
| static complex<double> mmx::GLUE_20 | ( | const complex< double > & | arg_1, |
| const complex< double > & | arg_2 | ||
| ) | [static] |
Definition at line 108 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return arg_1 / arg_2;
}
| static complex<mmx_floating> mmx::GLUE_20 | ( | const complex< mmx_floating > & | arg_1, |
| const complex< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 109 of file glue_complex_floating.cpp.
{
return arg_1 / arg_2;
}
| static complex<generic> mmx::GLUE_20 | ( | const complex< generic > & | arg_1 | ) | [static] |
| static complex<rational> mmx::GLUE_21 | ( | const rational & | arg_1, |
| const complex< rational > & | arg_2 | ||
| ) | [static] |
Definition at line 109 of file glue_complex_rational.cpp.
{
return arg_1 / arg_2;
}
| static mmx_floating mmx::GLUE_21 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static interval<double> mmx::GLUE_21 | ( | const double & | arg_1, |
| const interval< double > & | arg_2 | ||
| ) | [static] |
Definition at line 110 of file glue_interval_double.cpp.
{
return arg_1 / arg_2;
}
| static interval<mmx_floating> mmx::GLUE_21 | ( | const mmx_floating & | arg_1, |
| const interval< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 113 of file glue_interval_floating.cpp.
{
return arg_1 / arg_2;
}
| static bool mmx::GLUE_21 | ( | const rational & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
Definition at line 108 of file glue_rational.cpp.
{
return arg_1 <= arg_2;
}
| static tangent<double, double> mmx::GLUE_21 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_21 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 115 of file glue_tangent_floating.cpp.
References atan().
{
return atan (arg_1);
}
| static bool mmx::GLUE_21 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 108 of file glue_integer.cpp.
{
return arg_1 > arg_2;
}
| static complex<double> mmx::GLUE_21 | ( | const double & | arg_1, |
| const complex< double > & | arg_2 | ||
| ) | [static] |
Definition at line 113 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), and glue_tangent_rational().
{
return arg_1 / arg_2;
}
| static tangent<complex<rational> , complex<rational> > mmx::GLUE_21 | ( | const tangent< complex< rational >, complex< rational > > & | arg_1, |
| const tangent< complex< rational >, complex< rational > > & | arg_2 | ||
| ) | [static] |
Definition at line 110 of file glue_tangent_rational.cpp.
{
return arg_1 - arg_2;
}
| static complex<mmx_floating> mmx::GLUE_21 | ( | const mmx_floating & | arg_1, |
| const complex< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 114 of file glue_complex_floating.cpp.
{
return arg_1 / arg_2;
}
| static complex<generic> mmx::GLUE_21 | ( | const complex< generic > & | arg_1 | ) | [static] |
| static complex<rational> mmx::GLUE_22 | ( | const complex< rational > & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
Definition at line 114 of file glue_complex_rational.cpp.
{
return arg_1 / arg_2;
}
| static mmx_floating mmx::GLUE_22 | ( | const mmx_floating & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
| static bool mmx::GLUE_22 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 113 of file glue_integer.cpp.
{
return arg_1 >= arg_2;
}
| static interval<double> mmx::GLUE_22 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 115 of file glue_interval_double.cpp.
References sqrt().
{
return sqrt (arg_1);
}
| static interval<mmx_floating> mmx::GLUE_22 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 118 of file glue_interval_floating.cpp.
References sqrt().
{
return sqrt (arg_1);
}
| static bool mmx::GLUE_22 | ( | const rational & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
Definition at line 113 of file glue_rational.cpp.
{
return arg_1 > arg_2;
}
| static bool mmx::GLUE_22 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
Definition at line 119 of file glue_tangent_double.cpp.
References is_finite().
{
return is_finite (arg_1);
}
| static bool mmx::GLUE_22 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 120 of file glue_tangent_floating.cpp.
References is_finite().
{
return is_finite (arg_1);
}
| static complex<double> mmx::GLUE_22 | ( | const complex< double > & | arg_1, |
| const double & | arg_2 | ||
| ) | [static] |
Definition at line 118 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), and glue_tangent_rational().
{
return arg_1 / arg_2;
}
| static tangent<complex<rational> , complex<rational> > mmx::GLUE_22 | ( | const tangent< complex< rational >, complex< rational > > & | arg_1, |
| const tangent< complex< rational >, complex< rational > > & | arg_2 | ||
| ) | [static] |
Definition at line 115 of file glue_tangent_rational.cpp.
{
return arg_1 * arg_2;
}
| static complex<mmx_floating> mmx::GLUE_22 | ( | const complex< mmx_floating > & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 119 of file glue_complex_floating.cpp.
{
return arg_1 / arg_2;
}
| static complex<generic> mmx::GLUE_22 | ( | const complex< generic > & | arg_1 | ) | [static] |
| static complex<generic> mmx::GLUE_23 | ( | const complex< rational > & | arg_1 | ) | [static] |
Definition at line 119 of file glue_complex_rational.cpp.
{
return as<complex<generic> > (arg_1);
}
| static mmx_floating mmx::GLUE_23 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static integer mmx::GLUE_23 | ( | const integer & | arg_1 | ) | [static] |
| static interval<double> mmx::GLUE_23 | ( | const interval< double > & | arg_1 | ) | [static] |
| static interval<mmx_floating> mmx::GLUE_23 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 123 of file glue_interval_floating.cpp.
References exp().
{
return exp (arg_1);
}
| static bool mmx::GLUE_23 | ( | const rational & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
Definition at line 118 of file glue_rational.cpp.
{
return arg_1 >= arg_2;
}
| static bool mmx::GLUE_23 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 125 of file glue_tangent_floating.cpp.
References is_infinite().
{
return is_infinite (arg_1);
}
| static tangent<complex<rational> , complex<rational> > mmx::GLUE_23 | ( | const tangent< complex< rational >, complex< rational > > & | arg_1, |
| const tangent< complex< rational >, complex< rational > > & | arg_2 | ||
| ) | [static] |
Definition at line 120 of file glue_tangent_rational.cpp.
{
return arg_1 / arg_2;
}
| static double mmx::GLUE_23 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 123 of file glue_complex_double.cpp.
References abs().
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), and glue_tangent_rational().
{
return abs (arg_1);
}
| static bool mmx::GLUE_23 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
Definition at line 124 of file glue_tangent_double.cpp.
References is_infinite().
{
return is_infinite (arg_1);
}
| static mmx_floating mmx::GLUE_23 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
| static complex<generic> mmx::GLUE_23 | ( | const complex< generic > & | arg_1 | ) | [static] |
Definition at line 117 of file glue_complex_generic.cpp.
References acos().
{
return acos (arg_1);
}
| static mmx_floating mmx::GLUE_24 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static integer mmx::GLUE_24 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
| static interval<double> mmx::GLUE_24 | ( | const interval< double > & | arg_1 | ) | [static] |
| static interval<mmx_floating> mmx::GLUE_24 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 128 of file glue_interval_floating.cpp.
References log().
{
return log (arg_1);
}
| static bool mmx::GLUE_24 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
Definition at line 129 of file glue_tangent_double.cpp.
References is_nan().
{
return is_nan (arg_1);
}
| static complex<generic> mmx::GLUE_24 | ( | const complex< generic > & | arg_1 | ) | [static] |
Definition at line 122 of file glue_complex_generic.cpp.
References asin().
{
return asin (arg_1);
}
| static tangent<complex<rational> , complex<rational> > mmx::GLUE_24 | ( | const tangent< rational, rational > & | arg_1 | ) | [static] |
Definition at line 125 of file glue_tangent_rational.cpp.
{
return as<tangent<complex<rational> , complex<rational> > > (arg_1);
}
| static bool mmx::GLUE_24 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 130 of file glue_tangent_floating.cpp.
References is_nan().
{
return is_nan (arg_1);
}
| static rational mmx::GLUE_24 | ( | const rational & | arg_1 | ) | [static] |
| static double mmx::GLUE_24 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 128 of file glue_complex_double.cpp.
References arg().
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), and glue_tangent_rational().
{
return arg (arg_1);
}
| static mmx_floating mmx::GLUE_24 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
| static mmx_floating mmx::GLUE_25 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static integer mmx::GLUE_25 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
| static interval<double> mmx::GLUE_25 | ( | const interval< double > & | arg_1, |
| const interval< double > & | arg_2 | ||
| ) | [static] |
Definition at line 130 of file glue_interval_double.cpp.
References pow().
{
return pow (arg_1, arg_2);
}
| static rational mmx::GLUE_25 | ( | const rational & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
| static tangent<double, double> mmx::GLUE_25 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
Definition at line 134 of file glue_tangent_double.cpp.
References times_infinity().
{
return times_infinity (arg_1);
}
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_25 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 135 of file glue_tangent_floating.cpp.
References times_infinity().
{
return times_infinity (arg_1);
}
| static tangent<generic, generic> mmx::GLUE_25 | ( | const tangent< complex< rational >, complex< rational > > & | arg_1 | ) | [static] |
Definition at line 130 of file glue_tangent_rational.cpp.
{
return as<tangent<generic, generic> > (arg_1);
}
| static interval<mmx_floating> mmx::GLUE_25 | ( | const interval< mmx_floating > & | arg_1, |
| const interval< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 133 of file glue_interval_floating.cpp.
References pow().
{
return pow (arg_1, arg_2);
}
| static complex<double> mmx::GLUE_25 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 133 of file glue_complex_double.cpp.
References sqrt().
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), and glue_tangent_rational().
{
return sqrt (arg_1);
}
| static complex<mmx_floating> mmx::GLUE_25 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 134 of file glue_complex_floating.cpp.
References sqrt().
{
return sqrt (arg_1);
}
| static complex<generic> mmx::GLUE_25 | ( | const complex< generic > & | arg_1 | ) | [static] |
Definition at line 127 of file glue_complex_generic.cpp.
References atan().
{
return atan (arg_1);
}
| static integer mmx::GLUE_26 | ( | const integer & | arg_1 | ) | [static] |
Definition at line 133 of file glue_integer.cpp.
References factorial().
{
return factorial (arg_1);
}
| static interval<mmx_floating> mmx::GLUE_26 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 138 of file glue_interval_floating.cpp.
References cos().
{
return cos (arg_1);
}
| static mmx_floating mmx::GLUE_26 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static interval<double> mmx::GLUE_26 | ( | const interval< double > & | arg_1 | ) | [static] |
| static rational mmx::GLUE_26 | ( | const rational & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
| static int mmx::GLUE_26 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
Definition at line 139 of file glue_tangent_double.cpp.
References precision().
{
return precision (arg_1);
}
| static int mmx::GLUE_26 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 140 of file glue_tangent_floating.cpp.
References precision().
{
return precision (arg_1);
}
| static complex<double> mmx::GLUE_26 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 138 of file glue_complex_double.cpp.
References exp().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), and glue_tangent_floating().
{
return exp (arg_1);
}
| static complex<mmx_floating> mmx::GLUE_26 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
| static mmx_floating mmx::GLUE_27 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static integer mmx::GLUE_27 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 138 of file glue_integer.cpp.
References binomial().
{
return binomial (arg_1, arg_2);
}
| static interval<double> mmx::GLUE_27 | ( | const interval< double > & | arg_1 | ) | [static] |
| static interval<mmx_floating> mmx::GLUE_27 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 143 of file glue_interval_floating.cpp.
References sin().
{
return sin (arg_1);
}
| static rational mmx::GLUE_27 | ( | const rational & | arg_1 | ) | [static] |
| static int mmx::GLUE_27 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
Definition at line 144 of file glue_tangent_double.cpp.
References exponent().
{
return exponent (arg_1);
}
| static int mmx::GLUE_27 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 145 of file glue_tangent_floating.cpp.
References exponent().
{
return exponent (arg_1);
}
| static complex<double> mmx::GLUE_27 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 143 of file glue_complex_double.cpp.
References log().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), and glue_tangent_floating().
{
return log (arg_1);
}
| static complex<mmx_floating> mmx::GLUE_27 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
| static mmx_floating mmx::GLUE_28 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static bool mmx::GLUE_28 | ( | const integer & | arg_1 | ) | [static] |
Definition at line 143 of file glue_integer.cpp.
References is_probable_prime().
{
return is_probable_prime (arg_1);
}
| static interval<double> mmx::GLUE_28 | ( | const interval< double > & | arg_1 | ) | [static] |
| static interval<mmx_floating> mmx::GLUE_28 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 148 of file glue_interval_floating.cpp.
References tan().
{
return tan (arg_1);
}
| static double mmx::GLUE_28 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
Definition at line 149 of file glue_tangent_double.cpp.
References magnitude().
{
return magnitude (arg_1);
}
| static double mmx::GLUE_28 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 150 of file glue_tangent_floating.cpp.
References magnitude().
{
return magnitude (arg_1);
}
| static rational mmx::GLUE_28 | ( | const rational & | arg_1 | ) | [static] |
| static complex<double> mmx::GLUE_28 | ( | const complex< double > & | arg_1, |
| const complex< double > & | arg_2 | ||
| ) | [static] |
Definition at line 148 of file glue_complex_double.cpp.
References pow().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), and glue_tangent_floating().
{
return pow (arg_1, arg_2);
}
| static complex<mmx_floating> mmx::GLUE_28 | ( | const complex< mmx_floating > & | arg_1, |
| const complex< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 149 of file glue_complex_floating.cpp.
References pow().
{
return pow (arg_1, arg_2);
}
| static mmx_floating mmx::GLUE_29 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static interval<double> mmx::GLUE_29 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 150 of file glue_interval_double.cpp.
References acos().
{
return acos (arg_1);
}
| static rational mmx::GLUE_29 | ( | const rational & | arg_1 | ) | [static] |
| static tangent<double, double> mmx::GLUE_29 | ( | const tangent< double, double > & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 154 of file glue_tangent_double.cpp.
{
return incexp2 (arg_1, arg_2);
}
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_29 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 155 of file glue_tangent_floating.cpp.
{
return incexp2 (arg_1, arg_2);
}
| static interval<mmx_floating> mmx::GLUE_29 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 153 of file glue_interval_floating.cpp.
References acos().
{
return acos (arg_1);
}
| static complex<double> mmx::GLUE_29 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 153 of file glue_complex_double.cpp.
References cos().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), and glue_tangent_floating().
{
return cos (arg_1);
}
| static integer mmx::GLUE_29 | ( | const integer & | arg_1 | ) | [static] |
Definition at line 148 of file glue_integer.cpp.
References probable_next_prime().
{
return probable_next_prime (arg_1);
}
| static complex<mmx_floating> mmx::GLUE_29 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 19 of file glue_complex_rational.cpp.
{
return complex<rational > (arg_1);
}
| static mmx_floating mmx::GLUE_3 | ( | const integer & | arg_1 | ) | [static] |
Definition at line 21 of file glue_floating.cpp.
References mmx_floating.
{
return mmx_floating (arg_1);
}
| static integer mmx::GLUE_3 | ( | const int & | arg_1 | ) | [static] |
Definition at line 18 of file glue_integer.cpp.
{
return integer (arg_1);
}
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_3 | ( | const mmx_floating & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 25 of file glue_tangent_floating.cpp.
{
return tangent<mmx_floating, mmx_floating > (arg_1, arg_2);
}
| static generic mmx::GLUE_3 | ( | const tangent< generic, generic > & | arg_1 | ) | [static] |
| static tangent<rational, rational> mmx::GLUE_3 | ( | const rational & | arg_1, |
| const rational & | arg_2 | ||
| ) | [static] |
Definition at line 20 of file glue_tangent_rational.cpp.
{
return tangent<rational, rational > (arg_1, arg_2);
}
| static tangent<double, double> mmx::GLUE_3 | ( | const double & | arg_1, |
| const double & | arg_2 | ||
| ) | [static] |
Definition at line 24 of file glue_tangent_double.cpp.
{
return tangent<double, double > (arg_1, arg_2);
}
| static complex<double> mmx::GLUE_3 | ( | const double & | arg_1 | ) | [static] |
Definition at line 23 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return complex<double > (arg_1);
}
| static complex<mmx_floating> mmx::GLUE_3 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 24 of file glue_complex_floating.cpp.
{
return complex<mmx_floating > (arg_1);
}
| static generic mmx::GLUE_3 | ( | const complex< generic > & | arg_1 | ) | [static] |
| static mmx_floating mmx::GLUE_30 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static integer mmx::GLUE_30 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 153 of file glue_integer.cpp.
{
return arg_1 & arg_2;
}
| static complex<mmx_floating> mmx::GLUE_30 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
| static interval<mmx_floating> mmx::GLUE_30 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 158 of file glue_interval_floating.cpp.
References asin().
{
return asin (arg_1);
}
| static interval<double> mmx::GLUE_30 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 155 of file glue_interval_double.cpp.
References asin().
{
return asin (arg_1);
}
| static rational mmx::GLUE_30 | ( | const rational & | arg_1 | ) | [static] |
| static tangent<double, double> mmx::GLUE_30 | ( | const tangent< double, double > & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 159 of file glue_tangent_double.cpp.
{
return decexp2 (arg_1, arg_2);
}
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_30 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 160 of file glue_tangent_floating.cpp.
{
return decexp2 (arg_1, arg_2);
}
| static complex<double> mmx::GLUE_30 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 158 of file glue_complex_double.cpp.
References sin().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), and glue_tangent_floating().
{
return sin (arg_1);
}
| static bool mmx::GLUE_31 | ( | const mmx_floating & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 161 of file glue_floating.cpp.
{
return arg_1 < arg_2;
}
| static integer mmx::GLUE_31 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 158 of file glue_integer.cpp.
{
return arg_1 | arg_2;
}
| static interval<double> mmx::GLUE_31 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 160 of file glue_interval_double.cpp.
References atan().
{
return atan (arg_1);
}
| static interval<mmx_floating> mmx::GLUE_31 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 163 of file glue_interval_floating.cpp.
References atan().
{
return atan (arg_1);
}
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_31 | ( | const tangent< rational, rational > & | arg_1 | ) | [static] |
Definition at line 165 of file glue_tangent_floating.cpp.
{
return as<tangent<mmx_floating, mmx_floating> > (arg_1);
}
| static complex<double> mmx::GLUE_31 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 163 of file glue_complex_double.cpp.
References tan().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return tan (arg_1);
}
| static complex<mmx_floating> mmx::GLUE_31 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
| static tangent<generic, generic> mmx::GLUE_31 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
Definition at line 164 of file glue_tangent_double.cpp.
{
return as<tangent<generic, generic> > (arg_1);
}
| static bool mmx::GLUE_32 | ( | const mmx_floating & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 166 of file glue_floating.cpp.
{
return arg_1 <= arg_2;
}
| static integer mmx::GLUE_32 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 163 of file glue_integer.cpp.
{
return arg_1 ^ arg_2;
}
| static bool mmx::GLUE_32 | ( | const interval< double > & | arg_1, |
| const interval< double > & | arg_2 | ||
| ) | [static] |
Definition at line 165 of file glue_interval_double.cpp.
{
return arg_1 < arg_2;
}
| static bool mmx::GLUE_32 | ( | const interval< mmx_floating > & | arg_1, |
| const interval< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 168 of file glue_interval_floating.cpp.
{
return arg_1 < arg_2;
}
| static tangent<double, double> mmx::GLUE_32 | ( | const tangent< rational, rational > & | arg_1 | ) | [static] |
Definition at line 169 of file glue_tangent_double.cpp.
{
return as<tangent<double, double> > (arg_1);
}
| static tangent<generic, generic> mmx::GLUE_32 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 170 of file glue_tangent_floating.cpp.
{
return as<tangent<generic, generic> > (arg_1);
}
| static complex<double> mmx::GLUE_32 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 168 of file glue_complex_double.cpp.
References acos().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return acos (arg_1);
}
| static complex<mmx_floating> mmx::GLUE_32 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 169 of file glue_complex_floating.cpp.
References acos().
{
return acos (arg_1);
}
| static bool mmx::GLUE_33 | ( | const mmx_floating & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 171 of file glue_floating.cpp.
{
return arg_1 > arg_2;
}
| static bool mmx::GLUE_33 | ( | const interval< double > & | arg_1, |
| const interval< double > & | arg_2 | ||
| ) | [static] |
Definition at line 170 of file glue_interval_double.cpp.
{
return arg_1 > arg_2;
}
| static integer mmx::GLUE_33 | ( | const integer & | arg_1 | ) | [static] |
Definition at line 168 of file glue_integer.cpp.
{
return ~arg_1;
}
| static bool mmx::GLUE_33 | ( | const interval< mmx_floating > & | arg_1, |
| const interval< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 173 of file glue_interval_floating.cpp.
{
return arg_1 > arg_2;
}
| static complex<double> mmx::GLUE_33 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 173 of file glue_complex_double.cpp.
References asin().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return asin (arg_1);
}
| static complex<mmx_floating> mmx::GLUE_33 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 174 of file glue_complex_floating.cpp.
References asin().
{
return asin (arg_1);
}
| static int mmx::GLUE_34 | ( | const integer & | arg_1 | ) | [static] |
Definition at line 173 of file glue_integer.cpp.
{
return bit_size (arg_1);
}
| static bool mmx::GLUE_34 | ( | const mmx_floating & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
Definition at line 176 of file glue_floating.cpp.
{
return arg_1 >= arg_2;
}
| static bool mmx::GLUE_34 | ( | const interval< mmx_floating > & | arg_1, |
| const interval< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 178 of file glue_interval_floating.cpp.
{
return arg_1 <= arg_2;
}
| static bool mmx::GLUE_34 | ( | const interval< double > & | arg_1, |
| const interval< double > & | arg_2 | ||
| ) | [static] |
Definition at line 175 of file glue_interval_double.cpp.
{
return arg_1 <= arg_2;
}
| static complex<double> mmx::GLUE_34 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 178 of file glue_complex_double.cpp.
References atan().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return atan (arg_1);
}
| static complex<mmx_floating> mmx::GLUE_34 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 179 of file glue_complex_floating.cpp.
References atan().
{
return atan (arg_1);
}
| static mmx_floating mmx::GLUE_35 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static bool mmx::GLUE_35 | ( | const integer & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 178 of file glue_integer.cpp.
{
return arg_1[arg_2];
}
| static bool mmx::GLUE_35 | ( | const interval< double > & | arg_1, |
| const interval< double > & | arg_2 | ||
| ) | [static] |
Definition at line 180 of file glue_interval_double.cpp.
{
return arg_1 >= arg_2;
}
| static bool mmx::GLUE_35 | ( | const interval< mmx_floating > & | arg_1, |
| const interval< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 183 of file glue_interval_floating.cpp.
{
return arg_1 >= arg_2;
}
| static tangent<complex<double> , complex<double> > mmx::GLUE_35 | ( | const complex< double > & | arg_1, |
| const complex< double > & | arg_2 | ||
| ) | [static] |
Definition at line 184 of file glue_tangent_double.cpp.
{
return tangent<complex<double>, complex<double> > (arg_1, arg_2);
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_35 | ( | const complex< mmx_floating > & | arg_1, |
| const complex< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 185 of file glue_tangent_floating.cpp.
{
return tangent<complex<mmx_floating>, complex<mmx_floating> > (arg_1, arg_2);
}
| static bool mmx::GLUE_35 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 183 of file glue_complex_double.cpp.
References is_finite().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return is_finite (arg_1);
}
| static bool mmx::GLUE_35 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 184 of file glue_complex_floating.cpp.
References is_finite().
{
return is_finite (arg_1);
}
| static mmx_floating mmx::GLUE_36 | ( | const mmx_floating & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
| static int mmx::GLUE_36 | ( | const integer & | arg_1 | ) | [static] |
Definition at line 183 of file glue_integer.cpp.
{
return hamming_norm (arg_1);
}
| static interval<double> mmx::GLUE_36 | ( | const interval< double > & | arg_1 | ) | [static] |
| static interval<mmx_floating> mmx::GLUE_36 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 188 of file glue_interval_floating.cpp.
References abs().
{
return abs (arg_1);
}
| static complex<mmx_floating> mmx::GLUE_36 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1 | ) | [static] |
Definition at line 190 of file glue_tangent_floating.cpp.
References base().
{
return base (arg_1);
}
| static complex<double> mmx::GLUE_36 | ( | const tangent< complex< double >, complex< double > > & | arg_1 | ) | [static] |
| static bool mmx::GLUE_36 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 188 of file glue_complex_double.cpp.
References is_infinite().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return is_infinite (arg_1);
}
| static bool mmx::GLUE_36 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 189 of file glue_complex_floating.cpp.
References is_infinite().
{
return is_infinite (arg_1);
}
| static mmx_floating mmx::GLUE_37 | ( | const mmx_floating & | arg_1, |
| const mmx_floating & | arg_2 | ||
| ) | [static] |
| static interval<double> mmx::GLUE_37 | ( | const interval< double > & | arg_1, |
| const interval< double > & | arg_2 | ||
| ) | [static] |
Definition at line 190 of file glue_interval_double.cpp.
References min().
{
return min (arg_1, arg_2);
}
| static int mmx::GLUE_37 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 188 of file glue_integer.cpp.
{
return hamming_distance (arg_1, arg_2);
}
| static interval<mmx_floating> mmx::GLUE_37 | ( | const interval< mmx_floating > & | arg_1, |
| const interval< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 193 of file glue_interval_floating.cpp.
References min().
{
return min (arg_1, arg_2);
}
| static complex<mmx_floating> mmx::GLUE_37 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1 | ) | [static] |
Definition at line 195 of file glue_tangent_floating.cpp.
References slope().
{
return slope (arg_1);
}
| static complex<double> mmx::GLUE_37 | ( | const tangent< complex< double >, complex< double > > & | arg_1 | ) | [static] |
Definition at line 194 of file glue_tangent_double.cpp.
References slope().
{
return slope (arg_1);
}
| static bool mmx::GLUE_37 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 193 of file glue_complex_double.cpp.
References is_nan().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return is_nan (arg_1);
}
| static bool mmx::GLUE_37 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 194 of file glue_complex_floating.cpp.
References is_nan().
{
return is_nan (arg_1);
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_38 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1 | ) | [static] |
Definition at line 200 of file glue_tangent_floating.cpp.
{
return -arg_1;
}
| static interval<double> mmx::GLUE_38 | ( | const interval< double > & | arg_1, |
| const interval< double > & | arg_2 | ||
| ) | [static] |
Definition at line 195 of file glue_interval_double.cpp.
References max().
{
return max (arg_1, arg_2);
}
| static mmx_floating mmx::GLUE_38 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static interval<mmx_floating> mmx::GLUE_38 | ( | const interval< mmx_floating > & | arg_1, |
| const interval< mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 198 of file glue_interval_floating.cpp.
References max().
{
return max (arg_1, arg_2);
}
| static tangent<complex<double> , complex<double> > mmx::GLUE_38 | ( | const tangent< complex< double >, complex< double > > & | arg_1 | ) | [static] |
Definition at line 199 of file glue_tangent_double.cpp.
{
return -arg_1;
}
| static complex<mmx_floating> mmx::GLUE_38 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 199 of file glue_complex_floating.cpp.
References times_infinity().
{
return times_infinity (arg_1);
}
| static complex<double> mmx::GLUE_38 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 198 of file glue_complex_double.cpp.
References times_infinity().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return times_infinity (arg_1);
}
| static mmx_floating mmx::GLUE_39 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static interval<double> mmx::GLUE_39 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 200 of file glue_interval_double.cpp.
References floor().
{
return floor (arg_1);
}
| static interval<mmx_floating> mmx::GLUE_39 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 203 of file glue_interval_floating.cpp.
References floor().
{
return floor (arg_1);
}
| static tangent<complex<double> , complex<double> > mmx::GLUE_39 | ( | const tangent< complex< double >, complex< double > > & | arg_1 | ) | [static] |
Definition at line 204 of file glue_tangent_double.cpp.
References square().
{
return square (arg_1);
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_39 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1 | ) | [static] |
Definition at line 205 of file glue_tangent_floating.cpp.
References square().
{
return square (arg_1);
}
| static int mmx::GLUE_39 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 203 of file glue_complex_double.cpp.
References precision().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return precision (arg_1);
}
| static int mmx::GLUE_39 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 204 of file glue_complex_floating.cpp.
References precision().
{
return precision (arg_1);
}
| static rational mmx::GLUE_4 | ( | const complex< rational > & | arg_1 | ) | [static] |
| static mmx_floating mmx::GLUE_4 | ( | const rational & | arg_1 | ) | [static] |
Definition at line 26 of file glue_floating.cpp.
References mmx_floating.
{
return mmx_floating (arg_1);
}
| static int mmx::GLUE_4 | ( | const integer & | arg_1 | ) | [static] |
| static double mmx::GLUE_4 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 25 of file glue_interval_double.cpp.
References lower().
{
return lower (arg_1);
}
| static mmx_floating mmx::GLUE_4 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 28 of file glue_interval_floating.cpp.
References lower().
{
return lower (arg_1);
}
| static int mmx::GLUE_4 | ( | const modulus< int > & | arg_1 | ) | [static] |
Definition at line 27 of file glue_modular_int.cpp.
{
return *arg_1;
}
| static double mmx::GLUE_4 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
| static mmx_floating mmx::GLUE_4 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 30 of file glue_tangent_floating.cpp.
References base().
{
return base (arg_1);
}
| static rational mmx::GLUE_4 | ( | const tangent< rational, rational > & | arg_1 | ) | [static] |
Definition at line 25 of file glue_tangent_rational.cpp.
References base().
{
return base (arg_1);
}
| static double mmx::GLUE_4 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 28 of file glue_complex_double.cpp.
References Re().
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return Re (arg_1);
}
| static mmx_floating mmx::GLUE_4 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
| static generic mmx::GLUE_4 | ( | const complex< generic > & | arg_1 | ) | [static] |
| static generic mmx::GLUE_4 | ( | const tangent< generic, generic > & | arg_1 | ) | [static] |
Definition at line 22 of file glue_tangent_generic.cpp.
References slope().
{
return slope (arg_1);
}
| static mmx_floating mmx::GLUE_40 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static interval<double> mmx::GLUE_40 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 205 of file glue_interval_double.cpp.
References ceil().
{
return ceil (arg_1);
}
| static interval<mmx_floating> mmx::GLUE_40 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 208 of file glue_interval_floating.cpp.
References ceil().
{
return ceil (arg_1);
}
| static tangent<complex<double> , complex<double> > mmx::GLUE_40 | ( | const tangent< complex< double >, complex< double > > & | arg_1, |
| const tangent< complex< double >, complex< double > > & | arg_2 | ||
| ) | [static] |
Definition at line 209 of file glue_tangent_double.cpp.
{
return arg_1 + arg_2;
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_40 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1, |
| const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_2 | ||
| ) | [static] |
Definition at line 210 of file glue_tangent_floating.cpp.
{
return arg_1 + arg_2;
}
| static int mmx::GLUE_40 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 208 of file glue_complex_double.cpp.
References exponent().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return exponent (arg_1);
}
| static int mmx::GLUE_40 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 209 of file glue_complex_floating.cpp.
References exponent().
{
return exponent (arg_1);
}
| static mmx_floating mmx::GLUE_41 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static tangent<complex<double> , complex<double> > mmx::GLUE_41 | ( | const tangent< complex< double >, complex< double > > & | arg_1, |
| const tangent< complex< double >, complex< double > > & | arg_2 | ||
| ) | [static] |
Definition at line 214 of file glue_tangent_double.cpp.
{
return arg_1 - arg_2;
}
| static interval<double> mmx::GLUE_41 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 210 of file glue_interval_double.cpp.
References trunc().
{
return trunc (arg_1);
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_41 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1, |
| const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_2 | ||
| ) | [static] |
Definition at line 215 of file glue_tangent_floating.cpp.
{
return arg_1 - arg_2;
}
| static interval<mmx_floating> mmx::GLUE_41 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 213 of file glue_interval_floating.cpp.
References trunc().
{
return trunc (arg_1);
}
| static double mmx::GLUE_41 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 213 of file glue_complex_double.cpp.
References magnitude().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return magnitude (arg_1);
}
| static double mmx::GLUE_41 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 214 of file glue_complex_floating.cpp.
References magnitude().
{
return magnitude (arg_1);
}
| static bool mmx::GLUE_42 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 216 of file glue_floating.cpp.
References is_finite().
{
return is_finite (arg_1);
}
| static complex<mmx_floating> mmx::GLUE_42 | ( | const complex< mmx_floating > & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 219 of file glue_complex_floating.cpp.
{
return incexp2 (arg_1, arg_2);
}
| static interval<mmx_floating> mmx::GLUE_42 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 218 of file glue_interval_floating.cpp.
References round().
{
return round (arg_1);
}
| static tangent<complex<double> , complex<double> > mmx::GLUE_42 | ( | const tangent< complex< double >, complex< double > > & | arg_1, |
| const tangent< complex< double >, complex< double > > & | arg_2 | ||
| ) | [static] |
Definition at line 219 of file glue_tangent_double.cpp.
{
return arg_1 * arg_2;
}
| static interval<double> mmx::GLUE_42 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 215 of file glue_interval_double.cpp.
References round().
{
return round (arg_1);
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_42 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1, |
| const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_2 | ||
| ) | [static] |
Definition at line 220 of file glue_tangent_floating.cpp.
{
return arg_1 * arg_2;
}
| static complex<double> mmx::GLUE_42 | ( | const complex< double > & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 218 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return incexp2 (arg_1, arg_2);
}
| static bool mmx::GLUE_43 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 221 of file glue_floating.cpp.
References is_infinite().
{
return is_infinite (arg_1);
}
| static bool mmx::GLUE_43 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 220 of file glue_interval_double.cpp.
References is_finite().
{
return is_finite (arg_1);
}
| static bool mmx::GLUE_43 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 223 of file glue_interval_floating.cpp.
References is_finite().
{
return is_finite (arg_1);
}
| static tangent<complex<double> , complex<double> > mmx::GLUE_43 | ( | const tangent< complex< double >, complex< double > > & | arg_1, |
| const tangent< complex< double >, complex< double > > & | arg_2 | ||
| ) | [static] |
Definition at line 224 of file glue_tangent_double.cpp.
{
return arg_1 / arg_2;
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_43 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1, |
| const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_2 | ||
| ) | [static] |
Definition at line 225 of file glue_tangent_floating.cpp.
{
return arg_1 / arg_2;
}
| static complex<double> mmx::GLUE_43 | ( | const complex< double > & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 223 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return decexp2 (arg_1, arg_2);
}
| static complex<mmx_floating> mmx::GLUE_43 | ( | const complex< mmx_floating > & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 224 of file glue_complex_floating.cpp.
{
return decexp2 (arg_1, arg_2);
}
| static bool mmx::GLUE_44 | ( | const mmx_floating & | arg_1 | ) | [static] |
| static double mmx::GLUE_44 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 228 of file glue_complex_double.cpp.
References rounding_error().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return rounding_error (arg_1);
}
| static bool mmx::GLUE_44 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 225 of file glue_interval_double.cpp.
References is_infinite().
{
return is_infinite (arg_1);
}
| static bool mmx::GLUE_44 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 228 of file glue_interval_floating.cpp.
References is_infinite().
{
return is_infinite (arg_1);
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_44 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1 | ) | [static] |
Definition at line 230 of file glue_tangent_floating.cpp.
References sqrt().
{
return sqrt (arg_1);
}
| static mmx_floating mmx::GLUE_44 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 229 of file glue_complex_floating.cpp.
References rounding_error().
{
return rounding_error (arg_1);
}
| static mmx_floating mmx::GLUE_45 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 231 of file glue_floating.cpp.
References times_infinity().
{
return times_infinity (arg_1);
}
| static bool mmx::GLUE_45 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 233 of file glue_interval_floating.cpp.
References is_nan().
{
return is_nan (arg_1);
}
| static bool mmx::GLUE_45 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 230 of file glue_interval_double.cpp.
References is_nan().
{
return is_nan (arg_1);
}
| static double mmx::GLUE_45 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 233 of file glue_complex_double.cpp.
References additive_error().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return additive_error (arg_1);
}
| static mmx_floating mmx::GLUE_45 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 234 of file glue_complex_floating.cpp.
References additive_error().
{
return additive_error (arg_1);
}
| static interval<mmx_floating> mmx::GLUE_46 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 238 of file glue_interval_floating.cpp.
References times_infinity().
{
return times_infinity (arg_1);
}
| static int mmx::GLUE_46 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 236 of file glue_floating.cpp.
References precision().
{
return precision (arg_1);
}
| static double mmx::GLUE_46 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 238 of file glue_complex_double.cpp.
References multiplicative_error().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return multiplicative_error (arg_1);
}
| static mmx_floating mmx::GLUE_46 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 239 of file glue_complex_floating.cpp.
References multiplicative_error().
{
return multiplicative_error (arg_1);
}
| static interval<double> mmx::GLUE_46 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 235 of file glue_interval_double.cpp.
References times_infinity().
{
return times_infinity (arg_1);
}
| static mmx_floating mmx::GLUE_47 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 241 of file glue_floating.cpp.
References next_above().
{
return next_above (arg_1);
}
| static int mmx::GLUE_47 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 240 of file glue_interval_double.cpp.
References precision().
{
return precision (arg_1);
}
| static int mmx::GLUE_47 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 243 of file glue_interval_floating.cpp.
References precision().
{
return precision (arg_1);
}
| static tangent<complex<double> , complex<double> > mmx::GLUE_47 | ( | const tangent< complex< double >, complex< double > > & | arg_1, |
| const tangent< complex< double >, complex< double > > & | arg_2 | ||
| ) | [static] |
Definition at line 244 of file glue_tangent_double.cpp.
References pow().
{
return pow (arg_1, arg_2);
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_47 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1, |
| const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_2 | ||
| ) | [static] |
Definition at line 245 of file glue_tangent_floating.cpp.
References pow().
{
return pow (arg_1, arg_2);
}
| static double mmx::GLUE_47 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 243 of file glue_complex_double.cpp.
References elementary_error().
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return elementary_error (arg_1);
}
| static mmx_floating mmx::GLUE_47 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 244 of file glue_complex_floating.cpp.
References elementary_error().
{
return elementary_error (arg_1);
}
| static mmx_floating mmx::GLUE_48 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 246 of file glue_floating.cpp.
References next_below().
{
return next_below (arg_1);
}
| static int mmx::GLUE_48 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 245 of file glue_interval_double.cpp.
References exponent().
{
return exponent (arg_1);
}
| static int mmx::GLUE_48 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 248 of file glue_interval_floating.cpp.
References exponent().
{
return exponent (arg_1);
}
| static complex<generic> mmx::GLUE_48 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 248 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return as<complex<generic> > (arg_1);
}
| static complex<mmx_floating> mmx::GLUE_48 | ( | const complex< rational > & | arg_1 | ) | [static] |
Definition at line 249 of file glue_complex_floating.cpp.
{
return as<complex<mmx_floating> > (arg_1);
}
| static int mmx::GLUE_49 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 251 of file glue_floating.cpp.
References exponent().
{
return exponent (arg_1);
}
| static double mmx::GLUE_49 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 250 of file glue_interval_double.cpp.
References magnitude().
{
return magnitude (arg_1);
}
| static double mmx::GLUE_49 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 253 of file glue_interval_floating.cpp.
References magnitude().
{
return magnitude (arg_1);
}
| static complex<double> mmx::GLUE_49 | ( | const complex< rational > & | arg_1 | ) | [static] |
Definition at line 253 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_floating(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return as<complex<double> > (arg_1);
}
| static complex<generic> mmx::GLUE_49 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 254 of file glue_complex_floating.cpp.
{
return as<complex<generic> > (arg_1);
}
| static rational mmx::GLUE_5 | ( | const complex< rational > & | arg_1 | ) | [static] |
| static mmx_floating mmx::GLUE_5 | ( | const int & | arg_1 | ) | [static] |
Definition at line 31 of file glue_floating.cpp.
References mmx_floating.
{
return mmx_floating (arg_1);
}
| static double mmx::GLUE_5 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 30 of file glue_interval_double.cpp.
References upper().
{
return upper (arg_1);
}
| static mmx_floating mmx::GLUE_5 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 33 of file glue_interval_floating.cpp.
References upper().
{
return upper (arg_1);
}
| static rational mmx::GLUE_5 | ( | const integer & | arg_1, |
| const integer & | arg_2 | ||
| ) | [static] |
Definition at line 28 of file glue_rational.cpp.
References rational_new.
{
return rational_new (arg_1, arg_2);
}
| static double mmx::GLUE_5 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
Definition at line 34 of file glue_tangent_double.cpp.
References slope().
{
return slope (arg_1);
}
| static mmx_floating mmx::GLUE_5 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 35 of file glue_tangent_floating.cpp.
References slope().
{
return slope (arg_1);
}
| static rational mmx::GLUE_5 | ( | const tangent< rational, rational > & | arg_1 | ) | [static] |
Definition at line 30 of file glue_tangent_rational.cpp.
References slope().
{
return slope (arg_1);
}
| static tangent<generic, generic> mmx::GLUE_5 | ( | const tangent< generic, generic > & | arg_1 | ) | [static] |
Definition at line 27 of file glue_tangent_generic.cpp.
{
return -arg_1;
}
| static double mmx::GLUE_5 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 33 of file glue_complex_double.cpp.
References Im().
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return Im (arg_1);
}
| static mmx_floating mmx::GLUE_5 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
| static complex<generic> mmx::GLUE_5 | ( | const complex< generic > & | arg_1 | ) | [static] |
| static interval<mmx_floating> mmx::GLUE_50 | ( | const interval< mmx_floating > & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 258 of file glue_interval_floating.cpp.
{
return incexp2 (arg_1, arg_2);
}
| static double mmx::GLUE_50 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 256 of file glue_floating.cpp.
References magnitude().
Referenced by glue_floating(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return magnitude (arg_1);
}
| static interval<double> mmx::GLUE_50 | ( | const interval< double > & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 255 of file glue_interval_double.cpp.
{
return incexp2 (arg_1, arg_2);
}
| static mmx_floating mmx::GLUE_51 | ( | const mmx_floating & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 261 of file glue_floating.cpp.
Referenced by glue_floating(), glue_interval_double(), glue_interval_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return incexp2 (arg_1, arg_2);
}
| static interval<double> mmx::GLUE_51 | ( | const interval< double > & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 260 of file glue_interval_double.cpp.
{
return decexp2 (arg_1, arg_2);
}
| static interval<mmx_floating> mmx::GLUE_51 | ( | const interval< mmx_floating > & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 263 of file glue_interval_floating.cpp.
{
return decexp2 (arg_1, arg_2);
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_51 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1 | ) | [static] |
Definition at line 265 of file glue_tangent_floating.cpp.
References acos().
{
return acos (arg_1);
}
| static mmx_floating mmx::GLUE_52 | ( | const mmx_floating & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 266 of file glue_floating.cpp.
Referenced by glue_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return decexp2 (arg_1, arg_2);
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_52 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1 | ) | [static] |
Definition at line 270 of file glue_tangent_floating.cpp.
References asin().
{
return asin (arg_1);
}
| static mmx_floating mmx::GLUE_53 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 271 of file glue_floating.cpp.
References rounding_error().
Referenced by glue_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return rounding_error (arg_1);
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_53 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1 | ) | [static] |
Definition at line 275 of file glue_tangent_floating.cpp.
References atan().
{
return atan (arg_1);
}
| static mmx_floating mmx::GLUE_54 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 276 of file glue_floating.cpp.
References additive_error().
Referenced by glue_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return additive_error (arg_1);
}
| static bool mmx::GLUE_54 | ( | const tangent< complex< double >, complex< double > > & | arg_1 | ) | [static] |
Definition at line 279 of file glue_tangent_double.cpp.
References is_finite().
{
return is_finite (arg_1);
}
| static bool mmx::GLUE_54 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1 | ) | [static] |
Definition at line 280 of file glue_tangent_floating.cpp.
References is_finite().
{
return is_finite (arg_1);
}
| static mmx_floating mmx::GLUE_55 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 281 of file glue_floating.cpp.
References multiplicative_error().
Referenced by glue_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return multiplicative_error (arg_1);
}
| static bool mmx::GLUE_55 | ( | const tangent< complex< double >, complex< double > > & | arg_1 | ) | [static] |
Definition at line 284 of file glue_tangent_double.cpp.
References is_infinite().
{
return is_infinite (arg_1);
}
| static bool mmx::GLUE_55 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1 | ) | [static] |
Definition at line 285 of file glue_tangent_floating.cpp.
References is_infinite().
{
return is_infinite (arg_1);
}
| static mmx_floating mmx::GLUE_56 | ( | const mmx_floating & | arg_1 | ) | [static] |
Definition at line 286 of file glue_floating.cpp.
References elementary_error().
Referenced by glue_floating(), glue_tangent_double(), and glue_tangent_floating().
{
return elementary_error (arg_1);
}
| static bool mmx::GLUE_56 | ( | const tangent< complex< double >, complex< double > > & | arg_1 | ) | [static] |
Definition at line 289 of file glue_tangent_double.cpp.
References is_nan().
{
return is_nan (arg_1);
}
| static bool mmx::GLUE_56 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1 | ) | [static] |
Definition at line 290 of file glue_tangent_floating.cpp.
References is_nan().
{
return is_nan (arg_1);
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_57 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1 | ) | [static] |
Definition at line 295 of file glue_tangent_floating.cpp.
References times_infinity().
{
return times_infinity (arg_1);
}
| static tangent<complex<double> , complex<double> > mmx::GLUE_57 | ( | const tangent< complex< double >, complex< double > > & | arg_1 | ) | [static] |
Definition at line 294 of file glue_tangent_double.cpp.
References times_infinity().
Referenced by glue_tangent_double(), and glue_tangent_floating().
{
return times_infinity (arg_1);
}
| static int mmx::GLUE_58 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1 | ) | [static] |
Definition at line 300 of file glue_tangent_floating.cpp.
References precision().
{
return precision (arg_1);
}
| static int mmx::GLUE_58 | ( | const tangent< complex< double >, complex< double > > & | arg_1 | ) | [static] |
Definition at line 299 of file glue_tangent_double.cpp.
References precision().
Referenced by glue_tangent_double(), and glue_tangent_floating().
{
return precision (arg_1);
}
| static int mmx::GLUE_59 | ( | const tangent< complex< double >, complex< double > > & | arg_1 | ) | [static] |
Definition at line 304 of file glue_tangent_double.cpp.
References exponent().
Referenced by glue_tangent_double(), and glue_tangent_floating().
{
return exponent (arg_1);
}
| static int mmx::GLUE_59 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1 | ) | [static] |
Definition at line 305 of file glue_tangent_floating.cpp.
References exponent().
{
return exponent (arg_1);
}
Definition at line 34 of file glue_complex_rational.cpp.
References conj().
{
return conj (arg_1);
}
| static integer mmx::GLUE_6 | ( | const string & | arg_1 | ) | [static] |
Definition at line 33 of file glue_integer.cpp.
{
return integer (arg_1);
}
| static mmx_floating mmx::GLUE_6 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 38 of file glue_interval_floating.cpp.
References center().
{
return center (arg_1);
}
| static tangent<double, double> mmx::GLUE_6 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
Definition at line 39 of file glue_tangent_double.cpp.
{
return -arg_1;
}
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_6 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 40 of file glue_tangent_floating.cpp.
{
return -arg_1;
}
| static tangent<rational, rational> mmx::GLUE_6 | ( | const tangent< rational, rational > & | arg_1 | ) | [static] |
Definition at line 35 of file glue_tangent_rational.cpp.
{
return -arg_1;
}
| static tangent<generic, generic> mmx::GLUE_6 | ( | const tangent< generic, generic > & | arg_1 | ) | [static] |
Definition at line 32 of file glue_tangent_generic.cpp.
References square().
{
return square (arg_1);
}
| static complex<double> mmx::GLUE_6 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 38 of file glue_complex_double.cpp.
References conj().
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return conj (arg_1);
}
| static integer mmx::GLUE_6 | ( | const rational & | arg_1 | ) | [static] |
Definition at line 33 of file glue_rational.cpp.
{
return numerator (arg_1);
}
| static double mmx::GLUE_6 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 35 of file glue_interval_double.cpp.
References center().
{
return center (arg_1);
}
| static complex<mmx_floating> mmx::GLUE_6 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 39 of file glue_complex_floating.cpp.
References conj().
{
return conj (arg_1);
}
| static mmx_floating mmx::GLUE_6 | ( | const double & | arg_1 | ) | [static] |
Definition at line 36 of file glue_floating.cpp.
References mmx_floating.
{
return mmx_floating (arg_1);
}
| static complex<generic> mmx::GLUE_6 | ( | const complex< generic > & | arg_1 | ) | [static] |
Definition at line 32 of file glue_complex_generic.cpp.
References times_i().
{
return times_i (arg_1);
}
| static double mmx::GLUE_60 | ( | const tangent< complex< double >, complex< double > > & | arg_1 | ) | [static] |
Definition at line 309 of file glue_tangent_double.cpp.
References magnitude().
Referenced by glue_tangent_double(), and glue_tangent_floating().
{
return magnitude (arg_1);
}
| static double mmx::GLUE_60 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1 | ) | [static] |
Definition at line 310 of file glue_tangent_floating.cpp.
References magnitude().
{
return magnitude (arg_1);
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_61 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 315 of file glue_tangent_floating.cpp.
{
return incexp2 (arg_1, arg_2);
}
| static tangent<complex<double> , complex<double> > mmx::GLUE_61 | ( | const tangent< complex< double >, complex< double > > & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 314 of file glue_tangent_double.cpp.
Referenced by glue_tangent_double(), and glue_tangent_floating().
{
return incexp2 (arg_1, arg_2);
}
| static tangent<complex<double> , complex<double> > mmx::GLUE_62 | ( | const tangent< complex< double >, complex< double > > & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 319 of file glue_tangent_double.cpp.
Referenced by glue_tangent_double(), and glue_tangent_floating().
{
return decexp2 (arg_1, arg_2);
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_62 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1, |
| const int & | arg_2 | ||
| ) | [static] |
Definition at line 320 of file glue_tangent_floating.cpp.
{
return decexp2 (arg_1, arg_2);
}
| static tangent<complex<double> , complex<double> > mmx::GLUE_63 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
Definition at line 324 of file glue_tangent_double.cpp.
Referenced by glue_tangent_double(), and glue_tangent_floating().
{
return as<tangent<complex<double> , complex<double> > > (arg_1);
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_63 | ( | const tangent< rational, rational > & | arg_1 | ) | [static] |
Definition at line 325 of file glue_tangent_floating.cpp.
{
return as<tangent<complex<mmx_floating> , complex<mmx_floating> > > (arg_1);
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_64 | ( | const tangent< complex< rational >, complex< rational > > & | arg_1 | ) | [static] |
Definition at line 330 of file glue_tangent_floating.cpp.
{
return as<tangent<complex<mmx_floating> , complex<mmx_floating> > > (arg_1);
}
| static tangent<complex<double> , complex<double> > mmx::GLUE_64 | ( | const tangent< rational, rational > & | arg_1 | ) | [static] |
Definition at line 329 of file glue_tangent_double.cpp.
Referenced by glue_tangent_double(), and glue_tangent_floating().
{
return as<tangent<complex<double> , complex<double> > > (arg_1);
}
| static tangent<complex<mmx_floating> , complex<mmx_floating> > mmx::GLUE_65 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 335 of file glue_tangent_floating.cpp.
{
return as<tangent<complex<mmx_floating> , complex<mmx_floating> > > (arg_1);
}
| static tangent<complex<double> , complex<double> > mmx::GLUE_65 | ( | const tangent< complex< rational >, complex< rational > > & | arg_1 | ) | [static] |
Definition at line 334 of file glue_tangent_double.cpp.
Referenced by glue_tangent_double(), and glue_tangent_floating().
{
return as<tangent<complex<double> , complex<double> > > (arg_1);
}
| static tangent<generic, generic> mmx::GLUE_66 | ( | const tangent< complex< mmx_floating >, complex< mmx_floating > > & | arg_1 | ) | [static] |
Definition at line 340 of file glue_tangent_floating.cpp.
{
return as<tangent<generic, generic> > (arg_1);
}
| static tangent<generic, generic> mmx::GLUE_66 | ( | const tangent< complex< double >, complex< double > > & | arg_1 | ) | [static] |
Definition at line 339 of file glue_tangent_double.cpp.
Referenced by glue_tangent_double(), and glue_tangent_floating().
{
return as<tangent<generic, generic> > (arg_1);
}
Definition at line 39 of file glue_complex_rational.cpp.
References times_i().
{
return times_i (arg_1);
}
| static mmx_floating mmx::GLUE_7 | ( | const integer & | arg_1 | ) | [static] |
Definition at line 41 of file glue_floating.cpp.
References mmx_floating.
{
return mmx_floating (arg_1);
}
| static double mmx::GLUE_7 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 40 of file glue_interval_double.cpp.
References radius().
{
return radius (arg_1);
}
| static mmx_floating mmx::GLUE_7 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 43 of file glue_interval_floating.cpp.
References radius().
{
return radius (arg_1);
}
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_7 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1 | ) | [static] |
Definition at line 45 of file glue_tangent_floating.cpp.
References square().
{
return square (arg_1);
}
| static tangent<generic, generic> mmx::GLUE_7 | ( | const tangent< generic, generic > & | arg_1, |
| const tangent< generic, generic > & | arg_2 | ||
| ) | [static] |
Definition at line 37 of file glue_tangent_generic.cpp.
{
return arg_1 + arg_2;
}
| static integer mmx::GLUE_7 | ( | const rational & | arg_1 | ) | [static] |
Definition at line 38 of file glue_rational.cpp.
{
return denominator (arg_1);
}
| static tangent<double, double> mmx::GLUE_7 | ( | const tangent< double, double > & | arg_1 | ) | [static] |
Definition at line 44 of file glue_tangent_double.cpp.
References square().
{
return square (arg_1);
}
| static tangent<rational, rational> mmx::GLUE_7 | ( | const tangent< rational, rational > & | arg_1 | ) | [static] |
Definition at line 40 of file glue_tangent_rational.cpp.
References square().
{
return square (arg_1);
}
| static complex<double> mmx::GLUE_7 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 43 of file glue_complex_double.cpp.
References times_i().
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return times_i (arg_1);
}
| static complex<mmx_floating> mmx::GLUE_7 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 44 of file glue_complex_floating.cpp.
References times_i().
{
return times_i (arg_1);
}
| static complex<generic> mmx::GLUE_7 | ( | const complex< generic > & | arg_1 | ) | [static] |
Definition at line 37 of file glue_complex_generic.cpp.
References over_i().
{
return over_i (arg_1);
}
Definition at line 44 of file glue_complex_rational.cpp.
References over_i().
{
return over_i (arg_1);
}
| static mmx_floating mmx::GLUE_8 | ( | const rational & | arg_1 | ) | [static] |
Definition at line 46 of file glue_floating.cpp.
References mmx_floating.
{
return mmx_floating (arg_1);
}
| static integer mmx::GLUE_8 | ( | const integer & | arg_1 | ) | [static] |
Definition at line 43 of file glue_integer.cpp.
{
return -arg_1;
}
| static interval<double> mmx::GLUE_8 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 45 of file glue_interval_double.cpp.
{
return -arg_1;
}
| static interval<mmx_floating> mmx::GLUE_8 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 48 of file glue_interval_floating.cpp.
{
return -arg_1;
}
| static tangent<double, double> mmx::GLUE_8 | ( | const tangent< double, double > & | arg_1, |
| const tangent< double, double > & | arg_2 | ||
| ) | [static] |
Definition at line 49 of file glue_tangent_double.cpp.
{
return arg_1 + arg_2;
}
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_8 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1, |
| const tangent< mmx_floating, mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 50 of file glue_tangent_floating.cpp.
{
return arg_1 + arg_2;
}
| static complex<double> mmx::GLUE_8 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 48 of file glue_complex_double.cpp.
References over_i().
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return over_i (arg_1);
}
| static tangent<generic, generic> mmx::GLUE_8 | ( | const tangent< generic, generic > & | arg_1, |
| const tangent< generic, generic > & | arg_2 | ||
| ) | [static] |
Definition at line 42 of file glue_tangent_generic.cpp.
{
return arg_1 - arg_2;
}
| static tangent<rational, rational> mmx::GLUE_8 | ( | const tangent< rational, rational > & | arg_1, |
| const tangent< rational, rational > & | arg_2 | ||
| ) | [static] |
Definition at line 45 of file glue_tangent_rational.cpp.
{
return arg_1 + arg_2;
}
| static complex<mmx_floating> mmx::GLUE_8 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 49 of file glue_complex_floating.cpp.
References over_i().
{
return over_i (arg_1);
}
| static complex<generic> mmx::GLUE_8 | ( | const complex< generic > & | arg_1 | ) | [static] |
Definition at line 42 of file glue_complex_generic.cpp.
{
return -arg_1;
}
Definition at line 49 of file glue_complex_rational.cpp.
{
return -arg_1;
}
| static integer mmx::GLUE_9 | ( | const integer & | arg_1 | ) | [static] |
| static mmx_floating mmx::GLUE_9 | ( | const string & | arg_1 | ) | [static] |
Definition at line 51 of file glue_floating.cpp.
References mmx_floating.
{
return mmx_floating (arg_1);
}
| static interval<double> mmx::GLUE_9 | ( | const interval< double > & | arg_1 | ) | [static] |
Definition at line 50 of file glue_interval_double.cpp.
References square().
{
return square (arg_1);
}
| static rational mmx::GLUE_9 | ( | const rational & | arg_1 | ) | [static] |
| static tangent<double, double> mmx::GLUE_9 | ( | const tangent< double, double > & | arg_1, |
| const tangent< double, double > & | arg_2 | ||
| ) | [static] |
Definition at line 54 of file glue_tangent_double.cpp.
{
return arg_1 - arg_2;
}
| static tangent<mmx_floating, mmx_floating> mmx::GLUE_9 | ( | const tangent< mmx_floating, mmx_floating > & | arg_1, |
| const tangent< mmx_floating, mmx_floating > & | arg_2 | ||
| ) | [static] |
Definition at line 55 of file glue_tangent_floating.cpp.
{
return arg_1 - arg_2;
}
| static tangent<rational, rational> mmx::GLUE_9 | ( | const tangent< rational, rational > & | arg_1, |
| const tangent< rational, rational > & | arg_2 | ||
| ) | [static] |
Definition at line 50 of file glue_tangent_rational.cpp.
{
return arg_1 - arg_2;
}
| static interval<mmx_floating> mmx::GLUE_9 | ( | const interval< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 53 of file glue_interval_floating.cpp.
References square().
{
return square (arg_1);
}
| static tangent<generic, generic> mmx::GLUE_9 | ( | const tangent< generic, generic > & | arg_1, |
| const tangent< generic, generic > & | arg_2 | ||
| ) | [static] |
Definition at line 47 of file glue_tangent_generic.cpp.
{
return arg_1 * arg_2;
}
| static complex<double> mmx::GLUE_9 | ( | const complex< double > & | arg_1 | ) | [static] |
Definition at line 53 of file glue_complex_double.cpp.
Referenced by glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
return -arg_1;
}
| static complex<mmx_floating> mmx::GLUE_9 | ( | const complex< mmx_floating > & | arg_1 | ) | [static] |
Definition at line 54 of file glue_complex_floating.cpp.
{
return -arg_1;
}
| static complex<generic> mmx::GLUE_9 | ( | const complex< generic > & | arg_1 | ) | [static] |
Definition at line 47 of file glue_complex_generic.cpp.
References square().
{
return square (arg_1);
}
| void glue_affine_generic | ( | ) |
Definition at line 7 of file glue_affine_generic.cpp.
Referenced by glue_numerix().
{
static bool done = false;
if (done) return;
done = true;
call_glue (string ("glue_generic"));
}
| void mmx::glue_ball_double | ( | ) |
Referenced by glue_numerix().
| void mmx::glue_ball_floating | ( | ) |
Referenced by glue_numerix().
| void glue_complex_double | ( | ) |
Definition at line 258 of file glue_complex_double.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_numerix().
{
static bool done = false;
if (done) return;
done = true;
call_glue (string ("glue_double"));
call_glue (string ("glue_complex_rational"));
define_type<complex<double> > (gen (lit ("Complex"), lit ("Double")));
define ("complex", GLUE_1);
define ("complex", GLUE_2);
define_converter ("upgrade", GLUE_3, PENALTY_HOMOMORPHISM);
define ("Re", GLUE_4);
define ("Im", GLUE_5);
define ("conj", GLUE_6);
define ("times_i", GLUE_7);
define ("over_i", GLUE_8);
define ("-", GLUE_9);
define ("square", GLUE_10);
define ("+", GLUE_11);
define ("-", GLUE_12);
define ("*", GLUE_13);
define ("+", GLUE_14);
define ("+", GLUE_15);
define ("-", GLUE_16);
define ("-", GLUE_17);
define ("*", GLUE_18);
define ("*", GLUE_19);
define ("/", GLUE_20);
define ("/", GLUE_21);
define ("/", GLUE_22);
define ("abs", GLUE_23);
define ("arg", GLUE_24);
define ("sqrt", GLUE_25);
define ("exp", GLUE_26);
define ("log", GLUE_27);
define ("^", GLUE_28);
define ("cos", GLUE_29);
define ("sin", GLUE_30);
define ("tan", GLUE_31);
define ("arccos", GLUE_32);
define ("arcsin", GLUE_33);
define ("arctan", GLUE_34);
define ("finite?", GLUE_35);
define ("infinite?", GLUE_36);
define ("nan?", GLUE_37);
define ("times_infinity", GLUE_38);
define ("precision", GLUE_39);
define ("exponent", GLUE_40);
define ("magnitude", GLUE_41);
define ("increase_exponent", GLUE_42);
define ("decrease_exponent", GLUE_43);
define ("rounding_error", GLUE_44);
define ("additive_error", GLUE_45);
define ("multiplicative_error", GLUE_46);
define ("elementary_error", GLUE_47);
define_converter (":>", GLUE_48, PENALTY_PROMOTE_GENERIC);
define_converter (":>", GLUE_49, PENALTY_INCLUSION);
}
| void glue_complex_floating | ( | ) |
Definition at line 259 of file glue_complex_floating.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_numerix().
{
static bool done = false;
if (done) return;
done = true;
call_glue (string ("glue_floating"));
call_glue (string ("glue_complex_double"));
define_type<complex<mmx_floating> > (gen (lit ("Complex"), lit ("Floating")));
define ("complex", GLUE_1);
define ("complex", GLUE_2);
define_converter ("upgrade", GLUE_3, PENALTY_HOMOMORPHISM);
define ("Re", GLUE_4);
define ("Im", GLUE_5);
define ("conj", GLUE_6);
define ("times_i", GLUE_7);
define ("over_i", GLUE_8);
define ("-", GLUE_9);
define ("square", GLUE_10);
define ("+", GLUE_11);
define ("-", GLUE_12);
define ("*", GLUE_13);
define ("+", GLUE_14);
define ("+", GLUE_15);
define ("-", GLUE_16);
define ("-", GLUE_17);
define ("*", GLUE_18);
define ("*", GLUE_19);
define ("/", GLUE_20);
define ("/", GLUE_21);
define ("/", GLUE_22);
define ("abs", GLUE_23);
define ("arg", GLUE_24);
define ("sqrt", GLUE_25);
define ("exp", GLUE_26);
define ("log", GLUE_27);
define ("^", GLUE_28);
define ("cos", GLUE_29);
define ("sin", GLUE_30);
define ("tan", GLUE_31);
define ("arccos", GLUE_32);
define ("arcsin", GLUE_33);
define ("arctan", GLUE_34);
define ("finite?", GLUE_35);
define ("infinite?", GLUE_36);
define ("nan?", GLUE_37);
define ("times_infinity", GLUE_38);
define ("precision", GLUE_39);
define ("exponent", GLUE_40);
define ("magnitude", GLUE_41);
define ("increase_exponent", GLUE_42);
define ("decrease_exponent", GLUE_43);
define ("rounding_error", GLUE_44);
define ("additive_error", GLUE_45);
define ("multiplicative_error", GLUE_46);
define ("elementary_error", GLUE_47);
define_converter (":>", GLUE_48, PENALTY_INCLUSION);
define_converter (":>", GLUE_49, PENALTY_PROMOTE_GENERIC);
}
| void glue_complex_generic | ( | ) |
Definition at line 132 of file glue_complex_generic.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_3(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_numerix().
{
static bool done = false;
if (done) return;
done = true;
call_glue (string ("glue_generic"));
define_type<complex<generic> > (gen (lit ("Complex"), lit ("Generic")));
define ("complex", GLUE_1);
define ("complex", GLUE_2);
define ("Re", GLUE_3);
define ("Im", GLUE_4);
define ("conj", GLUE_5);
define ("times_i", GLUE_6);
define ("over_i", GLUE_7);
define ("-", GLUE_8);
define ("square", GLUE_9);
define ("+", GLUE_10);
define ("-", GLUE_11);
define ("*", GLUE_12);
define ("/", GLUE_13);
define ("abs", GLUE_14);
define ("arg", GLUE_15);
define ("sqrt", GLUE_16);
define ("exp", GLUE_17);
define ("log", GLUE_18);
define ("^", GLUE_19);
define ("cos", GLUE_20);
define ("sin", GLUE_21);
define ("tan", GLUE_22);
define ("arccos", GLUE_23);
define ("arcsin", GLUE_24);
define ("arctan", GLUE_25);
}
| void glue_complex_rational | ( | ) |
Definition at line 124 of file glue_complex_rational.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_3(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_numerix().
{
static bool done = false;
if (done) return;
done = true;
call_glue (string ("glue_rational"));
call_glue (string ("glue_complex_generic"));
define_type<complex<rational> > (gen (lit ("Complex"), lit ("Rational")));
define ("complex", GLUE_1);
define ("complex", GLUE_2);
define_converter ("upgrade", GLUE_3, PENALTY_HOMOMORPHISM);
define ("Re", GLUE_4);
define ("Im", GLUE_5);
define ("conj", GLUE_6);
define ("times_i", GLUE_7);
define ("over_i", GLUE_8);
define ("-", GLUE_9);
define ("square", GLUE_10);
define ("+", GLUE_11);
define ("-", GLUE_12);
define ("*", GLUE_13);
define ("+", GLUE_14);
define ("+", GLUE_15);
define ("-", GLUE_16);
define ("-", GLUE_17);
define ("*", GLUE_18);
define ("*", GLUE_19);
define ("/", GLUE_20);
define ("/", GLUE_21);
define ("/", GLUE_22);
define_converter (":>", GLUE_23, PENALTY_PROMOTE_GENERIC);
}
| void glue_floating | ( | ) |
Definition at line 291 of file glue_floating.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_56(), GLUE_6(), GLUE_7(), GLUE_8(), GLUE_9(), mmx_bit_precision, mmx_discrepancy, mmx_pretty_exponents, and mmx_significant_digits.
Referenced by glue_numerix().
{
static bool done = false;
if (done) return;
done = true;
call_glue (string ("glue_rational"));
static alias<int> mmx_significant_digits_alias = global_alias (((int&) mmx_significant_digits));
define_constant<alias<int> > ("significant_digits", mmx_significant_digits_alias);
static alias<int> mmx_bit_precision_alias = global_alias (((int&) mmx_bit_precision));
define_constant<alias<int> > ("bit_precision", mmx_bit_precision_alias);
static alias<int> mmx_discrepancy_alias = global_alias (((int&) mmx_discrepancy));
define_constant<alias<int> > ("discrepancy", mmx_discrepancy_alias);
static alias<bool> mmx_pretty_exponents_alias = global_alias (((bool&) mmx_pretty_exponents));
define_constant<alias<bool> > ("pretty_exponents", mmx_pretty_exponents_alias);
define_type<mmx_floating > (lit ("Floating"));
define ("literal_floating", GLUE_1);
define_converter ("upgrade", GLUE_2, PENALTY_INCLUSION);
define_converter ("upgrade", GLUE_3, PENALTY_INCLUSION);
define_converter ("upgrade", GLUE_4, PENALTY_INCLUSION);
define ("as_floating", GLUE_5);
define ("as_floating", GLUE_6);
define ("as_floating", GLUE_7);
define ("as_floating", GLUE_8);
define ("as_floating", GLUE_9);
define ("as_int", GLUE_10);
define ("as_double", GLUE_11);
define ("as_integer", GLUE_12);
define ("as_string", GLUE_13);
define ("uniform_deviate", GLUE_14);
define ("-", GLUE_15);
define ("square", GLUE_16);
define ("+", GLUE_17);
define ("-", GLUE_18);
define ("*", GLUE_19);
define ("/", GLUE_20);
define ("sqrt", GLUE_21);
define ("^", GLUE_22);
define ("exp", GLUE_23);
define ("log", GLUE_24);
define ("cos", GLUE_25);
define ("sin", GLUE_26);
define ("tan", GLUE_27);
define ("arccos", GLUE_28);
define ("arcsin", GLUE_29);
define ("arctan", GLUE_30);
define ("<", GLUE_31);
define ("<=", GLUE_32);
define (">", GLUE_33);
define (">=", GLUE_34);
define ("abs", GLUE_35);
define ("min", GLUE_36);
define ("max", GLUE_37);
define ("floor", GLUE_38);
define ("ceil", GLUE_39);
define ("trunc", GLUE_40);
define ("round", GLUE_41);
define ("finite?", GLUE_42);
define ("infinite?", GLUE_43);
define ("nan?", GLUE_44);
define ("times_infinity", GLUE_45);
define ("precision", GLUE_46);
define ("next_above", GLUE_47);
define ("next_below", GLUE_48);
define ("exponent", GLUE_49);
define ("magnitude", GLUE_50);
define ("increase_exponent", GLUE_51);
define ("decrease_exponent", GLUE_52);
define ("rounding_error", GLUE_53);
define ("additive_error", GLUE_54);
define ("multiplicative_error", GLUE_55);
define ("elementary_error", GLUE_56);
}
| void glue_integer | ( | ) |
Definition at line 193 of file glue_integer.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_numerix().
{
static bool done = false;
if (done) return;
done = true;
define_type<integer > (lit ("Integer"));
define ("literal_integer", GLUE_1);
define_constructor<int > (GLUE_2);
define ("integer", GLUE_3);
define_converter ("upgrade", GLUE_4, PENALTY_INCLUSION);
define_converter (":>", GLUE_5, PENALTY_CAST);
define ("as_integer", GLUE_6);
define ("as_string", GLUE_7);
define ("-", GLUE_8);
define ("square", GLUE_9);
define ("+", GLUE_10);
define ("-", GLUE_11);
define ("*", GLUE_12);
define ("div", GLUE_13);
define ("quo", GLUE_14);
define ("rem", GLUE_15);
define ("divides?", GLUE_16);
define ("gcd", GLUE_17);
define ("lcm", GLUE_18);
define ("<", GLUE_19);
define ("<=", GLUE_20);
define (">", GLUE_21);
define (">=", GLUE_22);
define ("abs", GLUE_23);
define ("min", GLUE_24);
define ("max", GLUE_25);
define (".!", GLUE_26);
define ("binomial", GLUE_27);
define ("probable_prime?", GLUE_28);
define ("probable_next_prime", GLUE_29);
define ("/\\", GLUE_30);
define ("\\/", GLUE_31);
define ("xor", GLUE_32);
define ("!", GLUE_33);
define ("#", GLUE_34);
define (".[]", GLUE_35);
define ("hamming_norm", GLUE_36);
define ("hamming_distance", GLUE_37);
}
| void glue_interval_double | ( | ) |
Definition at line 265 of file glue_interval_double.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_numerix().
{
static bool done = false;
if (done) return;
done = true;
call_glue (string ("glue_double"));
define_type<interval<double> > (gen (lit ("Interval"), lit ("Double")));
define ("interval", GLUE_1);
define ("interval", GLUE_2);
define_converter ("upgrade", GLUE_3, PENALTY_INCLUSION);
define ("lower", GLUE_4);
define ("upper", GLUE_5);
define ("center", GLUE_6);
define ("radius", GLUE_7);
define ("-", GLUE_8);
define ("square", GLUE_9);
define ("+", GLUE_10);
define ("-", GLUE_11);
define ("*", GLUE_12);
define ("+", GLUE_13);
define ("+", GLUE_14);
define ("-", GLUE_15);
define ("-", GLUE_16);
define ("*", GLUE_17);
define ("*", GLUE_18);
define ("/", GLUE_19);
define ("/", GLUE_20);
define ("/", GLUE_21);
define ("sqrt", GLUE_22);
define ("exp", GLUE_23);
define ("log", GLUE_24);
define ("^", GLUE_25);
define ("cos", GLUE_26);
define ("sin", GLUE_27);
define ("tan", GLUE_28);
define ("arccos", GLUE_29);
define ("arcsin", GLUE_30);
define ("arctan", GLUE_31);
define ("<", GLUE_32);
define (">", GLUE_33);
define ("<=", GLUE_34);
define (">=", GLUE_35);
define ("abs", GLUE_36);
define ("min", GLUE_37);
define ("max", GLUE_38);
define ("floor", GLUE_39);
define ("ceil", GLUE_40);
define ("trunc", GLUE_41);
define ("round", GLUE_42);
define ("finite?", GLUE_43);
define ("infinite?", GLUE_44);
define ("nan?", GLUE_45);
define ("times_infinity", GLUE_46);
define ("precision", GLUE_47);
define ("exponent", GLUE_48);
define ("magnitude", GLUE_49);
define ("increase_exponent", GLUE_50);
define ("decrease_exponent", GLUE_51);
}
| void glue_interval_floating | ( | ) |
Definition at line 268 of file glue_interval_floating.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_numerix().
{
static bool done = false;
if (done) return;
done = true;
call_glue (string ("glue_floating"));
call_glue (string ("glue_interval_double"));
define_type<interval<mmx_floating> > (gen (lit ("Interval"), lit ("Floating")));
define ("interval", GLUE_1);
define ("interval", GLUE_2);
define_converter ("upgrade", GLUE_3, PENALTY_INCLUSION);
define ("lower", GLUE_4);
define ("upper", GLUE_5);
define ("center", GLUE_6);
define ("radius", GLUE_7);
define ("-", GLUE_8);
define ("square", GLUE_9);
define ("+", GLUE_10);
define ("-", GLUE_11);
define ("*", GLUE_12);
define ("+", GLUE_13);
define ("+", GLUE_14);
define ("-", GLUE_15);
define ("-", GLUE_16);
define ("*", GLUE_17);
define ("*", GLUE_18);
define ("/", GLUE_19);
define ("/", GLUE_20);
define ("/", GLUE_21);
define ("sqrt", GLUE_22);
define ("exp", GLUE_23);
define ("log", GLUE_24);
define ("^", GLUE_25);
define ("cos", GLUE_26);
define ("sin", GLUE_27);
define ("tan", GLUE_28);
define ("arccos", GLUE_29);
define ("arcsin", GLUE_30);
define ("arctan", GLUE_31);
define ("<", GLUE_32);
define (">", GLUE_33);
define ("<=", GLUE_34);
define (">=", GLUE_35);
define ("abs", GLUE_36);
define ("min", GLUE_37);
define ("max", GLUE_38);
define ("floor", GLUE_39);
define ("ceil", GLUE_40);
define ("trunc", GLUE_41);
define ("round", GLUE_42);
define ("finite?", GLUE_43);
define ("infinite?", GLUE_44);
define ("nan?", GLUE_45);
define ("times_infinity", GLUE_46);
define ("precision", GLUE_47);
define ("exponent", GLUE_48);
define ("magnitude", GLUE_49);
define ("increase_exponent", GLUE_50);
define ("decrease_exponent", GLUE_51);
}
| void mmx::glue_modular_int | ( | ) |
Referenced by glue_numerix().
| void glue_modular_integer | ( | ) |
Definition at line 12 of file glue_modular_integer.cpp.
Referenced by glue_numerix().
{
static bool done = false;
if (done) return;
done = true;
call_glue (string ("glue_modular_int"));
}
| void mmx::glue_numerix | ( | ) |
Definition at line 26 of file glue_numerix.cpp.
References glue_affine_generic(), glue_ball_double(), glue_ball_floating(), glue_complex_double(), glue_complex_floating(), glue_complex_generic(), glue_complex_rational(), glue_floating(), glue_integer(), glue_interval_double(), glue_interval_floating(), glue_modular_int(), glue_modular_integer(), glue_rational(), glue_tangent_double(), glue_tangent_floating(), glue_tangent_generic(), and glue_tangent_rational().
{
static bool done = false;
if (done) return;
done = true;
register_glue (string ("glue_affine_generic"), (& (glue_affine_generic)));
register_glue (string ("glue_ball_double"), (& (glue_ball_double)));
register_glue (string ("glue_ball_floating"), (& (glue_ball_floating)));
register_glue (string ("glue_complex_double"), (& (glue_complex_double)));
register_glue (string ("glue_complex_floating"), (& (glue_complex_floating)));
register_glue (string ("glue_complex_generic"), (& (glue_complex_generic)));
register_glue (string ("glue_complex_rational"), (& (glue_complex_rational)));
register_glue (string ("glue_floating"), (& (glue_floating)));
register_glue (string ("glue_integer"), (& (glue_integer)));
register_glue (string ("glue_interval_double"), (& (glue_interval_double)));
register_glue (string ("glue_interval_floating"), (& (glue_interval_floating)));
register_glue (string ("glue_modular_int"), (& (glue_modular_int)));
register_glue (string ("glue_modular_integer"), (& (glue_modular_integer)));
register_glue (string ("glue_rational"), (& (glue_rational)));
register_glue (string ("glue_tangent_double"), (& (glue_tangent_double)));
register_glue (string ("glue_tangent_floating"), (& (glue_tangent_floating)));
register_glue (string ("glue_tangent_generic"), (& (glue_tangent_generic)));
register_glue (string ("glue_tangent_rational"), (& (glue_tangent_rational)));
register_glue (string ("glue_numerix"), (& (glue_numerix)));
dl_link ("basix");
glue_affine_generic ();
glue_ball_double ();
glue_ball_floating ();
glue_complex_double ();
glue_complex_floating ();
glue_complex_generic ();
glue_complex_rational ();
glue_floating ();
glue_integer ();
glue_interval_double ();
glue_interval_floating ();
glue_modular_int ();
glue_modular_integer ();
glue_rational ();
glue_tangent_double ();
glue_tangent_floating ();
glue_tangent_generic ();
glue_tangent_rational ();
include ("numerix/big_operators.mmx");
}
| void glue_rational | ( | ) |
Definition at line 158 of file glue_rational.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_numerix().
{
static bool done = false;
if (done) return;
done = true;
call_glue (string ("glue_integer"));
define_type<rational > (lit ("Rational"));
define ("rational", GLUE_1);
define ("rational", GLUE_2);
define_converter ("upgrade", GLUE_3, PENALTY_INCLUSION);
define_converter ("upgrade", GLUE_4, PENALTY_INCLUSION);
define ("/", GLUE_5);
define ("numerator", GLUE_6);
define ("denominator", GLUE_7);
define ("-", GLUE_8);
define ("square", GLUE_9);
define ("+", GLUE_10);
define ("-", GLUE_11);
define ("*", GLUE_12);
define ("/", GLUE_13);
define ("^", GLUE_14);
define ("^", GLUE_15);
define ("div", GLUE_16);
define ("divides?", GLUE_17);
define ("gcd", GLUE_18);
define ("lcm", GLUE_19);
define ("<", GLUE_20);
define ("<=", GLUE_21);
define (">", GLUE_22);
define (">=", GLUE_23);
define ("abs", GLUE_24);
define ("min", GLUE_25);
define ("max", GLUE_26);
define ("floor", GLUE_27);
define ("ceil", GLUE_28);
define ("trunc", GLUE_29);
define ("round", GLUE_30);
}
| void glue_tangent_double | ( | ) |
Definition at line 344 of file glue_tangent_double.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_56(), GLUE_57(), GLUE_58(), GLUE_59(), GLUE_6(), GLUE_60(), GLUE_61(), GLUE_62(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_numerix().
{
static bool done = false;
if (done) return;
done = true;
call_glue (string ("glue_complex_double"));
call_glue (string ("glue_tangent_rational"));
define_type<tangent<double, double> > (gen (lit ("Tangent"), lit ("Double"), lit ("Double")));
define ("tangent", GLUE_1);
define_converter ("upgrade", GLUE_2, PENALTY_HOMOMORPHISM);
define ("tangent", GLUE_3);
define ("base", GLUE_4);
define ("slope", GLUE_5);
define ("-", GLUE_6);
define ("square", GLUE_7);
define ("+", GLUE_8);
define ("-", GLUE_9);
define ("*", GLUE_10);
define ("/", GLUE_11);
define ("sqrt", GLUE_12);
define ("exp", GLUE_13);
define ("log", GLUE_14);
define ("^", GLUE_15);
define ("cos", GLUE_16);
define ("sin", GLUE_17);
define ("tan", GLUE_18);
define ("arccos", GLUE_19);
define ("arcsin", GLUE_20);
define ("arctan", GLUE_21);
define ("finite?", GLUE_22);
define ("infinite?", GLUE_23);
define ("nan?", GLUE_24);
define ("times_infinity", GLUE_25);
define ("precision", GLUE_26);
define ("exponent", GLUE_27);
define ("magnitude", GLUE_28);
define ("increase_exponent", GLUE_29);
define ("decrease_exponent", GLUE_30);
define_converter (":>", GLUE_31, PENALTY_PROMOTE_GENERIC);
define_converter (":>", GLUE_32, PENALTY_INCLUSION);
define_type<tangent<complex<double> , complex<double> > > (gen (lit ("Tangent"), gen (lit ("Complex"), lit ("Double")), gen (lit ("Complex"), lit ("Double"))));
define ("tangent", GLUE_33);
define_converter ("upgrade", GLUE_34, PENALTY_HOMOMORPHISM);
define ("tangent", GLUE_35);
define ("base", GLUE_36);
define ("slope", GLUE_37);
define ("-", GLUE_38);
define ("square", GLUE_39);
define ("+", GLUE_40);
define ("-", GLUE_41);
define ("*", GLUE_42);
define ("/", GLUE_43);
define ("sqrt", GLUE_44);
define ("exp", GLUE_45);
define ("log", GLUE_46);
define ("^", GLUE_47);
define ("cos", GLUE_48);
define ("sin", GLUE_49);
define ("tan", GLUE_50);
define ("arccos", GLUE_51);
define ("arcsin", GLUE_52);
define ("arctan", GLUE_53);
define ("finite?", GLUE_54);
define ("infinite?", GLUE_55);
define ("nan?", GLUE_56);
define ("times_infinity", GLUE_57);
define ("precision", GLUE_58);
define ("exponent", GLUE_59);
define ("magnitude", GLUE_60);
define ("increase_exponent", GLUE_61);
define ("decrease_exponent", GLUE_62);
define_converter (":>", GLUE_63, PENALTY_HOMOMORPHISM);
define_converter (":>", GLUE_64, PENALTY_HOMOMORPHISM);
define_converter (":>", GLUE_65, PENALTY_INCLUSION);
define_converter (":>", GLUE_66, PENALTY_PROMOTE_GENERIC);
}
| void glue_tangent_floating | ( | ) |
Definition at line 345 of file glue_tangent_floating.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_56(), GLUE_57(), GLUE_58(), GLUE_59(), GLUE_6(), GLUE_60(), GLUE_61(), GLUE_62(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_numerix().
{
static bool done = false;
if (done) return;
done = true;
call_glue (string ("glue_complex_double"));
call_glue (string ("glue_complex_floating"));
call_glue (string ("glue_tangent_double"));
define_type<tangent<mmx_floating, mmx_floating> > (gen (lit ("Tangent"), lit ("Floating"), lit ("Floating")));
define ("tangent", GLUE_1);
define_converter ("upgrade", GLUE_2, PENALTY_HOMOMORPHISM);
define ("tangent", GLUE_3);
define ("base", GLUE_4);
define ("slope", GLUE_5);
define ("-", GLUE_6);
define ("square", GLUE_7);
define ("+", GLUE_8);
define ("-", GLUE_9);
define ("*", GLUE_10);
define ("/", GLUE_11);
define ("sqrt", GLUE_12);
define ("exp", GLUE_13);
define ("log", GLUE_14);
define ("^", GLUE_15);
define ("cos", GLUE_16);
define ("sin", GLUE_17);
define ("tan", GLUE_18);
define ("arccos", GLUE_19);
define ("arcsin", GLUE_20);
define ("arctan", GLUE_21);
define ("finite?", GLUE_22);
define ("infinite?", GLUE_23);
define ("nan?", GLUE_24);
define ("times_infinity", GLUE_25);
define ("precision", GLUE_26);
define ("exponent", GLUE_27);
define ("magnitude", GLUE_28);
define ("increase_exponent", GLUE_29);
define ("decrease_exponent", GLUE_30);
define_converter (":>", GLUE_31, PENALTY_INCLUSION);
define_converter (":>", GLUE_32, PENALTY_PROMOTE_GENERIC);
define_type<tangent<complex<mmx_floating> , complex<mmx_floating> > > (gen (lit ("Tangent"), gen (lit ("Complex"), lit ("Floating")), gen (lit ("Complex"), lit ("Floating"))));
define ("tangent", GLUE_33);
define_converter ("upgrade", GLUE_34, PENALTY_HOMOMORPHISM);
define ("tangent", GLUE_35);
define ("base", GLUE_36);
define ("slope", GLUE_37);
define ("-", GLUE_38);
define ("square", GLUE_39);
define ("+", GLUE_40);
define ("-", GLUE_41);
define ("*", GLUE_42);
define ("/", GLUE_43);
define ("sqrt", GLUE_44);
define ("exp", GLUE_45);
define ("log", GLUE_46);
define ("^", GLUE_47);
define ("cos", GLUE_48);
define ("sin", GLUE_49);
define ("tan", GLUE_50);
define ("arccos", GLUE_51);
define ("arcsin", GLUE_52);
define ("arctan", GLUE_53);
define ("finite?", GLUE_54);
define ("infinite?", GLUE_55);
define ("nan?", GLUE_56);
define ("times_infinity", GLUE_57);
define ("precision", GLUE_58);
define ("exponent", GLUE_59);
define ("magnitude", GLUE_60);
define ("increase_exponent", GLUE_61);
define ("decrease_exponent", GLUE_62);
define_converter (":>", GLUE_63, PENALTY_HOMOMORPHISM);
define_converter (":>", GLUE_64, PENALTY_INCLUSION);
define_converter (":>", GLUE_65, PENALTY_HOMOMORPHISM);
define_converter (":>", GLUE_66, PENALTY_PROMOTE_GENERIC);
}
| void glue_tangent_generic | ( | ) |
Definition at line 107 of file glue_tangent_generic.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_3(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_numerix().
{
static bool done = false;
if (done) return;
done = true;
call_glue (string ("glue_generic"));
define_type<tangent<generic, generic> > (gen (lit ("Tangent"), lit ("Generic"), lit ("Generic")));
define ("tangent", GLUE_1);
define ("tangent", GLUE_2);
define ("base", GLUE_3);
define ("slope", GLUE_4);
define ("-", GLUE_5);
define ("square", GLUE_6);
define ("+", GLUE_7);
define ("-", GLUE_8);
define ("*", GLUE_9);
define ("/", GLUE_10);
define ("sqrt", GLUE_11);
define ("exp", GLUE_12);
define ("log", GLUE_13);
define ("^", GLUE_14);
define ("cos", GLUE_15);
define ("sin", GLUE_16);
define ("tan", GLUE_17);
define ("arccos", GLUE_18);
define ("arcsin", GLUE_19);
define ("arctan", GLUE_20);
}
| void glue_tangent_rational | ( | ) |
Definition at line 135 of file glue_tangent_rational.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_3(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_numerix().
{
static bool done = false;
if (done) return;
done = true;
call_glue (string ("glue_complex_rational"));
call_glue (string ("glue_tangent_generic"));
define_type<tangent<rational, rational> > (gen (lit ("Tangent"), lit ("Rational"), lit ("Rational")));
define ("tangent", GLUE_1);
define_converter ("upgrade", GLUE_2, PENALTY_HOMOMORPHISM);
define ("tangent", GLUE_3);
define ("base", GLUE_4);
define ("slope", GLUE_5);
define ("-", GLUE_6);
define ("square", GLUE_7);
define ("+", GLUE_8);
define ("-", GLUE_9);
define ("*", GLUE_10);
define ("/", GLUE_11);
define_converter (":>", GLUE_12, PENALTY_PROMOTE_GENERIC);
define_type<tangent<complex<rational> , complex<rational> > > (gen (lit ("Tangent"), gen (lit ("Complex"), lit ("Rational")), gen (lit ("Complex"), lit ("Rational"))));
define ("tangent", GLUE_13);
define_converter ("upgrade", GLUE_14, PENALTY_HOMOMORPHISM);
define ("tangent", GLUE_15);
define ("base", GLUE_16);
define ("slope", GLUE_17);
define ("-", GLUE_18);
define ("square", GLUE_19);
define ("+", GLUE_20);
define ("-", GLUE_21);
define ("*", GLUE_22);
define ("/", GLUE_23);
define_converter (":>", GLUE_24, PENALTY_HOMOMORPHISM);
define_converter (":>", GLUE_25, PENALTY_PROMOTE_GENERIC);
}
| bool mmx::hard_eq | ( | const twin< C, D, V > & | x, |
| const twin< C, D, V > & | y | ||
| ) |
| bool mmx::hard_eq | ( | const modular< M, modular_local > & | c1, |
| const modular< M, modular_local > & | c2 | ||
| ) |
Definition at line 406 of file modular.hpp.
References get_modulus().
Referenced by affine_limits_helper< C, VC >::common(), hard_eq(), and hard_neq().
{
return hard_eq (*c1, *c2) &&
hard_eq (get_modulus (c1), get_modulus (c2)); }
| nat mmx::hard_hash | ( | const twin< C, D, V > & | x | ) |
| nat mmx::hard_hash | ( | const modular< M, modular_local > & | c | ) |
Definition at line 395 of file modular.hpp.
References get_modulus().
Referenced by hard_hash().
{
nat h= hard_hash (*c);
return (h<<1) ^ (h<<5) ^ (h>>29) ^ hard_hash (get_modulus (c)); }
| tangent<C,D> mmx::HARD_IDENTITY_OP_SUGAR | ( | template< typename C, typename D > | , |
| tangent< C, D > | |||
| ) |
| complex<C> mmx::HARD_IDENTITY_OP_SUGAR | ( | template< typename C > | , |
| complex< C > | |||
| ) |
| bool mmx::hard_neq | ( | const modular< M, modular_local > & | c1, |
| const modular< M, modular_local > & | c2 | ||
| ) |
Definition at line 410 of file modular.hpp.
References hard_eq().
Referenced by hard_neq().
{
return ! hard_eq (c1, c2); }
| bool mmx::hard_neq | ( | const twin< C, D, V > & | x, |
| const twin< C, D, V > & | y | ||
| ) |
| nat mmx::hash | ( | const floating< V > & | x | ) |
Definition at line 168 of file floating.hpp.
{
mpfr_t y;
mpfr_init2 (y, 32);
mpfr_set (y, *x, GMP_RNDN);
if (!mpfr_number_p (y)) return 12321;
if (mpfr_zero_p (y)) return 1234321;
nat m= (nat) y->_mpfr_d[0];
nat e= (nat) y->_mpfr_exp;
nat s= (nat) y->_mpfr_sign;
mpfr_clear (y);
return m ^ (m >> ((nat) 31)) ^ e ^ (e << ((nat) 3)) ^ s ^ (s << ((nat) 7));
}
| int mmx::hash | ( | const scalar_set< C > & | R | ) | [inline] |
Definition at line 50 of file kernel.hpp.
{ return 1;}
Definition at line 161 of file interval.hpp.
{ return 12721; }
| nat mmx::hash | ( | const modular< M, modular_local > & | c | ) |
Definition at line 386 of file modular.hpp.
References get_modulus(), and hash().
{
nat h= hash (*c);
return (h<<1) ^ (h<<5) ^ (h>>29) ^ hash (get_modulus (c)); }
| nat mmx::hash | ( | const twin< C, D, V > & | x | ) |
| nat mmx::hash | ( | const ball< C, R, V > & | z | ) |
Definition at line 474 of file ball.hpp.
References Ball, C, Elementary_variant, and V.
Referenced by abs(), implementation< ball_complex_construct, IV, ball_complex< BV > >::gauss(), hypot(), implementation< ball_root, W, ball_rounded >::hypot(), implementation< ball_root, IV, ball_infinities< BV > >::hypot(), and sqrt().
{
typedef Elementary_variant(C,V) EV;
typedef implementation<ball_root,EV> Impl;
Ball d; Impl::hypot (d, x, y); return d;
}
| mmx::HYPOT_SUGAR | ( | template< typename C, typename D > | , |
| tangent< C, D > | |||
| ) |
Definition at line 401 of file tangent.hpp.
References base(), Im(), Real_tangent, and slope().
{
return Real_tangent (Im (base (z)), Im (slope (z)));
}
Definition at line 489 of file affine.hpp.
References base(), limits(), Real_affine, and slope().
Referenced by abs(), add(), additive_error(), arg(), ARG_HYPER_SUGAR(), binary_test(), blur(), change_precision(), conj(), copy(), cos(), implementation< ball_elementary, IV, ball_complex< BV > >::cos(), cosh(), as_helper< complex< T >, complex< F > >::cv(), fast_helper< complex< C > >::dd(), binary_helper< complex< C > >::disassemble(), div(), duplicate(), exp(), exponent(), flatten(), GLUE_4(), GLUE_5(), Im(), invert(), is_exact_zero(), is_fuzz(), is_infinite(), is_nan(), magnitude(), map(), mul(), neg(), norm(), operator*(), operator+(), operator-(), operator/(), operator<<(), operator>>(), over_i(), pow(), precision(), set_accuracy(), set_as(), set_euler(), set_fuzz(), set_imaginary(), set_infinity(), set_largest(), set_log2(), set_nan(), set_pi(), set_smallest(), sharpen(), sin(), implementation< ball_elementary, IV, ball_complex< BV > >::sin(), sinh(), sqrt(), square(), sub(), times_i(), unary_hash(), fast_helper< complex< C > >::uu(), make_ball_helper< complex< interval< C > >, complex< C >, C >::val(), and binary_helper< complex< C > >::write().
| C Im | ( | const complex< C > & | z | ) | [inline] |
Definition at line 107 of file complex.hpp.
{ return z.im; }
| C & Im | ( | complex< C > & | z | ) | [inline] |
Definition at line 109 of file complex.hpp.
{ return z.im; }
| static void mmx::inc_mantissa | ( | string & | mant, |
| integer & | expo | ||
| ) | [static] |
Definition at line 88 of file string_scnot.cpp.
References as_string().
Referenced by make_range(), and trunc_digits().
{
string mant2= as_string (integer (mant) + 1);
if (N (mant2) > N (mant)) expo= expo + 1;
mant= mant2;
}
| bool mmx::included | ( | const ball< C, R, V > & | b1, |
| const ball< C, R, V > & | b2 | ||
| ) | [inline] |
| mmx::INDIRECT_IMPL | ( | rational | , |
| rational_rep | |||
| ) |
Definition at line 204 of file rational.hpp.
{
static const nat id= SYMBOLIC_RATIONAL; };
| mmx::INDIRECT_IMPL | ( | integer | , |
| integer_rep | |||
| ) |
Definition at line 1006 of file integer.hpp.
{
static const nat id= SYMBOLIC_INTEGER; };
| mmx::INDIRECT_IMPL_1 | ( | floating | , |
| floating_rep | , | ||
| typename V | , | ||
| V | |||
| ) |
Definition at line 145 of file floating.hpp.
{
static const nat id= SYMBOLIC_FLOATING; };
| bool mmx::intersect | ( | interval< C, V > & | r, |
| const interval< C, V > & | a, | ||
| const interval< C, V > & | b | ||
| ) | [inline] |
| tangent<C,D> mmx::INV_HYPER_SUGAR | ( | template< typename C, typename D > | , |
| tangent< C, D > | |||
| ) |
| void mmx::inv_mod | ( | C & | dest, |
| const modulus< C, V > & | m | ||
| ) | [inline] |
Definition at line 166 of file modulus.hpp.
Referenced by modulus_div_naive< modulus_inv_integer_naive< modulus_mul_naive< modulus_add_integer_naive< modulus_reduction_naive< modulus_normalization_integer_naive > > > > >::div_mod(), modulus_div_int_naive< modulus_inv_int_naive< modulus_mul_int_naive< modulus_add_int_naive< modulus_reduction_int_naive< modulus_normalization_int_naive< modulus_maximum_size_int< size > > > > > > >::div_mod(), inv_mod(), and invert().
{
V::inv_mod (dest, m); }
| void mmx::inv_mod | ( | C & | dest, |
| const C & | s, | ||
| const modulus< C, V > & | m | ||
| ) | [inline] |
| mmx::INV_TRIGO_SUGAR | ( | template< typename C, typename V > | , |
| interval< C, V > | |||
| ) |
| mmx::INV_TRIGO_SUGAR | ( | template< typename C, typename R, typename V > | , |
| ball< C, R, V > | |||
| ) |
| mmx::INV_TRIGO_SUGAR | ( | template< typename C > | , |
| complex< C > | |||
| ) |
| STMPL complex<double> mmx::invert | ( | const complex< double > & | z | ) | [inline] |
Definition at line 25 of file complex_double.hpp.
Definition at line 263 of file modular.hpp.
References get_modulus(), inv_mod(), and Modular.
{
Modular c;
inv_mod (c.rep, a.rep, Modular::get_modulus ());
return c; }
Definition at line 278 of file affine.hpp.
Referenced by acos(), asin(), atan(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::invert(), invert(), log(), operator/(), and sqrt().
{
ERROR ("not yet implemented");
//C inv= invert (base (z));
//return Affine (inv, - square (inv) * slope (z));
}
| modular<M,modular_local> mmx::invert | ( | const modular< M, modular_local > & | a | ) | [inline] |
Definition at line 494 of file modular.hpp.
References get_modulus(), inv_mod(), and Modular.
{
M mod= get_modulus (a);
Modular c;
inv_mod (c.rep, a.rep, mod);
c.mod= mod;
return c; }
| bool mmx::is_exact_zero | ( | const interval< C, V > & | x | ) | [inline] |
Definition at line 135 of file interval.hpp.
References is_exact_zero(), lower(), and upper().
{
return is_exact_zero (lower (x)) && is_exact_zero (upper (x)); }
| bool mmx::is_exact_zero | ( | const ball< C, R, V > & | z | ) | [inline] |
Definition at line 149 of file ball.hpp.
References center(), and radius().
Referenced by flatten(), flatten_range(), is_exact_zero(), and modular_local::modulus_storage< M >::set_modulus().
{
return is_exact_zero (center (z)) && is_exact_zero (radius (z)); }
| bool mmx::is_exact_zero | ( | const twin< C, D, V > & | x | ) | [inline] |
Definition at line 88 of file twin.hpp.
References car(), and is_exact_zero().
{
return is_exact_zero (car (x)); }
| bool mmx::is_exact_zero | ( | const complex< C > & | z | ) | [inline] |
Definition at line 116 of file complex.hpp.
References Im(), is_exact_zero(), and Re().
{
return is_exact_zero (Re (z)) && is_exact_zero (Im (z)); }
Definition at line 595 of file interval.hpp.
References is_finite(), lower(), and upper().
| bool mmx::is_finite | ( | const tangent< C, D > & | z | ) | [inline] |
Definition at line 351 of file tangent.hpp.
References base(), is_finite(), and slope().
| bool mmx::is_finite | ( | const twin< C, D, V > & | x | ) | [inline] |
| bool mmx::is_finite | ( | const affine< C, VC > & | z | ) | [inline] |
Definition at line 435 of file affine.hpp.
References base(), and slope().
Referenced by implementation< ball_abs, IV, ball_infinities< BV > >::abs(), implementation< ball_additive, IV, ball_infinities< BV > >::add(), ARG_HYPER_SUGAR(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::div(), GLUE_22(), GLUE_35(), GLUE_42(), GLUE_43(), GLUE_54(), implementation< ball_root, IV, ball_infinities< BV > >::hypot(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::invert(), is_finite(), is_infinite(), is_non_zero(), is_zero(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::mul(), implementation< ball_additive, IV, ball_infinities< BV > >::neg(), implementation< ball_shift, IV, ball_infinities< BV > >::shiftl(), implementation< ball_shift, IV, ball_infinities< BV > >::shiftr(), implementation< ball_root, IV, ball_infinities< BV > >::sqrt(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::square(), and implementation< ball_additive, IV, ball_infinities< BV > >::sub().
| bool mmx::is_finite | ( | const ball< C, R, V > & | z | ) | [inline] |
| bool mmx::is_fuzz | ( | const interval< C, V > & | x | ) | [inline] |
Definition at line 599 of file interval.hpp.
References is_infinite(), lower(), and upper().
{
return is_infinite (lower (x)) && is_infinite (upper (x)) &&
lower (x) != upper (x); }
| bool mmx::is_fuzz | ( | const affine< C, VC > & | z | ) | [inline] |
Definition at line 441 of file affine.hpp.
References base(), is_nan(), and slope().
Referenced by implementation< ball_abs, IV, ball_infinities< BV > >::abs(), implementation< ball_additive, IV, ball_infinities< BV > >::add(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::div(), flatten(), flatten_range(), implementation< ball_root, IV, ball_infinities< BV > >::hypot(), is_fuzz(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::mul(), and implementation< ball_additive, IV, ball_infinities< BV > >::sub().
| bool mmx::is_fuzz | ( | const tangent< C, D > & | z | ) | [inline] |
| bool mmx::is_fuzz | ( | const ball< C, R, V > & | z | ) | [inline] |
Definition at line 643 of file ball.hpp.
References center(), is_infinite(), is_nan(), and radius().
{
return !is_nan (center (z)) && is_infinite (radius (z)); }
| bool mmx::is_fuzz | ( | const floating< V > & | x | ) | [inline] |
Definition at line 460 of file floating.hpp.
{
(void) x; return false; }
| bool mmx::is_fuzz | ( | const twin< C, D, V > & | x | ) | [inline] |
| bool mmx::is_fuzz | ( | const complex< C > & | z | ) | [inline] |
| bool mmx::is_infinite | ( | const complex< C > & | z | ) | [inline] |
Definition at line 579 of file complex.hpp.
References Im(), is_infinite(), is_nan(), and Re().
{
return !is_nan (z) && (is_infinite (Re (z)) || is_infinite (Im (z))); }
| bool mmx::is_infinite | ( | const interval< C, V > & | x | ) | [inline] |
Definition at line 597 of file interval.hpp.
References is_infinite(), lower(), and upper().
{
return is_infinite (lower (x)) && upper (x) == lower (x); }
| bool mmx::is_infinite | ( | const ball< C, R, V > & | z | ) | [inline] |
Definition at line 641 of file ball.hpp.
References center(), is_finite(), is_infinite(), and radius().
{
return is_infinite (center (z)) && is_finite (radius (z)); }
| bool mmx::is_infinite | ( | const tangent< C, D > & | z | ) | [inline] |
Definition at line 355 of file tangent.hpp.
References base(), is_infinite(), is_nan(), and slope().
{
return !is_nan (z) && (is_infinite (base (z)) || is_infinite (slope (z))); }
| bool mmx::is_infinite | ( | const floating< V > & | x | ) | [inline] |
Definition at line 458 of file floating.hpp.
{
return mpfr_inf_p (*x) != 0; }
| bool mmx::is_infinite | ( | const twin< C, D, V > & | x | ) | [inline] |
Definition at line 270 of file twin.hpp.
References car(), and is_infinite().
{
return is_infinite (car (x)); }
| bool mmx::is_infinite | ( | const affine< C, VC > & | z | ) | [inline] |
Definition at line 439 of file affine.hpp.
References base(), is_nan(), and slope().
Referenced by implementation< ball_abs, IV, ball_infinities< BV > >::abs(), implementation< ball_additive, IV, ball_infinities< BV > >::add(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::div(), flatten(), GLUE_23(), GLUE_36(), GLUE_43(), GLUE_44(), GLUE_55(), is_fuzz(), is_infinite(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::mul(), implementation< ball_additive, IV, ball_infinities< BV > >::neg(), radius(), implementation< ball_root, IV, ball_infinities< BV > >::sqrt(), implementation< ball_root, IV, ball_complex< BV > >::sqrt(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::square(), and implementation< ball_additive, IV, ball_infinities< BV > >::sub().
{
return !is_nan (z) && (is_infinite (base (z)) || is_infinite (slope (z))); }
| static bool mmx::is_integer | ( | const string & | s | ) | [static] |
Definition at line 196 of file string_scnot.cpp.
Referenced by flatten_number().
{
nat i= 0;
if (i<N(s) && s[i] == '-') i++;
for (; i<N(s); i++)
if (s[i] < '0' || s[i] > '9') return false;
return true;
}
| bool mmx::is_nan | ( | const complex< C > & | z | ) | [inline] |
| bool mmx::is_nan | ( | const ball< C, R, V > & | z | ) | [inline] |
| bool mmx::is_nan | ( | const tangent< C, D > & | z | ) | [inline] |
| bool mmx::is_nan | ( | const floating< V > & | x | ) | [inline] |
Definition at line 462 of file floating.hpp.
{
return mpfr_nan_p (*x) != 0; }
| bool mmx::is_nan | ( | const twin< C, D, V > & | x | ) | [inline] |
| bool mmx::is_nan | ( | const affine< C, VC > & | z | ) | [inline] |
Definition at line 437 of file affine.hpp.
References base(), and slope().
Referenced by abs(), implementation< ball_additive, IV, ball_infinities< BV > >::add(), cosh(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::div(), flatten(), flatten_range(), GLUE_24(), GLUE_37(), GLUE_44(), GLUE_45(), GLUE_56(), implementation< ball_root, IV, ball_infinities< BV > >::hypot(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::invert(), is_fuzz(), is_infinite(), is_nan(), is_negative(), is_negative_or_zero(), is_non_zero(), is_positive(), is_positive_or_zero(), is_zero(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::mul(), operator!=(), operator<(), operator<=(), operator==(), operator>(), operator>=(), and implementation< ball_additive, IV, ball_infinities< BV > >::sub().
| bool mmx::is_nan | ( | const interval< C, V > & | x | ) | [inline] |
| bool mmx::is_negative | ( | const ball< C, R, V > & | z | ) | [inline] |
| bool mmx::is_negative_or_zero | ( | const ball< C, R, V > & | z | ) | [inline] |
Definition at line 262 of file ball.hpp.
References bnd_down(), center(), and is_nan().
Referenced by implementation< ball_elementary, W, ball_rounded >::log(), operator<=(), implementation< ball_root, W, ball_rounded >::sqrt(), and implementation< ball_root, IV, ball_infinities< BV > >::sqrt().
| bool mmx::is_non_zero | ( | const interval< C, V > & | x | ) | [inline] |
| bool mmx::is_non_zero | ( | const ball< C, R, V > & | z | ) | [inline] |
| bool mmx::is_positive | ( | const ball< C, R, V > & | z | ) | [inline] |
Definition at line 277 of file ball.hpp.
References bnd_down(), center(), and is_nan().
Referenced by operator>().
| bool mmx::is_positive_or_zero | ( | const ball< C, R, V > & | z | ) | [inline] |
| bool mmx::is_probable_prime | ( | const integer & | i | ) | [inline] |
Definition at line 1148 of file integer.hpp.
Referenced by GLUE_28(), probable_next_prime(), and probable_previous_prime().
{
int n= 5, b;
while ((b= mpz_probab_prime_p (*i, n)) == 1 && n < 10) n++;
return b != 0;
}
| bool mmx::is_reliable | ( | const twin< C, D, V > & | x | ) | [inline] |
Definition at line 276 of file twin.hpp.
References car(), and is_reliable().
{
return is_reliable (car (x)); }
| bool mmx::is_reliable | ( | const complex< C > & | z | ) | [inline] |
Definition at line 583 of file complex.hpp.
References is_reliable(), and Re().
{
return is_reliable (Re (z)); }
| bool mmx::is_reliable | ( | const ball< C, R, V > & | z | ) | [inline] |
| bool mmx::is_reliable | ( | const tangent< C, D > & | z | ) | [inline] |
Definition at line 359 of file tangent.hpp.
References base(), and is_reliable().
{
return is_reliable (base (z)); }
| bool mmx::is_reliable | ( | const floating< V > & | x | ) | [inline] |
Definition at line 464 of file floating.hpp.
{
(void) x; return false; }
| bool mmx::is_reliable | ( | const interval< C, V > & | x | ) | [inline] |
Definition at line 604 of file interval.hpp.
{
(void) x; return true; }
| bool mmx::is_reliable | ( | const affine< C, VC > & | z | ) | [inline] |
Definition at line 443 of file affine.hpp.
References base().
Referenced by is_reliable().
{
return is_reliable (base (z)); }
| bool mmx::is_zero | ( | const interval< C, V > & | x | ) | [inline] |
| bool mmx::is_zero | ( | const floating< V > & | x | ) | [inline] |
Definition at line 344 of file floating.hpp.
{
return mpfr_zero_p (*x) != 0; }
| bool mmx::is_zero | ( | const ball< C, R, V > & | z | ) | [inline] |
Definition at line 250 of file ball.hpp.
References abs_down(), center(), is_nan(), and radius().
Referenced by implementation< ball_multiplicative, IV, ball_infinities< BV > >::div(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::invert(), implementation< ball_elementary, IV, ball_complex< BV > >::log(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::mul(), operator/(), and implementation< ball_root, IV, ball_complex< BV > >::sqrt().
Definition at line 278 of file modular.hpp.
Referenced by GLUE_18(), and GLUE_19().
{
return a * b; }
| bool mmx::less_prec | ( | const rational & | q, |
| unsigned | prec | ||
| ) | [inline] |
Definition at line 162 of file kernel.hpp.
{
integer n;
if(q<0)
n=-(numerator(q)<<prec);
else
n=numerator(q)<<prec;
return (n<denominator(q));
}
| integer mmx::lift | ( | const modular< modulus< unsigned char, V >, W > & | x | ) | [inline] |
Definition at line 1081 of file modular_int.hpp.
| integer mmx::lift | ( | const modular< modulus< int, V >, W > & | x | ) | [inline] |
Definition at line 1086 of file modular_int.hpp.
| integer mmx::lift | ( | const modular< modulus< unsigned short int, V >, W > & | x | ) | [inline] |
Definition at line 1083 of file modular_int.hpp.
| integer mmx::lift | ( | const modular< modulus< long long int, V >, W > & | x | ) | [inline] |
Definition at line 1090 of file modular_int.hpp.
| integer mmx::lift | ( | const modular< modulus< unsigned int, V >, W > & | x | ) | [inline] |
Definition at line 1085 of file modular_int.hpp.
| integer mmx::lift | ( | const modular< modulus< long int, V >, W > & | x | ) | [inline] |
Definition at line 1088 of file modular_int.hpp.
| integer mmx::lift | ( | const modular< modulus< signed char, V >, W > & | x | ) | [inline] |
Definition at line 1082 of file modular_int.hpp.
| integer mmx::lift | ( | const modular< modulus< signed short int, V >, W > & | x | ) | [inline] |
Definition at line 1084 of file modular_int.hpp.
| integer mmx::lift | ( | const modular< modulus< unsigned long int, V >, W > & | x | ) | [inline] |
Definition at line 1087 of file modular_int.hpp.
Definition at line 143 of file modular.hpp.
{ return *x; }
| integer mmx::lift | ( | const modular< modulus< unsigned long long int, V >, W > & | x | ) | [inline] |
Definition at line 1089 of file modular_int.hpp.
| affine_limits_helper< C, VC >::VT limits | ( | const affine< C, VC > & | z | ) | [inline] |
Definition at line 108 of file affine.hpp.
Referenced by abs(), additive_error(), binary_test(), blur(), change_precision(), common_limits(), copy(), binary_helper< affine< C, VC > >::disassemble(), domain(), duplicate(), flatten(), Im(), operator*(), operator+(), operator-(), operator/(), operator<<(), operator>>(), Re(), sharpen(), square(), truncate(), unary_hash(), and binary_helper< affine< C, VC > >::write().
{
return z.lim; }
Definition at line 488 of file ball.hpp.
References Ball, C, Elementary_variant, and V.
Referenced by GLUE_13(), GLUE_14(), GLUE_18(), GLUE_24(), GLUE_27(), GLUE_46(), log(), mpfr_get_magnitude(), and pow().
{
typedef Elementary_variant(C,V) EV;
typedef implementation<ball_elementary,EV> Impl;
Ball d; Impl::log (d, z); return d;
}
| C lower | ( | const interval< C, V > & | z | ) | [inline] |
Definition at line 109 of file interval.hpp.
{ return x.l; }
| C mmx::lower | ( | const ball< C, R, V > & | z | ) | [inline] |
Definition at line 109 of file ball.hpp.
References Rnd.
Referenced by abs(), abs_down(), acos(), asin(), atan(), atan2(), binary_test(), bnd_down(), ceil(), implementation< ball_ordered, W, ball_rounded >::ceil(), center(), CF(), change_precision(), copy(), cos(), cosh(), binary_helper< interval< C, V > >::disassemble(), duplicate(), exp(), exponent(), flatten(), flatten_range(), floor(), implementation< ball_ordered, W, ball_rounded >::floor(), GLUE_4(), intersect(), is_exact_zero(), is_finite(), is_fuzz(), is_infinite(), is_nan(), is_non_zero(), is_zero(), log(), magnitude(), map(), max(), min(), operator!=(), operator*(), operator+(), interval< C, V >::operator+=(), operator-(), interval< C, V >::operator-=(), operator/(), operator<(), operator<<(), operator<=(), operator==(), operator>(), operator>=(), operator>>(), precision(), radius(), round(), implementation< ball_ordered, W, ball_rounded >::round(), sin(), singleton(), sinh(), sqrt(), square(), trunc(), implementation< ball_ordered, W, ball_rounded >::trunc(), unary_hash(), and binary_helper< interval< C, V > >::write().
{
typedef implementation<ball_rounding,V> Rnd;
return Rnd::lower (z); }
| double mmx::magnitude | ( | const affine< C, VC > & | z | ) | [inline] |
| double mmx::magnitude | ( | const twin< C, D, V > & | x | ) | [inline] |
| double mmx::magnitude | ( | const interval< C, V > & | x | ) | [inline] |
| double mmx::magnitude | ( | const ball< C, R, V > & | z | ) | [inline] |
| double mmx::magnitude | ( | const complex< C > & | z | ) | [inline] |
| double mmx::magnitude | ( | const tangent< C, D > & | z | ) | [inline] |
Definition at line 370 of file tangent.hpp.
References base(), and magnitude().
| double mmx::magnitude | ( | const floating< V > & | x | ) | [inline] |
Definition at line 492 of file floating.hpp.
References mpfr_get_magnitude().
{
return mpfr_get_magnitude (*x); }
Definition at line 121 of file affine.hpp.
References Affine.
{
typedef affine_limits_helper<C,VC> Helper;
return Affine (cst, Helper::get_linear (lin, dom),
Helper::get_limits (dom)); }
Definition at line 695 of file ball.hpp.
Referenced by mmx_ball().
{
return ball<C> (c, as<Default_radius_type(C) > (r), true);
}
| string make_range | ( | const string & | l, |
| const string & | r | ||
| ) |
Definition at line 131 of file string_scnot.cpp.
References as_string(), decompose(), and recompose().
Referenced by flatten_range().
{
int sign1, sign2;
string mant1, mant2;
integer expo1, expo2;
decompose (s1, sign1, mant1, expo1);
decompose (s2, sign2, mant2, expo2);
if (locase (mant1) == "nan" || locase (mant2) == "nan") return "NaN";
if (locase (mant1) == "infty" || locase (mant2) == "infty") {
if (mant1 == mant2 && sign1 == sign2)
return recompose (sign1, mant1, expo1);
return "Fuzz";
}
if (sign1 != sign2) {
integer expo= expo1;
if (sign1 == 0 || (sign2 != 0 && expo2 > expo1)) expo= expo2;
return "0e" * as_string (expo+1);
}
if (sign1 == 0) return "0";
if (sign1 < 0) return "-" * make_range (mant2, expo2, mant1, expo1);
else return make_range (mant1, expo1, mant2, expo2);
}
| static string mmx::make_range | ( | string & | mant1, |
| integer & | expo1, | ||
| string & | mant2, | ||
| integer & | expo2 | ||
| ) | [static] |
Definition at line 95 of file string_scnot.cpp.
References as_string(), inc_mantissa(), min(), and recompose().
{
if (expo2 == expo1 + 1) {
mant1= "0" * mant1;
expo1= expo1 + 1;
}
if (expo2 != expo1) return "0e" * as_string (expo2 + 1);
nat i, n= min (N(mant1), N(mant2));
for (i=0; i<n; i++)
if (mant1[i] != mant2[i]) {
if (mant2[i] == mant1[i] + 1) {
i++;
while (i<n && (mant1[i] == '9' && mant2[i] == '0')) i++;
if (i >= n ||
(mant1[i] >= '0' && mant1[i] <= '4') ||
(mant2[i] >= '5' && mant2[i] <= '9')) i--;
}
break;
}
string mant2b= mant2 (0, i);
if (i>0 && mant1[i-1] == mant2[i-1]) {
if (i<N(mant1) && mant1[i] >= '5')
inc_mantissa (mant2b, expo2);
else if (i<N(mant2) && mant2[i] >= '5') {
bool inc= (i != 0 && mant2[i-1] >= '5');
mant2b= mant2b (0, N(mant2b) - 1);
if (inc) inc_mantissa (mant2b, expo2);
}
}
if (mant2b == "") return "0e" * as_string (expo2 + 1);
else return recompose (1, mant2b, expo2);
}
| scalar_set<C> mmx::make_set | ( | const C & | c | ) | [inline] |
Definition at line 57 of file kernel.hpp.
{
return scalar_set<C>();
}
| twin<CD,DD> mmx::map | ( | const function_1< CD, Argument(CS) > & | funC, |
| const function_1< DD, Argument(DS) > & | funD, | ||
| const twin< CS, DS > & | z, | ||
| const format< CD > & | fmC, | ||
| const format< DD > & | fmD | ||
| ) |
| tangent<CD,DD> mmx::map | ( | const function_1< CD, Argument(CS) > & | funC, |
| const function_1< DD, Argument(DS) > & | funD, | ||
| const tangent< CS, DS > & | z, | ||
| const format< CD > & | fmC, | ||
| const format< DD > & | fmD | ||
| ) |
| affine<CD,DD> mmx::map | ( | const function_1< CD, Argument(CS) > & | funC, |
| const function_1< DD, Argument(DS) > & | funD, | ||
| const affine< CS, DS > & | z, | ||
| const format< CD > & | fmC, | ||
| const format< DD > & | fmD | ||
| ) |
Definition at line 424 of file affine.hpp.
Referenced by abs(), cos(), implementation< ball_elementary, W, ball_rounded >::cos(), cosh(), exponent(), GLUE_25(), GLUE_26(), GLUE_37(), GLUE_38(), intersect(), implementation< ball_multiplicative, W, ball_rough >::invert(), magnitude(), implementation< ball_rounding, W, ball_rounded >::make_interval(), max(), mpfr_to_string(), operator*(), std_floating::prec(), sin(), implementation< ball_elementary, W, ball_rounded >::sin(), square(), and make_interval_helper< ball< C, R, V >, C2 >::val().
{
if (z1 >= z2) return z1; else return z2;
}
Definition at line 340 of file tangent.hpp.
{
if (z1 >= z2) return z1; else return z2;
}
Definition at line 379 of file floating.hpp.
{
return x1 >= x2? x1: x2; }
Definition at line 335 of file tangent.hpp.
{
if (z1 <= z2) return z1; else return z2;
}
Definition at line 419 of file affine.hpp.
Referenced by abs(), cos(), GLUE_24(), GLUE_25(), GLUE_36(), GLUE_37(), intersect(), make_range(), min(), modulus_mul_int_preinverse< V >::mul_mod_helper< C, void, m >::op(), operator*(), std_floating::prec(), precision(), sin(), and trunc_digits().
{
if (z1 <= z2) return z1; else return z2;
}
Definition at line 377 of file floating.hpp.
{
return x1 <= x2? x1: x2; }
| static mmx_ball | ( | mmx_floating | , |
| mmx_floating | |||
| ) | const [static] |
Definition at line 15 of file glue_ball_floating.cpp.
References make_mmx_ball().
{
return make_mmx_ball (arg_1);
}
| static mmx_ball | ( | double | , |
| double | |||
| ) | const [static] |
Definition at line 14 of file glue_ball_double.cpp.
References make_mmx_ball().
{
return make_mmx_ball (arg_1);
}
| static mmx::mmx_modular | ( | int | ) | const [static] |
| void mpfr_binary_read | ( | const port & | p, |
| mpfr_t | dest | ||
| ) |
Definition at line 102 of file mmx_mpfr.cpp.
References BITS_PER_LIMB.
Referenced by binary_helper< floating< V > >::read().
{
mpfr_prec_t pr= binary_read<mpfr_prec_t> (p);
mpfr_sign_t si= binary_read<mpfr_sign_t> (p);
mp_exp_t ex= binary_read<mp_exp_t > (p);
mpfr_set_prec (dest, pr);
xnat n= (pr + BITS_PER_LIMB - 1) / BITS_PER_LIMB;
for (xnat i=0; i<n; i++)
dest->_mpfr_d[i]= binary_read<mp_limb_t> (p);
dest->_mpfr_prec= pr;
dest->_mpfr_sign= si;
dest->_mpfr_exp = ex;
}
| void mpfr_binary_write | ( | const port & | p, |
| const mpfr_t | arg | ||
| ) |
Definition at line 92 of file mmx_mpfr.cpp.
References BITS_PER_LIMB.
Referenced by binary_helper< floating< V > >::write().
{
binary_write<mpfr_prec_t> (p, arg->_mpfr_prec);
binary_write<mpfr_sign_t> (p, arg->_mpfr_sign);
binary_write<mp_exp_t > (p, arg->_mpfr_exp );
xnat n= (arg->_mpfr_prec + BITS_PER_LIMB - 1) / BITS_PER_LIMB;
for (xnat i=0; i<n; i++)
binary_write<mp_limb_t> (p, arg->_mpfr_d[i]);
}
| string mpfr_double_as_string | ( | double | x | ) |
Definition at line 72 of file mmx_mpfr.cpp.
References mpfr_to_string(), and trunc_digits().
Referenced by numerix_instance::numerix_instance().
{
mpfr_t aux;
mpfr_init2 (aux, 64);
mpfr_set_d (aux, x, GMP_RNDN);
string r= mpfr_to_string (aux, 50);
mpfr_clear (aux);
return trunc_digits (r, 14);
}
| double mpfr_get_magnitude | ( | const mpfr_t | arg | ) |
Definition at line 27 of file mmx_mpfr.cpp.
References log().
Referenced by magnitude().
{
if (mpfr_inf_p (arg) || !mpfr_number_p (arg))
return (double) mpfr_get_emax ();
if (mpfr_sgn (arg) == 0)
return (double) mpfr_get_emin ();
mp_exp_t expo= mpfr_get_exp (arg);
mpfr_t aux;
mpfr_init2 (aux, mpfr_get_prec (arg));
mpfr_div_2si (aux, arg, expo, GMP_RNDN);
mpfr_abs (aux, aux, GMP_RNDN);
return ((double) expo) + log (mpfr_get_d (aux, GMP_RNDU)) / log (2.0);
//return ((double) expo) + log2 (mpfr_get_d (aux, GMP_RNDU));
}
| mp_exp_t mmx::mpfr_get_step | ( | const mpfr_t | arg | ) | [inline] |
Definition at line 60 of file mmx_mpfr.hpp.
| xnat mmx::mpfr_prec_round_up | ( | xnat | prec | ) | [inline] |
Definition at line 58 of file mmx_mpfr.hpp.
References BITS_PER_LIMB.
{
return BITS_PER_LIMB * ((prec + BITS_PER_LIMB - 1) / BITS_PER_LIMB); }
| mp_exp_t mmx::mpfr_safe_get_exp | ( | const mpfr_t | arg | ) | [inline] |
Definition at line 65 of file mmx_mpfr.hpp.
Referenced by exponent().
| mp_exp_t mmx::mpfr_safe_get_step | ( | const mpfr_t | arg | ) | [inline] |
Definition at line 62 of file mmx_mpfr.hpp.
| string mpfr_to_string | ( | const mpz_t | x | ) |
Definition at line 42 of file mmx_mpfr.cpp.
Referenced by as_string(), binary_helper< floating< V > >::disassemble(), and mpfr_double_as_string().
{
char* s= mpz_get_str (NULL, 10, x);
string r= s;
mpfr_free_str (s);
return r;
}
| string mpfr_to_string | ( | const mpfr_t | x, |
| xnat | bits = 0 |
||
| ) |
Definition at line 50 of file mmx_mpfr.cpp.
References as_string(), exponent(), max(), and trunc_digits().
{
string r;
if (mpfr_nan_p (x) != 0) return "NaN";
if (mpfr_inf_p (x) != 0) {
if (mpfr_sgn (x) < 0) return "-Infty";
return "Infty";
}
if (mpfr_zero_p (x) != 0) return "0";
xnat digs= bits==0? 0: max (((int) (0.301029995 * bits)) - 1, 2);
mp_exp_t exponent;
char* mantissa_s= mpfr_get_str (NULL, &exponent, 10, digs, x, GMP_RNDN);
int first= 0;
if (mantissa_s[0] == '-') { r << "-"; first++; }
r << mantissa_s[first];
r << ".";
r << (mantissa_s + (first + 1));
r << "e" << as_string (exponent-1);
mpfr_free_str (mantissa_s);
return trunc_digits (r, 0);
}
| void mmx::mpq_mul_2si | ( | mpq_t | dest, |
| const mpq_t | arg, | ||
| long int | shift | ||
| ) | [inline] |
Definition at line 40 of file mmx_gmp.hpp.
| void mmx::mpz_add_si | ( | mpz_t | dest, |
| const mpz_t | arg, | ||
| long int | plus | ||
| ) | [inline] |
Definition at line 28 of file mmx_gmp.hpp.
| void mpz_binary_read | ( | const port & | p, |
| mpz_t | dest | ||
| ) |
Definition at line 62 of file mmx_gmp.cpp.
Referenced by binary_helper< integer >::read().
{
int n= binary_read<int> (p);
nat a= (nat) (n<0? -n: n);
(void) _mpz_realloc (dest, a);
for (nat i=0; i<a; i++)
dest->_mp_d[i]= binary_read<mp_limb_t> (p);
dest->_mp_size= n;
}
| void mpz_binary_write | ( | const port & | p, |
| const mpz_t | arg | ||
| ) |
Definition at line 53 of file mmx_gmp.cpp.
Referenced by binary_helper< integer >::write().
| void mmx::mpz_mul_2si | ( | mpz_t | dest, |
| const mpz_t | arg, | ||
| long int | shift | ||
| ) | [inline] |
Definition at line 37 of file mmx_gmp.hpp.
| void mmx::mpz_si_sub | ( | mpz_t | dest, |
| long int | plus, | ||
| const mpz_t | arg | ||
| ) | [inline] |
Definition at line 34 of file mmx_gmp.hpp.
| void mmx::mpz_sub_si | ( | mpz_t | dest, |
| const mpz_t | arg, | ||
| long int | plus | ||
| ) | [inline] |
Definition at line 31 of file mmx_gmp.hpp.
| void mmx::mul | ( | complex< C > & | r, |
| const complex< C > & | z, | ||
| const C & | c | ||
| ) | [inline] |
| void mmx::mul | ( | complex< C > & | r, |
| const C & | c, | ||
| const complex< C > & | z | ||
| ) | [inline] |
Definition at line 429 of file complex.hpp.
Referenced by implementation< ball_elementary, W, ball_rounded >::atan2(), implementation< ball_elementary, W, ball_rounded >::cos(), implementation< ball_elementary, IV, ball_complex< BV > >::cos(), implementation< ball_elementary, W, ball_rounded >::cosh(), implementation< ball_elementary, IV, ball_complex< BV > >::cosh(), implementation< ball_elementary, W, ball_rounded >::exp(), implementation< ball_elementary, IV, ball_complex< BV > >::exp(), mul(), implementation< ball_multiplicative, W, ball_rounded >::mul(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::mul(), operator*(), implementation< ball_elementary, W, ball_rounded >::sin(), implementation< ball_elementary, IV, ball_complex< BV > >::sin(), implementation< ball_elementary, W, ball_rounded >::sinh(), implementation< ball_elementary, IV, ball_complex< BV > >::sinh(), square(), and implementation< ball_multiplicative, W, ball_rounded >::square().
| void mmx::mul | ( | floating< V > & | r, |
| const floating< V > & | x1, | ||
| const floating< V > & | x2 | ||
| ) | [inline] |
Definition at line 331 of file floating.hpp.
References Rnd.
{
r.secure (); mpfr_mul (*r, *x1, *x2, Rnd); }
| void mmx::mul_add | ( | floating< V > & | r, |
| const floating< V > & | x, | ||
| const floating< V > & | y | ||
| ) | [inline] |
Definition at line 335 of file floating.hpp.
References Rnd.
{
r.secure (); mpfr_fma (*r, *x, *y, *r, Rnd); }
| void mmx::mul_mod | ( | C & | dest, |
| const C & | s, | ||
| const modulus< C, V > & | m, | ||
| C & | carry | ||
| ) | [inline] |
Definition at line 154 of file modulus.hpp.
References mul_mod().
{
V::mul_mod (dest, s, m, carry); }
| void mmx::mul_mod | ( | C & | dest, |
| const C & | s1, | ||
| const C & | s2, | ||
| const modulus< C, V > & | m | ||
| ) | [inline] |
| void mmx::mul_mod | ( | C & | dest, |
| const C & | s1, | ||
| const C & | s2, | ||
| const modulus< C, V > & | m, | ||
| C & | carry | ||
| ) | [inline] |
Definition at line 162 of file modulus.hpp.
References mul_mod().
{
V::mul_mod (dest, s1, s2, m, carry); }
| void mmx::mul_mod | ( | C & | dest, |
| const C & | s, | ||
| const modulus< C, V > & | m | ||
| ) | [inline] |
Definition at line 150 of file modulus.hpp.
Referenced by modulus_div_naive< modulus_inv_integer_naive< modulus_mul_naive< modulus_add_integer_naive< modulus_reduction_naive< modulus_normalization_integer_naive > > > > >::div_mod(), modulus_div_int_naive< modulus_inv_int_naive< modulus_mul_int_naive< modulus_add_int_naive< modulus_reduction_int_naive< modulus_normalization_int_naive< modulus_maximum_size_int< size > > > > > > >::div_mod(), mul_mod(), operator*(), and operator*=().
{
V::mul_mod (dest, s, m); }
Definition at line 656 of file ball.hpp.
References Abs_ball, and center().
Referenced by implementation< ball_rounding, W, ball_rounded >::add_multiplicative_error(), add_rough_multiplicative_error(), GLUE_46(), GLUE_55(), implementation< ball_multiplicative, W, ball_rounded >::invert(), implementation< ball_multiplicative, W, ball_rough >::invert(), and radius().
{
return Abs_ball (multiplicative_error (center (x))); }
| rational mmx::nearest | ( | const floating<> & | x, |
| int | prec | ||
| ) | [inline] |
Definition at line 172 of file kernel.hpp.
References as_integer(), and floor().
Referenced by as_helper< rational, floating<> >::cv().
{
integer er = integer(1)<<prec;
floating<> r=(x>0?x:-x), f = floor(r);
integer a=as_integer(f);
integer n0=1, n1= a, tn=a;
integer d0=0, d1= 1, td=1;
for(;d0*d1<er && r!=f;)
{
r=1/(r-f); f = floor(r);
a=as_integer(f);
n1*=a;n1+=n0;n0=tn;tn=n1;
d1*=a;d1+=d0;d0=td;td=d1;
}
return (x>0? rational(n1)/d1: rational(-n1)/d1);
}
| void mmx::neg | ( | floating< V > & | r | ) | [inline] |
Definition at line 323 of file floating.hpp.
References Rnd.
{
r.secure (); mpfr_neg (*r, *r, Rnd); }
| void mmx::neg | ( | floating< V > & | r, |
| const floating< V > & | x1 | ||
| ) | [inline] |
Definition at line 325 of file floating.hpp.
References Rnd.
{
r.secure (); mpfr_neg (*r, *x1, Rnd); }
| void mmx::neg | ( | complex< C > & | r | ) | [inline] |
Definition at line 405 of file complex.hpp.
Referenced by neg(), implementation< ball_additive, IV, ball_infinities< BV > >::neg(), and operator-().
| void mmx::neg | ( | complex< C > & | r, |
| const complex< C > & | z1 | ||
| ) | [inline] |
| void mmx::neg_mod | ( | C & | dest, |
| const C & | s, | ||
| const modulus< C, V > & | m | ||
| ) | [inline] |
| void mmx::neg_mod | ( | C & | dest, |
| const C & | s, | ||
| const modulus< C, V > & | m, | ||
| C & | carry | ||
| ) | [inline] |
Definition at line 114 of file modulus.hpp.
References neg_mod().
{
V::neg_mod (dest, s, m, carry); }
| void mmx::neg_mod | ( | C & | dest, |
| const modulus< C, V > & | m, | ||
| C & | carry | ||
| ) | [inline] |
| void mmx::neg_mod | ( | C & | dest, |
| const modulus< C, V > & | m | ||
| ) | [inline] |
Definition at line 102 of file modulus.hpp.
Referenced by neg_mod(), and operator-().
{
V::neg_mod (dest, m); }
Definition at line 471 of file floating.hpp.
Referenced by GLUE_47(), set_accuracy(), and make_interval_helper< ball< C, R, V >, C2 >::val().
| C mmx::norm | ( | const complex< C > & | z | ) | [inline] |
Definition at line 221 of file complex.hpp.
References Im(), Re(), and square().
Referenced by invert(), operator/(), and complex< C >::operator/=().
| bool mmx::operator!= | ( | const scalar_set< X > & | r1, |
| const scalar_set< X > & | r2 | ||
| ) |
Definition at line 49 of file kernel.hpp.
{ return !(r1==r2); }
| bool mmx::operator!= | ( | const floating< V > & | x1, |
| const floating< V2 > & | x2 | ||
| ) | [inline] |
Definition at line 349 of file floating.hpp.
{
return mpfr_equal_p (*x1, *x2) == 0; }
| bool mmx::operator!= | ( | const floating< V > & | x1, |
| const floating< V > & | x2 | ||
| ) | [inline] |
Definition at line 362 of file floating.hpp.
{
return mpfr_equal_p (*x1, *x2) == 0; }
| bool mmx::operator!= | ( | const twin< C, D, V > & | x, |
| const twin< C, D, V > & | y | ||
| ) |
| bool mmx::operator!= | ( | const ball< C, R, V > & | z1, |
| const ball< C, R, V > & | z2 | ||
| ) |
| bool mmx::operator!= | ( | const interval< C, V > & | x1, |
| const interval< C, V > & | x2 | ||
| ) | [inline] |
Definition at line 373 of file interval.hpp.
References Interval, lower(), max(), min(), mul(), and upper().
{
if (lower (x1) >= 0)
return Interval (lower (x2) >= 0?
Down::mul (lower (x1), lower (x2)):
Down::mul (upper (x1), lower (x2)),
upper (x2) >= 0?
Up::mul (upper (x1), upper (x2)):
Up::mul (lower (x1), upper (x2)));
else if (upper (x1) <= 0)
return Interval (upper (x2) >= 0?
Down::mul (lower (x1), upper (x2)):
Down::mul (upper (x1), upper (x2)),
lower (x2) >= 0?
Up::mul (upper (x1), lower (x2)):
Up::mul (lower (x1), lower (x2)));
else if (lower (x2) >= 0)
return Interval (Down::mul (lower (x1), upper (x2)),
Up::mul (upper (x1), upper (x2)));
else if (upper (x2) <= 0)
return Interval (Down::mul (upper (x1), lower (x2)),
Up::mul (lower (x1), lower (x2)));
else
return Interval (min (Down::mul (lower (x1), upper (x2)),
Down::mul (upper (x1), lower (x2))),
max (Up::mul (lower (x1), lower (x2)),
Up::mul (upper (x1), upper (x2))));
}
Definition at line 255 of file affine.hpp.
References Affine, base(), common_limits(), slope(), truncate(), and VR.
| modular<M,modular_local> mmx::operator* | ( | const modular< M, modular_local > & | a, |
| const modular< M, modular_local > & | b | ||
| ) | [inline] |
Definition at line 474 of file modular.hpp.
References get_modulus(), Modular, and mul_mod().
{
M ma= get_modulus (a), mb= get_modulus (b);
M mod= ma == 0 ? mb : ma;
VERIFY (ma == 0 || mb == 0 || ma == mb, "incompatible moduli");
Modular c;
mul_mod (c.rep, a.rep, b.rep, mod);
c.mod= mod;
return c; }
Definition at line 235 of file modular.hpp.
References get_modulus(), Modular, and mul_mod().
{
Modular c;
mul_mod (c.rep, a.rep, b.rep, Modular::get_modulus ());
return c; }
| ball<complex<C>,R,V> mmx::operator* | ( | const ball< complex< C >, R, V > & | z1, |
| const ball< C, R, V > & | z2 | ||
| ) | [inline] |
Definition at line 137 of file ball_complex.hpp.
References Complex_ball.
{
return z1 * Complex_ball (z2); }
| ball<complex<C>,R,V> mmx::operator* | ( | const ball< C, R, V > & | z1, |
| const ball< complex< C >, R, V > & | z2 | ||
| ) | [inline] |
Definition at line 139 of file ball_complex.hpp.
References Complex_ball.
{
return Complex_ball (z1) * z2; }
Definition at line 191 of file modular.hpp.
References get_modulus(), and mul_mod().
{
mul_mod (dest.rep, s.rep, Modular::get_modulus ());
return dest; }
Definition at line 318 of file floating.hpp.
References Rnd.
{
x1.secure (); mpfr_mul (*x1, *x1, *x2, Rnd); return x1; }
| modular<M,modular_local>& mmx::operator*= | ( | modular< M, modular_local > & | dest, |
| const modular< M, modular_local > & | s | ||
| ) | [inline] |
Definition at line 430 of file modular.hpp.
References get_modulus(), and mul_mod().
{
M md= get_modulus (dest), ms= get_modulus (s);
M mod= md == 0 ? ms : md;
VERIFY (md == 0 || ms == 0 || md == ms, "incompatible moduli");
mul_mod (dest.rep, s.rep, mod);
return dest; }
Definition at line 201 of file modular.hpp.
References add_mod(), get_modulus(), and Modular.
{
Modular c;
add_mod (c.rep, a.rep, b.rep, Modular::get_modulus ());
return c; }
Definition at line 224 of file affine.hpp.
References Affine, base(), common_limits(), slope(), and VR.
| modular<M,modular_local> mmx::operator+ | ( | const modular< M, modular_local > & | a, |
| const modular< M, modular_local > & | b | ||
| ) | [inline] |
Definition at line 446 of file modular.hpp.
References add_mod(), get_modulus(), and Modular.
{
M ma= get_modulus (a), mb= get_modulus (b);
M mod= ma == 0 ? mb : ma;
VERIFY (ma == 0 || mb == 0 || ma == mb, "incompatible moduli");
Modular c;
add_mod (c.rep, a.rep, b.rep, mod);
c.mod= mod;
return c; }
| ball<complex<C>,R,V> mmx::operator+ | ( | const ball< complex< C >, R, V > & | z1, |
| const ball< C, R, V > & | z2 | ||
| ) | [inline] |
Definition at line 129 of file ball_complex.hpp.
References Complex_ball.
{
return z1 + Complex_ball (z2); }
| ball<complex<C>,R,V> mmx::operator+ | ( | const ball< C, R, V > & | z1, |
| const ball< complex< C >, R, V > & | z2 | ||
| ) | [inline] |
Definition at line 131 of file ball_complex.hpp.
References Complex_ball.
{
return Complex_ball (z1) + z2; }
Definition at line 314 of file floating.hpp.
References Rnd.
{
x1.secure (); mpfr_add (*x1, *x1, *x2, Rnd); return x1; }
Definition at line 181 of file modular.hpp.
References add_mod(), and get_modulus().
{
add_mod (dest.rep, s.rep, Modular::get_modulus ());
return dest; }
| modular<M,modular_local>& mmx::operator+= | ( | modular< M, modular_local > & | dest, |
| const modular< M, modular_local > & | s | ||
| ) | [inline] |
Definition at line 414 of file modular.hpp.
References add_mod(), and get_modulus().
{
M md= get_modulus (dest), ms= get_modulus (s);
M mod= md == 0 ? ms : md;
VERIFY (md == 0 || ms == 0 || md == ms, "incompatible moduli");
add_mod (dest.rep, s.rep, mod);
return dest; }
| ball<complex<C>,R,V> mmx::operator- | ( | const ball< C, R, V > & | z1, |
| const ball< complex< C >, R, V > & | z2 | ||
| ) | [inline] |
Definition at line 135 of file ball_complex.hpp.
References Complex_ball.
{
return Complex_ball (z1) - z2; }
Definition at line 221 of file modular.hpp.
References get_modulus(), Modular, and sub_mod().
{
Modular c;
sub_mod (c.rep, a.rep, b.rep, Modular::get_modulus ());
return c; }
| modular<M,modular_local> mmx::operator- | ( | const modular< M, modular_local > & | a, |
| const modular< M, modular_local > & | b | ||
| ) | [inline] |
Definition at line 464 of file modular.hpp.
References get_modulus(), Modular, and sub_mod().
{
M ma= get_modulus (a), mb= get_modulus (b);
M mod= ma == 0 ? mb : ma;
VERIFY (ma == 0 || mb == 0 || ma == mb, "incompatible moduli");
Modular c;
sub_mod (c.rep, a.rep, b.rep, mod);
c.mod= mod;
return c; }
| modular<M,modular_local> mmx::operator- | ( | const modular< M, modular_local > & | a | ) | [inline] |
Definition at line 456 of file modular.hpp.
References get_modulus(), Modular, and neg_mod().
{
M mod= get_modulus (a);
Modular c;
neg_mod (c.rep, a.rep, mod);
c.mod= mod;
return c; }
Definition at line 215 of file modular.hpp.
References get_modulus(), Modular, and neg_mod().
{
Modular c;
neg_mod (c.rep, a.rep, Modular::get_modulus ());
return c; }
| ball<complex<C>,R,V> mmx::operator- | ( | const ball< complex< C >, R, V > & | z1, |
| const ball< C, R, V > & | z2 | ||
| ) | [inline] |
Definition at line 133 of file ball_complex.hpp.
References Complex_ball.
{
return z1 - Complex_ball (z2); }
Definition at line 186 of file modular.hpp.
References get_modulus(), and sub_mod().
{
sub_mod (dest.rep, s.rep, Modular::get_modulus ());
return dest; }
| modular<M,modular_local>& mmx::operator-= | ( | modular< M, modular_local > & | dest, |
| const modular< M, modular_local > & | s | ||
| ) | [inline] |
Definition at line 422 of file modular.hpp.
References get_modulus(), and sub_mod().
{
M md= get_modulus (dest), ms= get_modulus (s);
M mod= md == 0 ? ms : md;
VERIFY (md == 0 || ms == 0 || md == ms, "incompatible moduli");
sub_mod (dest.rep, s.rep, mod);
return dest; }
Definition at line 316 of file floating.hpp.
References Rnd.
{
x1.secure (); mpfr_sub (*x1, *x1, *x2, Rnd); return x1; }
Definition at line 420 of file interval.hpp.
References div(), Interval, is_zero(), lower(), and upper().
{
if (is_zero (x2)) return Nan (Interval);
else if (lower (x2) > 0)
return Interval (lower (x1) > 0?
Down::div (lower (x1), upper (x2)):
Down::div (lower (x1), lower (x2)),
upper (x1) > 0?
Up::div (upper (x1), lower (x2)):
Up::div (upper (x1), upper (x2)));
else if (upper (x2) < 0)
return Interval (upper (x1) > 0?
Down::div (upper (x1), upper (x2)):
Down::div (upper (x1), lower (x2)),
lower (x1) > 0?
Up::div (lower (x1), lower (x2)):
Up::div (lower (x1), upper (x2)));
else return Nan (Interval);
}
| modular<M,modular_local> mmx::operator/ | ( | const modular< M, modular_local > & | a, |
| const modular< M, modular_local > & | b | ||
| ) | [inline] |
Definition at line 484 of file modular.hpp.
References div_mod(), get_modulus(), and Modular.
{
M ma= get_modulus (a), mb= get_modulus (b);
M mod= ma == 0 ? mb : ma;
VERIFY (ma == 0 || mb == 0 || ma == mb, "incompatible moduli");
Modular c;
div_mod (c.rep, a.rep, b.rep, mod);
c.mod= mod;
return c; }
| STMPL complex<double> mmx::operator/ | ( | const complex< double > & | z1, |
| const complex< double > & | z2 | ||
| ) | [inline] |
Definition at line 39 of file complex_double.hpp.
References abs(), Im(), and Re().
{
if (abs (Re (z2)) >= abs (Im (z2))) {
double f= Im (z2) / Re (z2);
double c= 1.0 / (Re (z2) + Im (z2) * f);
return complex<double> (c * (Re (z1) + Im (z1) * f),
c * (Im (z1) - Re (z1) * f));
}
else {
double f= Re (z2) / Im (z2);
double c= 1.0 / (Re (z2) * f + Im (z2));
return complex<double> (c * (Re (z1) * f + Im (z1)),
c * (Im (z1) * f - Re (z1)));
}
}
Definition at line 249 of file modular.hpp.
References div_mod(), get_modulus(), and Modular.
{
Modular c;
div_mod (c.rep, a.rep, b.rep, Modular::get_modulus ());
return c; }
| ball<complex<C>,R,V> mmx::operator/ | ( | const ball< C, R, V > & | z1, |
| const ball< complex< C >, R, V > & | z2 | ||
| ) | [inline] |
Definition at line 143 of file ball_complex.hpp.
References Complex_ball.
{
return Complex_ball (z1) / z2; }
Definition at line 285 of file affine.hpp.
{
ERROR ("not yet implemented");
//C inv= invert (base (z2));
//return Affine (inv * base (z1),
// inv * (slope (z1) - inv * base (z1) * slope (z2)));
}
Definition at line 293 of file affine.hpp.
{
ERROR ("not yet implemented");
//C inv= invert (base (z2));
//return Affine (inv * z1, - square (inv) * z1 * slope (z2));
}
| ball<complex<C>,R,V> mmx::operator/ | ( | const ball< complex< C >, R, V > & | z1, |
| const ball< C, R, V > & | z2 | ||
| ) | [inline] |
Definition at line 141 of file ball_complex.hpp.
References Complex_ball.
{
return z1 / Complex_ball (z2); }
Definition at line 196 of file modular.hpp.
References div_mod(), and get_modulus().
{
div_mod (dest.rep, s.rep, Modular::get_modulus ());
return dest; }
Definition at line 320 of file floating.hpp.
References Rnd.
{
x1.secure (); mpfr_div (*x1, *x1, *x2, Rnd); return x1; }
| modular<M,modular_local>& mmx::operator/= | ( | modular< M, modular_local > & | dest, |
| const modular< M, modular_local > & | s | ||
| ) | [inline] |
Definition at line 438 of file modular.hpp.
References div_mod(), and get_modulus().
{
M md= get_modulus (dest), ms= get_modulus (s);
M mod= md == 0 ? ms : md;
VERIFY (md == 0 || ms == 0 || md == ms, "incompatible moduli");
div_mod (dest.rep, s.rep, mod);
return dest; }
| bool mmx::operator< | ( | const affine< C, VC > & | z1, |
| const affine< C, VC > & | z2 | ||
| ) | [inline] |
| bool mmx::operator< | ( | const floating< V > & | x1, |
| const floating< V2 > & | x2 | ||
| ) | [inline] |
Definition at line 351 of file floating.hpp.
{
return mpfr_less_p (*x1, *x2) != 0; }
| bool mmx::operator< | ( | const floating< V > & | x1, |
| const floating< V > & | x2 | ||
| ) | [inline] |
Definition at line 364 of file floating.hpp.
{
return mpfr_less_p (*x1, *x2) != 0; }
| bool mmx::operator< | ( | const tangent< C, D > & | z1, |
| const tangent< C, D > & | z2 | ||
| ) | [inline] |
| bool mmx::operator< | ( | const twin< C, D, V > & | x, |
| const twin< C, D, V > & | y | ||
| ) |
| bool mmx::operator< | ( | const ball< C, R, V > & | z1, |
| const ball< C, R, V > & | z2 | ||
| ) | [inline] |
Definition at line 301 of file ball.hpp.
References is_negative().
{
return is_negative (z1 - z2);
}
| bool mmx::operator< | ( | const interval< C, V > & | x1, |
| const interval< C, V > & | x2 | ||
| ) | [inline] |
Definition at line 498 of file floating.hpp.
{
return x1= x1 << shift; }
| bool mmx::operator<= | ( | const floating< V > & | x1, |
| const floating< V > & | x2 | ||
| ) | [inline] |
Definition at line 368 of file floating.hpp.
{
return mpfr_lessequal_p (*x1, *x2) != 0; }
| bool mmx::operator<= | ( | const ball< C, R, V > & | z1, |
| const ball< C, R, V > & | z2 | ||
| ) | [inline] |
Definition at line 296 of file ball.hpp.
References is_negative_or_zero().
{
return is_negative_or_zero (z1 - z2);
}
| bool mmx::operator<= | ( | const floating< V > & | x1, |
| const floating< V2 > & | x2 | ||
| ) | [inline] |
Definition at line 355 of file floating.hpp.
{
return mpfr_lessequal_p (*x1, *x2) != 0; }
| bool mmx::operator<= | ( | const affine< C, VC > & | z1, |
| const affine< C, VC > & | z2 | ||
| ) | [inline] |
Definition at line 399 of file affine.hpp.
References base().
| tangent<C,D> tangent<C,D> bool mmx::operator<= | ( | const tangent< C, D > & | z1, |
| const tangent< C, D > & | z2 | ||
| ) | [inline] |
Definition at line 315 of file tangent.hpp.
References base().
| bool mmx::operator<= | ( | const interval< C, V > & | x1, |
| const interval< C, V > & | x2 | ||
| ) | [inline] |
| bool mmx::operator<= | ( | const twin< C, D, V > & | x, |
| const twin< C, D, V > & | y | ||
| ) |
| bool mmx::operator== | ( | const ball< C, R, V > & | z1, |
| const ball< C, R, V > & | z2 | ||
| ) |
| bool mmx::operator== | ( | const floating< V > & | x1, |
| const floating< V2 > & | x2 | ||
| ) | [inline] |
Definition at line 347 of file floating.hpp.
{
return mpfr_equal_p (*x1, *x2) != 0; }
| bool mmx::operator== | ( | const scalar_set< X > & | r1, |
| const scalar_set< X > & | r2 | ||
| ) |
Definition at line 47 of file kernel.hpp.
{ return true; }
| bool mmx::operator== | ( | const floating< V > & | x1, |
| const floating< V > & | x2 | ||
| ) | [inline] |
Definition at line 360 of file floating.hpp.
{
return mpfr_equal_p (*x1, *x2) != 0; }
| bool mmx::operator== | ( | const twin< C, D, V > & | x, |
| const twin< C, D, V > & | y | ||
| ) |
| bool mmx::operator== | ( | const interval< C, V > & | x1, |
| const interval< C, V > & | x2 | ||
| ) | [inline] |
| bool mmx::operator> | ( | const interval< C, V > & | x1, |
| const interval< C, V > & | x2 | ||
| ) | [inline] |
| bool mmx::operator> | ( | const floating< V > & | x1, |
| const floating< V > & | x2 | ||
| ) | [inline] |
Definition at line 366 of file floating.hpp.
{
return mpfr_greater_p (*x1, *x2) != 0; }
| bool mmx::operator> | ( | const tangent< C, D > & | z1, |
| const tangent< C, D > & | z2 | ||
| ) | [inline] |
| bool mmx::operator> | ( | const floating< V > & | x1, |
| const floating< V2 > & | x2 | ||
| ) | [inline] |
Definition at line 353 of file floating.hpp.
{
return mpfr_greater_p (*x1, *x2) != 0; }
| bool mmx::operator> | ( | const affine< C, VC > & | z1, |
| const affine< C, VC > & | z2 | ||
| ) | [inline] |
| bool mmx::operator> | ( | const twin< C, D, V > & | x, |
| const twin< C, D, V > & | y | ||
| ) |
| bool mmx::operator> | ( | const ball< C, R, V > & | z1, |
| const ball< C, R, V > & | z2 | ||
| ) | [inline] |
Definition at line 311 of file ball.hpp.
References is_positive().
{
return is_positive (z1 - z2);
}
| bool mmx::operator>= | ( | const affine< C, VC > & | z1, |
| const affine< C, VC > & | z2 | ||
| ) | [inline] |
Definition at line 409 of file affine.hpp.
References base().
| bool mmx::operator>= | ( | const twin< C, D, V > & | x, |
| const twin< C, D, V > & | y | ||
| ) |
| bool mmx::operator>= | ( | const interval< C, V > & | x1, |
| const interval< C, V > & | x2 | ||
| ) | [inline] |
| bool mmx::operator>= | ( | const tangent< C, D > & | z1, |
| const tangent< C, D > & | z2 | ||
| ) | [inline] |
Definition at line 325 of file tangent.hpp.
References base().
| bool mmx::operator>= | ( | const floating< V > & | x1, |
| const floating< V2 > & | x2 | ||
| ) | [inline] |
Definition at line 357 of file floating.hpp.
{
return mpfr_greaterequal_p (*x1, *x2) != 0; }
| bool mmx::operator>= | ( | const ball< C, R, V > & | z1, |
| const ball< C, R, V > & | z2 | ||
| ) | [inline] |
Definition at line 306 of file ball.hpp.
References is_positive_or_zero().
{
return is_positive_or_zero (z1 - z2);
}
| bool mmx::operator>= | ( | const floating< V > & | x1, |
| const floating< V > & | x2 | ||
| ) | [inline] |
Definition at line 370 of file floating.hpp.
{
return mpfr_greaterequal_p (*x1, *x2) != 0; }
Definition at line 500 of file floating.hpp.
{
return x1= x1 >> shift; }
Definition at line 61 of file ball_complex.hpp.
References center(), Complex_ball, and radius().
Referenced by acos(), implementation< ball_elementary, IV, ball_complex< BV > >::acos(), asin(), implementation< ball_elementary, IV, ball_complex< BV > >::asin(), atan(), implementation< ball_elementary, IV, ball_complex< BV > >::atan(), GLUE_7(), and GLUE_8().
{
return Complex_ball (over_i (center (z)), radius (z)); }
Definition at line 90 of file ball_complex.hpp.
References Complex_ball.
Referenced by exp(), and pow().
{
typedef implementation<ball_complex_construct,ball_complex<V> > Impl;
Complex_ball z; Impl::polar (z, r, t); return z;
}
Definition at line 495 of file ball.hpp.
References Ball, C, Elementary_variant, and V.
Referenced by flatten_number(), GLUE_14(), GLUE_15(), GLUE_19(), GLUE_22(), GLUE_25(), GLUE_28(), GLUE_47(), and pow().
{
typedef Elementary_variant(C,V) EV;
typedef implementation<ball_elementary,EV> Impl;
Ball d; Impl::pow (d, z, y); return d;
}
| xnat mmx::precision | ( | const affine< C, VC > & | z | ) | [inline] |
Definition at line 450 of file affine.hpp.
References base().
Referenced by as_helper< rational, floating<> >::cv(), binary_helper< floating< V > >::disassemble(), flatten_range(), GLUE_26(), GLUE_39(), GLUE_46(), GLUE_47(), GLUE_58(), and precision().
| xnat mmx::precision | ( | const twin< C, D, V > & | x | ) | [inline] |
| xnat mmx::precision | ( | const tangent< C, D > & | z | ) | [inline] |
Definition at line 365 of file tangent.hpp.
References base(), and precision().
| xnat mmx::precision | ( | const interval< C, V > & | x | ) | [inline] |
| xnat mmx::precision | ( | const floating< V > & | x | ) | [inline] |
Definition at line 469 of file floating.hpp.
{
return (xnat) mpfr_get_prec (*x); }
| xnat mmx::precision | ( | const complex< C > & | z | ) | [inline] |
| xnat mmx::precision | ( | const ball< C, R, V > & | x | ) | [inline] |
| void mmx::print | ( | OSTREAM & | os, |
| const rational & | x | ||
| ) | [inline] |
Definition at line 25 of file kernel.hpp.
References as_string().
| void mmx::print | ( | OSTREAM & | os, |
| const floating< V > & | x | ||
| ) | [inline] |
| void mmx::print | ( | OSTREAM & | os, |
| const integer & | x | ||
| ) | [inline] |
| integer mmx::probable_next_prime | ( | const integer & | i | ) | [inline] |
Definition at line 1160 of file integer.hpp.
References is_probable_prime().
Referenced by GLUE_29().
{
integer j (i+1);
while (! is_probable_prime (j)) j += 1;
return j;
}
| integer mmx::probable_previous_prime | ( | const integer & | i | ) | [inline] |
Definition at line 1154 of file integer.hpp.
References is_probable_prime().
{
integer j (i-1);
while (! is_probable_prime (j)) j -= 1;
return j;
}
| integer mmx::promote | ( | const F & | x, |
| const integer & | |||
| ) | [inline] |
Definition at line 1128 of file integer.hpp.
{ return as<integer> (x); }
Definition at line 256 of file floating.hpp.
Referenced by acos(), implementation< ball_elementary, W, ball_rounded >::acos(), asin(), implementation< ball_elementary, W, ball_rounded >::asin(), atan(), implementation< ball_elementary, W, ball_rounded >::atan(), implementation< ball_elementary, W, ball_rounded >::atan2(), binpow(), complex_gaussian(), cos(), implementation< ball_elementary, W, ball_rounded >::cos(), make_mmx_ball(), scalar_tangent(), sin(), implementation< ball_elementary, W, ball_rounded >::sin(), and sqrt().
{ return as<Floating > (x); }
| rational mmx::promote | ( | const F & | x, |
| const rational & | |||
| ) | [inline] |
Definition at line 243 of file rational.hpp.
{ return as<rational> (x); }
| R radius | ( | const ball< C, R, V > & | z | ) | [inline] |
Definition at line 105 of file ball.hpp.
Referenced by implementation< ball_abs, W, ball_rounded >::abs(), implementation< ball_rounding, W, ball_rounded >::abs_down(), Abs_type(), implementation< ball_rounding, W, ball_rounded >::abs_up(), implementation< ball_elementary, W, ball_rounded >::acos(), implementation< ball_additive, W, ball_rounded >::add(), implementation< ball_additive, W, ball_rough >::add(), implementation< ball_rounding, W, ball_rounded >::add_additive_error(), implementation< ball_rounding, W, ball_rounded >::add_elementary_error(), implementation< ball_rounding, W, ball_rounded >::add_multiplicative_error(), add_rough_additive_error(), add_rough_multiplicative_error(), implementation< ball_rounding, W, ball_rounded >::add_rounding_error(), implementation< ball_elementary, W, ball_rounded >::asin(), implementation< ball_elementary, W, ball_rounded >::atan(), implementation< ball_elementary, W, ball_rounded >::atan2(), binary_test(), blur(), implementation< ball_rounding, W, ball_rounded >::bnd_down(), implementation< ball_rounding, W, ball_rounded >::bnd_up(), change_precision(), affine_limits_helper< C, VC >::common(), conj(), copy(), implementation< ball_elementary, W, ball_rounded >::cos(), implementation< ball_elementary, IV, ball_complex< BV > >::cos(), implementation< ball_elementary, W, ball_rounded >::cosh(), implementation< ball_elementary, IV, ball_complex< BV > >::cosh(), binary_helper< ball< C, R, V > >::disassemble(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::div(), duplicate(), implementation< ball_elementary, W, ball_rounded >::exp(), implementation< ball_elementary, IV, ball_complex< BV > >::exp(), exponent(), flatten(), implementation< ball_complex_construct, IV, ball_complex< BV > >::gauss(), affine_limits_helper< C, VC >::get_limits(), GLUE_7(), implementation< ball_root, W, ball_rounded >::hypot(), implementation< ball_root, W, ball_rough >::hypot(), Im(), included(), implementation< ball_multiplicative, W, ball_rounded >::invert(), implementation< ball_multiplicative, W, ball_rough >::invert(), is_exact_zero(), is_finite(), is_fuzz(), is_infinite(), is_nan(), is_non_zero(), is_zero(), implementation< ball_elementary, W, ball_rounded >::log(), implementation< ball_elementary, IV, ball_complex< BV > >::log(), implementation< ball_rounding, W, ball_rounded >::lower(), magnitude(), implementation< ball_rounding, W, ball_rounded >::make_interval(), implementation< ball_ordered, W, ball_rounded >::max(), implementation< ball_ordered, W, ball_rounded >::min(), implementation< ball_multiplicative, W, ball_rounded >::mul(), implementation< ball_multiplicative, W, ball_rough >::mul(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::mul(), implementation< ball_additive, W, ball_rounded >::neg(), implementation< ball_additive, W, ball_rough >::neg(), over_i(), Re(), set_as(), implementation< ball_shift, W, ball_rounded >::shiftl(), implementation< ball_shift, W, ball_rough >::shiftl(), implementation< ball_shift, W, ball_rounded >::shiftr(), implementation< ball_shift, W, ball_rough >::shiftr(), implementation< ball_elementary, W, ball_rounded >::sin(), implementation< ball_elementary, IV, ball_complex< BV > >::sin(), implementation< ball_elementary, W, ball_rounded >::sinh(), implementation< ball_elementary, IV, ball_complex< BV > >::sinh(), implementation< ball_root, W, ball_rounded >::sqrt(), implementation< ball_root, W, ball_rough >::sqrt(), implementation< ball_root, IV, ball_complex< BV > >::sqrt(), implementation< ball_multiplicative, W, ball_rounded >::square(), implementation< ball_multiplicative, W, ball_rough >::square(), implementation< ball_additive, W, ball_rounded >::sub(), implementation< ball_additive, W, ball_rough >::sub(), times_i(), unary_hash(), implementation< ball_rounding, W, ball_rounded >::upper(), and binary_helper< ball< C, R, V > >::write().
{ return z.r; }
| C mmx::radius | ( | const interval< C, V > & | x | ) | [inline] |
Definition at line 113 of file interval.hpp.
References add(), center(), is_infinite(), lower(), multiplicative_error(), sub(), and upper().
{
if (is_infinite (x)) return 0;
return Up::add (decexp2 (Up::sub (upper (x), lower (x))),
multiplicative_error (center (x))); }
| integer mmx::raw_integer | ( | nat | limb_sz | ) | [inline] |
Definition at line 1011 of file integer.hpp.
References BITS_PER_LIMB.
{
return new integer_rep (limb_sz * BITS_PER_LIMB); }
Definition at line 484 of file affine.hpp.
References base(), limits(), Real_affine, and slope().
Referenced by abs(), add(), additive_error(), arg(), ARG_HYPER_SUGAR(), binary_test(), blur(), CF(), change_precision(), conj(), copy(), cos(), cosh(), implementation< ball_elementary, IV, ball_complex< BV > >::cosh(), as_helper< complex< T >, complex< F > >::cv(), fast_helper< complex< C > >::dd(), binary_helper< complex< C > >::disassemble(), div(), duplicate(), exp(), implementation< ball_elementary, IV, ball_complex< BV > >::exp(), exponent(), flatten(), GLUE_3(), GLUE_4(), invert(), is_exact_zero(), is_fuzz(), is_infinite(), is_nan(), is_reliable(), magnitude(), map(), mul(), neg(), norm(), operator*(), operator+(), operator-(), operator/(), operator<<(), operator>>(), over_i(), pow(), precision(), Re(), set_accuracy(), set_as(), set_euler(), set_fuzz(), set_imaginary(), set_infinity(), set_largest(), set_log2(), set_nan(), set_pi(), set_smallest(), sharpen(), sin(), sinh(), implementation< ball_elementary, IV, ball_complex< BV > >::sinh(), sqrt(), square(), sub(), times_i(), unary_hash(), fast_helper< complex< C > >::uu(), make_ball_helper< complex< interval< C > >, complex< C >, C >::val(), and binary_helper< complex< C > >::write().
Definition at line 396 of file tangent.hpp.
References base(), Re(), Real_tangent, and slope().
{
return Real_tangent (Re (base (z)), Re (slope (z)));
}
| C & Re | ( | complex< C > & | z | ) | [inline] |
Definition at line 108 of file complex.hpp.
{ return z.re; }
| C Re | ( | const complex< C > & | z | ) | [inline] |
Definition at line 106 of file complex.hpp.
{ return z.re; }
| static string mmx::recompose | ( | int | sign, |
| const string & | mant, | ||
| const integer & | i | ||
| ) | [static] |
Definition at line 72 of file string_scnot.cpp.
References as_int(), and as_string().
Referenced by decompose_range(), make_range(), and trunc_digits().
{
if (sign == 0) return "0";
if (locase (mant) == "nan") return "NaN";
if (mant == "0") return "0e" * as_string (i);
if (sign < 0) return "-" * recompose (1, mant, i);
if (locase (mant) == "infty") return "Infty";
if (i == -1) return "0." * mant;
if (i == -2) return "0.0" * mant;
if (i == -3) return "0.00" * mant;
if (N(mant) == 1) return mant * "e" * as_string (i);
if (i >= 0 && i<6 && N(mant)>i+1)
return mant (0, as_int (i)+1) * "." * mant (as_int (i)+1, N(mant));
return mant (0, 1) * "." * mant (1, N(mant)) * "e" * as_string (i);
}
| void mmx::reduce_mod | ( | C & | dest, |
| const modulus< C, V > & | m | ||
| ) | [inline] |
Definition at line 78 of file modulus.hpp.
Referenced by modulus_add_naive< modulus_reduction_naive< modulus_normalization_naive > >::add_mod(), modulus_encoding_naive< modulus_div_naive< modulus_inv_naive< modulus_mul_naive< modulus_add_naive< modulus_reduction_naive< modulus_normalization_naive > > > > > >::encode_mod(), modulus_encoding_integer_naive< modulus_div_naive< modulus_inv_integer_naive< modulus_mul_naive< modulus_add_integer_naive< modulus_reduction_naive< modulus_normalization_integer_naive > > > > > >::encode_mod(), modulus_encoding_int_naive< modulus_div_int_naive< modulus_inv_int_naive< modulus_mul_int_naive< modulus_add_int_naive< modulus_reduction_int_naive< modulus_normalization_int_naive< modulus_maximum_size_int< size > > > > > > > >::encode_mod(), modulus_mul_naive< modulus_add_naive< modulus_reduction_naive< modulus_normalization_naive > > >::mul_mod(), modulus_add_naive< modulus_reduction_naive< modulus_normalization_naive > >::neg_mod(), reduce_mod(), and modulus_add_naive< modulus_reduction_naive< modulus_normalization_naive > >::sub_mod().
{
V::reduce_mod (dest, m); }
| void mmx::reduce_mod | ( | C & | dest, |
| const C & | s, | ||
| const modulus< C, V > & | m | ||
| ) | [inline] |
| void mmx::reduce_mod | ( | C & | dest, |
| const modulus< C, V > & | m, | ||
| C & | carry | ||
| ) | [inline] |
Definition at line 82 of file modulus.hpp.
References reduce_mod().
{
V::reduce_mod (dest, m, carry); }
| void mmx::reduce_mod | ( | C & | dest, |
| const C & | s, | ||
| const modulus< C, V > & | m, | ||
| C & | carry | ||
| ) | [inline] |
Definition at line 90 of file modulus.hpp.
References reduce_mod().
{
V::reduce_mod (dest, s, m, carry); }
| C mmx::rough_next_above | ( | const C & | z | ) | [inline] |
Definition at line 131 of file ball_rough.hpp.
References C.
Referenced by implementation< ball_multiplicative, W, ball_rough >::invert(), and implementation< ball_root, W, ball_rough >::sqrt().
{
return (1 + Accuracy (C)) * z;
}
| double mmx::rough_next_above | ( | const double & | z | ) | [inline] |
Definition at line 136 of file ball_rough.hpp.
{
const double alpha= 1.000000000000000223;
return alpha * z;
}
Definition at line 388 of file floating.hpp.
References Floating.
{
Floating r (*x1); mpfr_round (*r, *x1); return r; }
Definition at line 630 of file ball.hpp.
References Ball.
Referenced by GLUE_30(), GLUE_41(), GLUE_42(), round(), and implementation< ball_ordered, W, ball_rounded >::round().
{
typedef implementation<ball_ordered,V> Impl;
Ball d; Impl::round (d, z); return d;
}
Definition at line 477 of file floating.hpp.
References Floating.
Referenced by implementation< ball_rounding, W, ball_rounded >::add_rounding_error(), GLUE_44(), GLUE_53(), rounded_none_down::rounded_as(), and rounded_none_up::rounded_as().
{
Floating r (*x);
mpfr_abs (*r, *x, GMP_RNDN);
mpfr_mul_2si (*r, *r, 1-mpfr_get_prec (*x), GMP_RNDN);
mpfr_nextabove (*r);
return r; }
| void mmx::scalar_tangent | ( | tangent< C, D > & | r, |
| const C & | c | ||
| ) | [inline] |
| void mmx::set_accuracy | ( | complex< C > & | z | ) | [inline] |
Definition at line 254 of file complex.hpp.
References Im(), Re(), and set_accuracy().
{
set_accuracy (Re (z)); set_zero (Im (z)); }
| void mmx::set_accuracy | ( | floating< V > & | r | ) | [inline] |
Definition at line 283 of file floating.hpp.
References Floating, and next_above().
{
r= next_above (Floating (1)) - Floating (1); }
| void mmx::set_accuracy | ( | interval< C, V > & | x | ) | [inline] |
| void mmx::set_accuracy | ( | tangent< C, D > & | z | ) | [inline] |
Definition at line 145 of file tangent.hpp.
References base(), set_accuracy(), and slope().
{
set_accuracy (base (z)); set_zero (slope (z)); }
| void mmx::set_accuracy | ( | affine< C, VC > & | x | ) | [inline] |
Definition at line 205 of file affine.hpp.
Referenced by set_accuracy().
| void mmx::set_accuracy | ( | ball< C, R, V > & | x | ) | [inline] |
| void mmx::set_accuracy | ( | twin< C, D, V > & | z | ) | [inline] |
Definition at line 177 of file twin.hpp.
References car(), cdr(), and set_accuracy().
{
set_accuracy (car (z)); set_accuracy (cdr (z)); }
| void mmx::set_as | ( | complex< T > & | r, |
| const F & | x | ||
| ) | [inline] |
| void mmx::set_as | ( | ball< TC, TR, TV > & | r, |
| const ball< FC, FR, FV > & | z | ||
| ) | [inline] |
| void mmx::set_as | ( | complex< T > & | r, |
| const complex< F > & | z | ||
| ) | [inline] |
| void mmx::set_as | ( | ball< TC, TR, TV > & | r, |
| const F & | z | ||
| ) | [inline] |
| void mmx::set_catalan | ( | interval< C, V > & | x | ) | [inline] |
Definition at line 326 of file interval.hpp.
References Interval.
{
x= Interval (Down::template catalan<C>(), Up::template catalan<C>()); }
| void mmx::set_euler | ( | tangent< C, D > & | z | ) | [inline] |
Definition at line 151 of file tangent.hpp.
References base(), set_euler(), and slope().
| void mmx::set_euler | ( | affine< C, VC > & | x | ) | [inline] |
Definition at line 208 of file affine.hpp.
Referenced by set_euler().
| void mmx::set_euler | ( | ball< C, R, V > & | x | ) | [inline] |
| void mmx::set_euler | ( | interval< C, V > & | x | ) | [inline] |
Definition at line 324 of file interval.hpp.
References Interval.
{
x= Interval (Down::template euler<C>(), Up::template euler<C>()); }
| void mmx::set_euler | ( | complex< C > & | z | ) | [inline] |
Definition at line 260 of file complex.hpp.
References Im(), Re(), and set_euler().
| void mmx::set_euler | ( | twin< C, D, V > & | z | ) | [inline] |
| void mmx::set_euler | ( | floating< V > & | r | ) | [inline] |
| void mmx::set_fuzz | ( | tangent< C, D > & | z | ) | [inline] |
Definition at line 139 of file tangent.hpp.
References base(), set_fuzz(), and slope().
| void mmx::set_fuzz | ( | ball< C, R, V > & | x | ) | [inline] |
| void mmx::set_fuzz | ( | twin< C, D, V > & | z | ) | [inline] |
| void mmx::set_fuzz | ( | interval< C, V > & | x | ) | [inline] |
| void mmx::set_fuzz | ( | complex< C > & | z | ) | [inline] |
Definition at line 248 of file complex.hpp.
References Im(), Re(), and set_fuzz().
| void mmx::set_fuzz | ( | affine< C, VC > & | x | ) | [inline] |
Definition at line 202 of file affine.hpp.
Referenced by set_fuzz().
| void mmx::set_imaginary | ( | complex< C > & | z | ) | [inline] |
| void mmx::set_imaginary | ( | ball< C, R, V > & | x | ) | [inline] |
| void mmx::set_imaginary | ( | affine< C, VC > & | x | ) | [inline] |
Definition at line 209 of file affine.hpp.
Referenced by set_imaginary().
| void mmx::set_imaginary | ( | tangent< C, D > & | z | ) | [inline] |
Definition at line 153 of file tangent.hpp.
References base(), set_imaginary(), and slope().
{
set_imaginary (base (z)); set_zero (slope (z)); }
| void mmx::set_imaginary | ( | twin< C, D, V > & | z | ) | [inline] |
Definition at line 185 of file twin.hpp.
References car(), cdr(), and set_imaginary().
{
set_zero (car (z)); set_imaginary (cdr (z)); }
| void mmx::set_infinity | ( | tangent< C, D > & | z | ) | [inline] |
Definition at line 137 of file tangent.hpp.
References base(), set_infinity(), and slope().
{
set_infinity (base (z)); set_zero (slope (z)); }
| void mmx::set_infinity | ( | interval< C, V > & | x | ) | [inline] |
| void mmx::set_infinity | ( | twin< C, D, V > & | z | ) | [inline] |
Definition at line 169 of file twin.hpp.
References car(), cdr(), and set_infinity().
{
set_infinity (car (z)); set_infinity (cdr (z)); }
| void mmx::set_infinity | ( | complex< C > & | z | ) | [inline] |
Definition at line 246 of file complex.hpp.
References Im(), Re(), and set_infinity().
{
set_infinity (Re (z)); set_infinity (Im (z)); }
| void mmx::set_infinity | ( | affine< C, VC > & | x | ) | [inline] |
Definition at line 201 of file affine.hpp.
Referenced by set_infinity().
| void mmx::set_infinity | ( | ball< C, R, V > & | x | ) | [inline] |
| void mmx::set_infinity | ( | floating< V > & | r | ) | [inline] |
Definition at line 273 of file floating.hpp.
{
mpfr_set_inf (*r, 1); }
| void mmx::set_largest | ( | floating< V > & | r | ) | [inline] |
Definition at line 279 of file floating.hpp.
{
mpfr_set_inf (*r, 1); mpfr_nextbelow (*r); }
| void mmx::set_largest | ( | interval< C, V > & | x | ) | [inline] |
| void mmx::set_largest | ( | affine< C, VC > & | x | ) | [inline] |
Definition at line 204 of file affine.hpp.
Referenced by set_largest().
| void mmx::set_largest | ( | twin< C, D, V > & | z | ) | [inline] |
Definition at line 175 of file twin.hpp.
References car(), cdr(), and set_largest().
{
set_largest (car (z)); set_largest (cdr (z)); }
| void mmx::set_largest | ( | ball< C, R, V > & | x | ) | [inline] |
| void mmx::set_largest | ( | tangent< C, D > & | z | ) | [inline] |
Definition at line 143 of file tangent.hpp.
References base(), set_largest(), and slope().
{
set_largest (base (z)); set_zero (slope (z)); }
| void mmx::set_largest | ( | complex< C > & | z | ) | [inline] |
Definition at line 252 of file complex.hpp.
References Im(), Re(), and set_largest().
{
set_largest (Re (z)); set_zero (Im (z)); }
| void mmx::set_log2 | ( | twin< C, D, V > & | z | ) | [inline] |
| void mmx::set_log2 | ( | tangent< C, D > & | z | ) | [inline] |
Definition at line 147 of file tangent.hpp.
References base(), set_log2(), and slope().
| void mmx::set_log2 | ( | ball< C, R, V > & | x | ) | [inline] |
| void mmx::set_log2 | ( | interval< C, V > & | x | ) | [inline] |
Definition at line 320 of file interval.hpp.
References Interval.
{
x= Interval (Down::template log2<C>(), Up::template log2<C>()); }
| void mmx::set_log2 | ( | affine< C, VC > & | x | ) | [inline] |
Definition at line 206 of file affine.hpp.
Referenced by set_log2().
| void mmx::set_log2 | ( | floating< V > & | r | ) | [inline] |
| void mmx::set_log2 | ( | complex< C > & | z | ) | [inline] |
Definition at line 256 of file complex.hpp.
References Im(), Re(), and set_log2().
| void mmx::set_maximal | ( | affine< C, VC > & | x | ) | [inline] |
| void mmx::set_maximal | ( | ball< C, R, V > & | x | ) | [inline] |
| void mmx::set_maximal | ( | interval< C, V > & | x | ) | [inline] |
| void mmx::set_maximal | ( | floating< V > & | r | ) | [inline] |
Definition at line 275 of file floating.hpp.
{
mpfr_set_inf (*r, 1); }
| void mmx::set_minimal | ( | floating< V > & | r | ) | [inline] |
Definition at line 277 of file floating.hpp.
{
mpfr_set_inf (*r, -1); }
| void mmx::set_minimal | ( | interval< C, V > & | x | ) | [inline] |
| void mmx::set_minimal | ( | affine< C, VC > & | x | ) | [inline] |
| void mmx::set_minimal | ( | ball< C, R, V > & | x | ) | [inline] |
| void mmx::set_modulus | ( | modular< M, modular_local > & | x, |
| const M & | p | ||
| ) | [inline] |
Definition at line 375 of file modular.hpp.
{
x.set_local_modulus (p); }
| void mmx::set_modulus | ( | modular< M, V > & | x, |
| const M & | p | ||
| ) | [inline] |
Definition at line 153 of file modular.hpp.
{
(void) x; Modular::set_modulus (p); }
| void mmx::set_nan | ( | ball< C, R, V > & | x | ) | [inline] |
| void mmx::set_nan | ( | rational & | r | ) | [inline] |
Definition at line 251 of file rational.hpp.
{ r= 0; }
| void mmx::set_nan | ( | tangent< C, D > & | z | ) | [inline] |
| void mmx::set_nan | ( | affine< C, VC > & | x | ) | [inline] |
| void mmx::set_nan | ( | complex< C > & | z | ) | [inline] |
| void mmx::set_nan | ( | twin< C, D, V > & | z | ) | [inline] |
| void mmx::set_nan | ( | interval< C, V > & | x | ) | [inline] |
| void mmx::set_nan | ( | floating< V > & | r | ) | [inline] |
Definition at line 271 of file floating.hpp.
{
mpfr_init (*r); }
| void mmx::set_pi | ( | twin< C, D, V > & | z | ) | [inline] |
| void mmx::set_pi | ( | affine< C, VC > & | x | ) | [inline] |
| void mmx::set_pi | ( | floating< V > & | r | ) | [inline] |
| void mmx::set_pi | ( | ball< C, R, V > & | x | ) | [inline] |
| void mmx::set_pi | ( | complex< C > & | z | ) | [inline] |
| void mmx::set_pi | ( | tangent< C, D > & | z | ) | [inline] |
| void mmx::set_pi | ( | interval< C, V > & | x | ) | [inline] |
Definition at line 322 of file interval.hpp.
References Interval.
{
x= Interval (Down::template pi<C>(), Up::template pi<C>()); }
| void mmx::set_smallest | ( | complex< C > & | z | ) | [inline] |
Definition at line 250 of file complex.hpp.
References Im(), Re(), and set_smallest().
{
set_smallest (Re (z)); set_zero (Im (z)); }
| void mmx::set_smallest | ( | ball< C, R, V > & | x | ) | [inline] |
| void mmx::set_smallest | ( | twin< C, D, V > & | z | ) | [inline] |
Definition at line 173 of file twin.hpp.
References car(), cdr(), and set_smallest().
{
set_smallest (car (z)); set_smallest (cdr (z)); }
| void mmx::set_smallest | ( | interval< C, V > & | x | ) | [inline] |
| void mmx::set_smallest | ( | floating< V > & | r | ) | [inline] |
Definition at line 281 of file floating.hpp.
{
mpfr_set_si (*r, 0, GMP_RNDU); mpfr_nextabove (*r); }
| void mmx::set_smallest | ( | tangent< C, D > & | z | ) | [inline] |
Definition at line 141 of file tangent.hpp.
References base(), set_smallest(), and slope().
{
set_smallest (base (z)); set_zero (slope (z)); }
| void mmx::set_smallest | ( | affine< C, VC > & | x | ) | [inline] |
Definition at line 203 of file affine.hpp.
Referenced by set_smallest().
| int mmx::sign | ( | const floating< V > & | x1 | ) | [inline] |
Definition at line 373 of file floating.hpp.
Referenced by abs(), atan2(), cos(), decompose(), decompose_range(), modulus_encoding_int_naive< modulus_div_int_naive< modulus_inv_int_naive< modulus_mul_int_naive< modulus_add_int_naive< modulus_reduction_int_naive< modulus_normalization_int_naive< modulus_maximum_size_int< size > > > > > > > >::encode_mod(), is_non_zero(), is_zero(), sin(), and trunc_digits().
{
int r= mpfr_sgn (*x1); return (r<0? -1: (r==0? 0: 1)); }
| generic mmx::simple_construct_integer | ( | const integer & | i | ) |
Definition at line 22 of file numerix.cpp.
References as_string().
{
return generic (as_string (i));
}
| generic mmx::simple_construct_rational | ( | const rational & | x | ) |
Definition at line 27 of file numerix.cpp.
References as_string().
Definition at line 517 of file interval.hpp.
References C, cos(), Interval, lower(), max(), min(), promote(), sign(), sin(), sub(), and upper().
{
C pi_lo= promote (314159, lower (x)) / promote (100000, lower (x));
if (Up::sub (upper (x), lower (x)) >= pi_lo)
return Interval (promote (-1, lower (x)), promote (1, lower (x)));
else {
int s1= sign (cos (lower (x)));
int s2= sign (cos (upper (x)));
if (s1 >= 0 && s2 >= 0)
return Interval (Down::sin (lower (x)), Up::sin (upper (x)));
else if (s1 <= 0 && s2 <= 0)
return Interval (Down::sin (upper (x)), Down::sin (lower (x)));
else if (s1 >= 0)
return Interval (min (Down::sin (lower (x)), Down::sin (upper (x))),
promote (1, lower (x)));
else
return Interval (promote (-1, lower (x)),
max (Down::sin (lower (x)), Down::sin (upper (x))));
}
}
Definition at line 523 of file ball.hpp.
References Ball, C, Elementary_variant, and V.
Referenced by cos(), implementation< ball_elementary, W, ball_rounded >::cos(), cosh(), GLUE_16(), GLUE_17(), GLUE_21(), GLUE_26(), GLUE_27(), GLUE_30(), GLUE_49(), polar(), implementation< ball_complex_construct, IV, ball_complex< BV > >::polar(), sin(), sinh(), and tan().
{
typedef Elementary_variant(C,V) EV;
typedef implementation<ball_elementary,EV> Impl;
Ball d; Impl::sin (d, z); return d;
}
| bool mmx::singleton | ( | const interval< T > & | x | ) | [inline] |
Definition at line 544 of file ball.hpp.
References Ball, C, Elementary_variant, and V.
Referenced by cos(), implementation< ball_elementary, IV, ball_complex< BV > >::cos(), cosh(), implementation< ball_elementary, W, ball_rounded >::cosh(), implementation< ball_elementary, IV, ball_complex< BV > >::cosh(), sin(), sinh(), and tanh().
{
typedef Elementary_variant(C,V) EV;
typedef implementation<ball_elementary,EV> Impl;
Ball d; Impl::sinh (d, z); return d;
}
| D slope | ( | const tangent< C, D > & | z | ) | [inline] |
Definition at line 70 of file tangent.hpp.
{ return z.d; }
| VC slope | ( | const affine< C, VC > & | z | ) | [inline] |
Definition at line 106 of file affine.hpp.
Referenced by abs(), acos(), additive_error(), asin(), atan(), binary_test(), blur(), CF2(), change_precision(), copy(), cos(), cosh(), binary_helper< tangent< C, D > >::disassemble(), binary_helper< affine< C, VC > >::disassemble(), duplicate(), exp(), flatten(), GLUE_17(), GLUE_37(), GLUE_4(), GLUE_5(), Im(), invert(), is_finite(), is_fuzz(), is_infinite(), is_nan(), log(), map(), operator*(), operator+(), operator-(), operator/(), operator<<(), operator>>(), Re(), scalar_tangent(), set_accuracy(), set_euler(), set_fuzz(), set_imaginary(), set_infinity(), set_largest(), set_log2(), set_nan(), set_pi(), set_smallest(), sharpen(), sin(), sinh(), sqrt(), square(), truncate(), unary_hash(), binary_helper< tangent< C, D > >::write(), and binary_helper< affine< C, VC > >::write().
{
return z.lin; }
| D & slope | ( | tangent< C, D > & | z | ) | [inline] |
Definition at line 72 of file tangent.hpp.
{ return z.d; }
Definition at line 399 of file floating.hpp.
References Rnd.
Definition at line 451 of file complex.hpp.
References C, Complex, hypot(), Im(), promote(), Re(), and sqrt().
{
C a= hypot (Re (z), Im (z));
if (Re (z) > 0) {
C r= sqrt ((a + Re (z)) / promote (2, a));
return Complex (r, (Im (z) / r) / promote (2, a));
}
else if (a == 0) return promote (0, z);
else {
C i = sqrt ((a - Re (z)) / promote (2, a));
if (Im (z) < 0) i= -i;
return Complex ((Im (z) / i) / promote (2, a), i);
}
}
Definition at line 467 of file ball.hpp.
References Ball, C, Elementary_variant, and V.
Referenced by acos(), implementation< ball_elementary, W, ball_rounded >::acos(), asin(), implementation< ball_elementary, W, ball_rounded >::asin(), GLUE_11(), GLUE_12(), GLUE_16(), GLUE_21(), GLUE_22(), GLUE_25(), GLUE_44(), hypot(), sqrt(), implementation< ball_root, W, ball_rounded >::sqrt(), implementation< ball_root, IV, ball_infinities< BV > >::sqrt(), and implementation< ball_root, IV, ball_complex< BV > >::sqrt().
{
typedef Elementary_variant(C,V) EV;
typedef implementation<ball_root,EV> Impl;
Ball d; Impl::sqrt (d, z); return d;
}
Definition at line 407 of file interval.hpp.
References Interval, lower(), max(), mul(), and upper().
{
if (lower (x) >= 0)
return Interval (Down::mul (lower (x), lower (x)),
Up::mul (upper (x), upper (x)));
else if (upper (x) <= 0)
return Interval (Down::mul (upper (x), upper (x)),
Up::mul (lower (x), lower (x)));
else return Interval (Down::mul (lower (x), upper (x)),
max (Up::mul (lower (x), lower (x)),
Up::mul (upper (x), upper (x))));
}
Definition at line 272 of file affine.hpp.
References Affine, base(), limits(), slope(), and truncate().
Referenced by acos(), asin(), atan(), implementation< ball_elementary, W, ball_rounded >::atan(), binpow(), GLUE_10(), GLUE_16(), GLUE_19(), GLUE_39(), GLUE_6(), GLUE_7(), GLUE_9(), hypot(), invert(), implementation< ball_multiplicative, W, ball_rounded >::invert(), magnitude(), norm(), operator/(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::square(), and square().
| mmx::STYPE_TO_TYPE | ( | template< typename V, typename W > | , |
| lift_type | , | ||
| modular< modulus< unsigned int, V >, W > | , | ||
| integer | |||
| ) |
| mmx::STYPE_TO_TYPE | ( | template< typename V, typename W > | , |
| lift_type | , | ||
| modular< modulus< signed short int, V >, W > | , | ||
| integer | |||
| ) |
| mmx::STYPE_TO_TYPE | ( | template< typename V, typename W > | , |
| lift_type | , | ||
| modular< modulus< int, V >, W > | , | ||
| integer | |||
| ) |
| mmx::STYPE_TO_TYPE | ( | template< typename V, typename W > | , |
| lift_type | , | ||
| modular< modulus< long int, V >, W > | , | ||
| integer | |||
| ) |
| mmx::STYPE_TO_TYPE | ( | template< typename V, typename W > | , |
| lift_type | , | ||
| modular< modulus< unsigned short int, V >, W > | , | ||
| integer | |||
| ) |
| mmx::STYPE_TO_TYPE | ( | template< typename V, typename W > | , |
| lift_type | , | ||
| modular< modulus< unsigned char, V >, W > | , | ||
| integer | |||
| ) |
| mmx::STYPE_TO_TYPE | ( | template< typename C > | , |
| default_radius_type | , | ||
| complex< C > | , | ||
| Default_radius_type(C) | |||
| ) |
| mmx::STYPE_TO_TYPE | ( | template< typename V > | , |
| default_radius_type | , | ||
| floating< V > | , | ||
| floating< single_floating > | |||
| ) |
| mmx::STYPE_TO_TYPE | ( | template< typename V, typename W > | , |
| lift_type | , | ||
| modular< modulus< long long int, V >, W > | , | ||
| integer | |||
| ) |
| mmx::STYPE_TO_TYPE | ( | template< typename V, typename W > | , |
| lift_type | , | ||
| modular< modulus< unsigned long long int, V >, W > | , | ||
| integer | |||
| ) |
| mmx::STYPE_TO_TYPE | ( | template< typename C, typename VC > | , |
| scalar_type | , | ||
| affine< C, VC > | , | ||
| C | |||
| ) |
| mmx::STYPE_TO_TYPE | ( | template< typename V, typename W > | , |
| lift_type | , | ||
| modular< modulus< unsigned long int, V >, W > | , | ||
| integer | |||
| ) |
| mmx::STYPE_TO_TYPE | ( | template< typename V, typename W > | , |
| lift_type | , | ||
| modular< modulus< signed char, V >, W > | , | ||
| integer | |||
| ) |
| mmx::STYPE_TO_TYPE | ( | template< typename C, typename D > | , |
| scalar_type | , | ||
| tangent< C, D > | , | ||
| C | |||
| ) |
| mmx::STYPE_TO_TYPE | ( | template< typename M, typename V > | , |
| lift_type | , | ||
| modular< M, V > | , | ||
| typename modular< M, V >::C | |||
| ) |
| void mmx::sub | ( | floating< V > & | r, |
| const floating< V > & | x1, | ||
| const floating< V > & | x2 | ||
| ) | [inline] |
Definition at line 329 of file floating.hpp.
References Rnd.
{
r.secure (); mpfr_sub (*r, *x1, *x2, Rnd); }
| void mmx::sub | ( | complex< C > & | r, |
| const complex< C > & | z1, | ||
| const complex< C > & | z2 | ||
| ) | [inline] |
Definition at line 423 of file complex.hpp.
Referenced by implementation< ball_rounding, W, ball_rounded >::abs_down(), implementation< ball_rounding, W, ball_rounded >::bnd_down(), cos(), implementation< ball_rounding, W, ball_rounded >::make_interval(), operator-(), interval< C, V >::operator-=(), radius(), sin(), implementation< ball_additive, IV, ball_infinities< BV > >::sub(), and make_interval_helper< ball< C, R, V >, C2 >::val().
| void mmx::sub_mod | ( | C & | dest, |
| const C & | s, | ||
| const modulus< C, V > & | m | ||
| ) | [inline] |
Definition at line 134 of file modulus.hpp.
Referenced by operator-(), operator-=(), and sub_mod().
{
V::sub_mod (dest, s, m); }
| void mmx::sub_mod | ( | C & | dest, |
| const C & | s, | ||
| const modulus< C, V > & | m, | ||
| C & | carry | ||
| ) | [inline] |
Definition at line 138 of file modulus.hpp.
References sub_mod().
{
V::sub_mod (dest, s, m, carry); }
| void mmx::sub_mod | ( | C & | dest, |
| const C & | s1, | ||
| const C & | s2, | ||
| const modulus< C, V > & | m | ||
| ) | [inline] |
| void mmx::sub_mod | ( | C & | dest, |
| const C & | s1, | ||
| const C & | s2, | ||
| const modulus< C, V > & | m, | ||
| C & | carry | ||
| ) | [inline] |
Definition at line 146 of file modulus.hpp.
References sub_mod().
{
V::sub_mod (dest, s1, s2, m, carry); }
Definition at line 530 of file ball.hpp.
References Ball, C, Elementary_variant, and V.
Referenced by GLUE_17(), GLUE_18(), GLUE_22(), GLUE_27(), GLUE_28(), GLUE_31(), GLUE_50(), and tan().
{
typedef Elementary_variant(C,V) EV;
typedef implementation<ball_elementary,EV> Impl;
Ball d; Impl::tan (d, z); return d;
}
Definition at line 59 of file ball_complex.hpp.
References center(), Complex_ball, and radius().
Referenced by asin(), implementation< ball_elementary, IV, ball_complex< BV > >::asin(), atan(), implementation< ball_elementary, IV, ball_complex< BV > >::atan(), GLUE_6(), and GLUE_7().
{
return Complex_ball (times_i (center (z)), radius (z)); }
Definition at line 328 of file interval.hpp.
{
return x * infinity_cst<Interval > (); }
Definition at line 291 of file floating.hpp.
{
return x * infinity_cst<Floating > (); }
Definition at line 155 of file tangent.hpp.
{
return x * infinity_cst<Tangent > (); }
Definition at line 264 of file complex.hpp.
{
return z * infinity_cst<Complex > (); }
| mmx::TRUE_IDENTITY_OP_SUGAR | ( | template< typename C, typename VC > | , |
| affine< C, VC > | |||
| ) |
| mmx::TRUE_IDENTITY_OP_SUGAR | ( | template< typename C > | , |
| complex< C > | |||
| ) |
| mmx::TRUE_IDENTITY_OP_SUGAR | ( | template< typename C, typename D > | , |
| tangent< C, D > | |||
| ) |
| mmx::TRUE_TO_EXACT_IDENTITY_SUGAR | ( | template< typename V > | , |
| floating< V > | |||
| ) |
| mmx::TRUE_TO_EXACT_IDENTITY_SUGAR | ( | rational | ) |
| mmx::TRUE_TO_EXACT_IDENTITY_SUGAR | ( | integer | ) |
Definition at line 618 of file ball.hpp.
References Ball.
Referenced by GLUE_29(), GLUE_40(), GLUE_41(), trunc(), and implementation< ball_ordered, W, ball_rounded >::trunc().
{
typedef implementation<ball_ordered,V> Impl;
Ball d; Impl::trunc (d, z); return d;
}
Definition at line 384 of file floating.hpp.
References Floating.
{
Floating r (*x1); mpfr_trunc (*r, *x1); return r; }
| string trunc_digits | ( | const string & | s, |
| xnat | dd | ||
| ) |
Definition at line 176 of file string_scnot.cpp.
References decompose(), inc_mantissa(), min(), mmx_significant_digits, recompose(), and sign().
Referenced by as_string(), flatten_range(), mpfr_double_as_string(), and mpfr_to_string().
{
if (mmx_significant_digits != 0) {
if (dd == 0) dd= mmx_significant_digits;
else dd= min (dd, mmx_significant_digits);
}
if (locase (s) == "nan") return "NaN";
if (locase (s) == "infty") return "Infty";
if (locase (s) == "-infty") return "-Infty";
if (locase (s) == "fuzz") return "Fuzz";
int sign;
string mant;
integer expo;
decompose (s, sign, mant, expo);
if (dd == 0 || N(mant) <= dd) return recompose (sign, mant, expo);
string mant2= mant (0, dd);
if (mant[dd] >= '5') inc_mantissa (mant2, expo);
return recompose (sign, mant2, expo);
}
| C mmx::truncate | ( | const affine< C, VC > & | z | ) | [inline] |
Definition at line 114 of file affine.hpp.
References base(), limits(), and slope().
Referenced by operator*(), and square().
{
typedef affine_limits_helper<C,VC> Helper;
return base (z) + Helper::truncate (slope (z), limits (z)); }
| nat mmx::unary_hash | ( | const ball< C, R, V > & | x | ) |
| nat mmx::unary_hash | ( | const affine< C, VC > & | x | ) |
| nat mmx::unary_hash | ( | const tangent< C, D > & | x | ) |
| nat mmx::unary_hash | ( | const complex< C > & | z | ) | [inline] |
| nat mmx::unary_hash | ( | const twin< C, D, V > & | x | ) |
| nat mmx::unary_hash | ( | const interval< C, V > & | x | ) |
| mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename R, typename V > | , |
| radius_op | , | ||
| ball< C, R, V > | , | ||
| R | |||
| ) |
| mmx::UNARY_RETURN_TYPE | ( | template< typename C > | , |
| abs_op | , | ||
| complex< C > | , | ||
| C | |||
| ) |
| mmx::UNARY_RETURN_TYPE | ( | STMPL | , |
| denominator_op | , | ||
| rational | , | ||
| integer | |||
| ) |
| mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename VC > | , |
| Re_op | , | ||
| affine< C, VC > | , | ||
| affine< Real_type(C), Real_type(VC) > | |||
| ) |
| mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename R, typename V > | , |
| center_op | , | ||
| ball< C, R, V > | , | ||
| C | |||
| ) |
| mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename D > | , |
| Re_op | , | ||
| tangent< C, D > | , | ||
| tangent< Real_type(C), Real_type(D) > | |||
| ) |
| mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , |
| radius_op | , | ||
| interval< C, V > | , | ||
| C | |||
| ) |
| mmx::UNARY_RETURN_TYPE | ( | template< typename C > | , |
| Re_op | , | ||
| complex< C > | , | ||
| C | |||
| ) |
| mmx::UNARY_RETURN_TYPE | ( | template< typename C > | , |
| radius_op | , | ||
| complex< C > | , | ||
| Radius_type(C) | |||
| ) |
| mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename VC > | , |
| abs_op | , | ||
| affine< C, VC > | , | ||
| affine< Abs_type(C), Abs_type(VC) > | |||
| ) |
| mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename D > | , |
| abs_op | , | ||
| tangent< C, D > | , | ||
| tangent< Abs_type(C), Abs_type(D) > | |||
| ) |
| mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename R, typename V > | , |
| Re_op | , | ||
| ball< C, R, V > | , | ||
| ball< Real_type(C), R, V > | |||
| ) |
| mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename R, typename V > | , |
| abs_op | , | ||
| ball< C, R, V > | , | ||
| ball< Abs_type(C), R, Abs_type(V) > | |||
| ) |
| mmx::UNARY_RETURN_TYPE | ( | template< typename C > | , |
| center_op | , | ||
| complex< C > | , | ||
| complex< Center_type(C) > | |||
| ) |
| mmx::UNARY_RETURN_TYPE | ( | STMPL | , |
| numerator_op | , | ||
| rational | , | ||
| integer | |||
| ) |
Definition at line 514 of file floating.hpp.
References Floating, and gmp_randstate.
Referenced by GLUE_14().
{
Floating r (*lo, *hi); mpfr_urandomb (*r, gmp_randstate);
return lo + r * (hi - lo); }
| C mmx::upper | ( | const ball< C, R, V > & | z | ) | [inline] |
Definition at line 112 of file ball.hpp.
References Rnd.
Referenced by abs(), abs_up(), acos(), asin(), atan(), atan2(), binary_test(), bnd_up(), ceil(), implementation< ball_ordered, W, ball_rounded >::ceil(), center(), change_precision(), copy(), cos(), cosh(), binary_helper< interval< C, V > >::disassemble(), duplicate(), exp(), exponent(), flatten(), flatten_range(), floor(), implementation< ball_ordered, W, ball_rounded >::floor(), GLUE_5(), hypot(), intersect(), is_exact_zero(), is_finite(), is_fuzz(), is_infinite(), is_nan(), is_non_zero(), is_zero(), log(), magnitude(), map(), max(), min(), operator!=(), operator*(), operator+(), interval< C, V >::operator+=(), operator-(), interval< C, V >::operator-=(), operator/(), operator<(), operator<<(), operator<=(), operator==(), operator>(), operator>=(), operator>>(), precision(), radius(), round(), implementation< ball_ordered, W, ball_rounded >::round(), sin(), singleton(), sinh(), sqrt(), square(), trunc(), implementation< ball_ordered, W, ball_rounded >::trunc(), unary_hash(), and binary_helper< interval< C, V > >::write().
{
typedef implementation<ball_rounding,V> Rnd;
return Rnd::upper (z); }
| C upper | ( | const interval< C, V > & | z | ) | [inline] |
Definition at line 110 of file interval.hpp.
{ return x.r; }
| floating<W> mmx::view | ( | const floating< V > & | x | ) | [inline] |
Definition at line 169 of file rounded.hpp.
{
return *((floating<W>*) ((void*) &x));
}
| mmx::WRAP_PRINT_IMPL | ( | template< typename M, typename V > | inline, |
| modular< M, V > | |||
| ) |
| mmx::WRAP_WRAPPED_IMPL | ( | template< typename M, typename V > | inline, |
| modular< M, V > | |||
| ) |
| mmx::WRAP_WRAPPED_IMPL | ( | template< typename C, typename V > | inline, |
| modulus< C, V > | |||
| ) |
| string zero_to_string | ( | const mpfr_t | err | ) |
Definition at line 82 of file mmx_mpfr.cpp.
References as_string(), and exponent().
| string(* as_string_hook)(double) |
Referenced by numerix_instance::numerix_instance().
Definition at line 66 of file complex.hpp.
Referenced by abs(), acos(), rounded_opposite< V >::add(), implementation< ball_additive, IV, ball_infinities< BV > >::add(), asin(), atan(), atan2(), binpow(), implementation< ball_ordered, W, ball_rounded >::ceil(), cos(), cosh(), rounded_opposite< V >::div(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::div(), modulus_div_naive< modulus_inv_integer_naive< modulus_mul_naive< modulus_add_integer_naive< modulus_reduction_naive< modulus_normalization_integer_naive > > > > >::div_mod(), modulus_div_int_naive< modulus_inv_int_naive< modulus_mul_int_naive< modulus_add_int_naive< modulus_reduction_int_naive< modulus_normalization_int_naive< modulus_maximum_size_int< size > > > > > > >::div_mod(), modulus_mul_int_preinverse< modulus_add_int_naive< modulus_reduction_int_naive< modulus_normalization_int_naive< modulus_maximum_size_int< m > > > > >::dyn_r(), modulus_mul_int_preinverse< modulus_add_int_naive< modulus_reduction_int_naive< modulus_normalization_int_naive< modulus_maximum_size_int< m > > > > >::dyn_s(), modulus_mul_int_preinverse< modulus_add_int_naive< modulus_reduction_int_naive< modulus_normalization_int_naive< modulus_maximum_size_int< m > > > > >::dyn_t(), modulus_mul_int_preinverse< V >::auxiliaries_helper< C, p >::_inverse_helper< void, Dummy >::dyn_value(), modulus_encoding_int_naive< modulus_div_int_naive< modulus_inv_int_naive< modulus_mul_int_naive< modulus_add_int_naive< modulus_reduction_int_naive< modulus_normalization_int_naive< modulus_maximum_size_int< size > > > > > > > >::encode_mod(), exp(), implementation< ball_ordered, W, ball_rounded >::floor(), binary_helper< twin< C, D, V > >::full_type_name(), binary_helper< tangent< C, D > >::full_type_name(), binary_helper< interval< C, V > >::full_type_name(), binary_helper< complex< C > >::full_type_name(), binary_helper< ball< C, R, V > >::full_type_name(), binary_helper< affine< C, VC > >::full_type_name(), modulus_mul_int_naive< V >::mul_mod_helper< C, void >::half_lshift_mod(), hypot(), modulus_inv_naive< modulus_mul_naive< modulus_add_naive< modulus_reduction_naive< modulus_normalization_naive > > > >::inv_mod(), modulus_inv_int_naive< modulus_mul_int_naive< modulus_add_int_naive< modulus_reduction_int_naive< modulus_normalization_int_naive< modulus_maximum_size_int< size > > > > > >::inv_mod(), modulus_inv_int_naive< modulus_mul_int_naive< modulus_add_int_naive< modulus_reduction_int_naive< modulus_normalization_int_naive< modulus_maximum_size_int< size > > > > > >::inv_mod_unsigned(), invert(), log(), implementation< ball_rounding, W, ball_rounded >::lower(), implementation< ball_rounding, W, ball_rounded >::make_interval(), modulus< C, modulus_int_preinverse< m > >::modulus(), rounded_opposite< V >::mul(), implementation< ball_multiplicative, IV, ball_infinities< BV > >::mul(), modulus_mul_int_preinverse< V >::mul_mod_helper< C, void, m >::op(), modulus_mul_int_preinverse< V >::mul_mod_helper< C, D, m >::op(), modulus_mul_int_naive< V >::mul_mod_helper< C, void >::op(), modulus_mul_int_naive< V >::mul_mod_helper< C, D >::op(), modulus_add_int_naive< V >::add_mod_helper< C, false >::op(), complex< C >::operator*=(), operator/(), complex< C >::operator/=(), pow(), binary_helper< twin< C, D, V > >::read(), binary_helper< tangent< C, D > >::read(), binary_helper< interval< C, V > >::read(), binary_helper< complex< C > >::read(), binary_helper< ball< C, R, V > >::read(), binary_helper< affine< C, VC > >::read(), modulus_reduction_int_naive< modulus_normalization_int_naive< modulus_maximum_size_int< size > > >::reduce_mod(), rough_next_above(), implementation< ball_ordered, W, ball_rounded >::round(), rounded_local< Mode >::rounded_as(), rounded_global< Mode >::rounded_as(), rounded_none_down::rounded_as(), rounded_none_up::rounded_as(), set_accuracy(), set_euler(), set_fuzz(), set_imaginary(), set_infinity(), set_largest(), set_log2(), set_maximal(), set_minimal(), set_nan(), set_pi(), set_smallest(), binary_helper< twin< C, D, V > >::short_type_name(), binary_helper< tangent< C, D > >::short_type_name(), binary_helper< interval< C, V > >::short_type_name(), binary_helper< complex< C > >::short_type_name(), binary_helper< ball< C, R, V > >::short_type_name(), binary_helper< affine< C, VC > >::short_type_name(), sin(), sinh(), sqrt(), rounded_opposite< V >::square(), square(), rounded_opposite< V >::sub(), implementation< ball_additive, IV, ball_infinities< BV > >::sub(), modulus_add_integer_naive< modulus_reduction_naive< modulus_normalization_integer_naive > >::sub_mod_core(), modulus_add_int_naive< modulus_reduction_int_naive< modulus_normalization_int_naive< modulus_maximum_size_int< size > > > >::sub_mod_core(), tan(), tanh(), implementation< ball_ordered, W, ball_rounded >::trunc(), and implementation< ball_rounding, W, ball_rounded >::upper().
Definition at line 58 of file twin.hpp.
Referenced by make_ball_helper< interval< C, V >, C2, R2 >::val(), and make_interval_helper< ball< C, R, V >, C2 >::val().
Definition at line 85 of file interval.hpp.
Definition at line 103 of file tangent.hpp.
Referenced by fixed_floating< V, P, D >::disc(), modulus_mul_int_preinverse< modulus_add_int_naive< modulus_reduction_int_naive< modulus_normalization_int_naive< modulus_maximum_size_int< m > > > > >::dyn_q(), binary_helper< twin< C, D, V > >::full_type_name(), modulus_mul_int_naive< modulus_add_int_naive< modulus_reduction_int_naive< modulus_normalization_int_naive< modulus_maximum_size_int< size > > > > >::mul_mod(), modulus_mul_int_preinverse< V >::mul_mod_helper< C, D, m >::op(), modulus_mul_int_naive< V >::mul_mod_helper< C, D >::op(), binary_helper< twin< C, D, V > >::read(), binary_helper< tangent< C, D > >::read(), binary_helper< twin< C, D, V > >::short_type_name(), and binary_helper< tangent< C, D > >::short_type_name().
Definition at line 67 of file modulus.hpp.
Referenced by as_helper< T, F >::cv().
Definition at line 392 of file floating.hpp.
| gmp_randstate_t gmp_randstate |
Definition at line 17 of file numerix.cpp.
Referenced by numerix_instance::numerix_instance(), and uniform_deviate().
| tangent<C,D> HARD_IDENTITY_OP_SUGAR(template< typename C, typename D >, tangent< C, D >) template< typename C |
Definition at line 85 of file interval.hpp.
| tangent<C,D> INV_HYPER_SUGAR(template< typename C, typename D >, tangent< C, D >) ARG_HYPER_SUGAR(template< typename C |
Definition at line 450 of file floating.hpp.
{
return mpfr_number_p (*x) != 0; }
| xnat mmx_bit_precision = 64 |
Definition at line 21 of file mmx_mpfr.cpp.
Referenced by binary_helper< floating< V > >::assemble(), glue_floating(), mmx_local_bit_precision::mmx_local_bit_precision(), std_floating::prec(), and mmx_local_bit_precision::~mmx_local_bit_precision().
| xnat mmx_discrepancy = (BITS_PER_LIMB >> 1) |
Definition at line 23 of file mmx_mpfr.cpp.
Referenced by std_floating::disc(), and glue_floating().
| bool mmx_pretty_exponents = false |
Definition at line 24 of file mmx_mpfr.cpp.
Referenced by flatten_number(), and glue_floating().
| mpfr_rnd_t mmx_rounding_mode = GMP_RNDN |
Definition at line 22 of file mmx_mpfr.cpp.
Referenced by rounding_helper< floating< V > >::get_rounding(), std_floating::rnd(), and rounding_helper< floating< V > >::set_rounding().
| xnat mmx_significant_digits = 0 |
Definition at line 20 of file mmx_mpfr.cpp.
Referenced by flatten_range(), glue_floating(), mmx_local_significant_digits::mmx_local_significant_digits(), trunc_digits(), and mmx_local_significant_digits::~mmx_local_significant_digits().
Definition at line 63 of file numerix.cpp.
| modular<M,V> POOR_MAN_SQRT_SUGAR(template< typename M, typename V >, modular< M, V >) POOR_MAN_ELEMENTARY_SUGAR(template< typename M |
Definition at line 165 of file ball.hpp.
Referenced by implementation< ball_rounding, W, ball_rounded >::abs_down(), implementation< ball_rounding, W, ball_rounded >::abs_up(), implementation< ball_elementary, W, ball_rounded >::acos(), implementation< ball_additive, W, ball_rounded >::add(), implementation< ball_rounding, W, ball_rounded >::add_additive_error(), implementation< ball_rounding, W, ball_rounded >::add_elementary_error(), implementation< ball_rounding, W, ball_rounded >::add_multiplicative_error(), add_rough_additive_error(), add_rough_multiplicative_error(), implementation< ball_rounding, W, ball_rounded >::add_rounding_error(), implementation< ball_elementary, W, ball_rounded >::asin(), implementation< ball_elementary, W, ball_rounded >::atan(), implementation< ball_elementary, W, ball_rounded >::atan2(), blur(), implementation< ball_rounding, W, ball_rounded >::bnd_down(), implementation< ball_rounding, W, ball_rounded >::bnd_up(), complex_gaussian(), implementation< ball_elementary, W, ball_rounded >::cos(), implementation< ball_elementary, IV, ball_complex< BV > >::cos(), implementation< ball_elementary, W, ball_rounded >::cosh(), implementation< ball_elementary, IV, ball_complex< BV > >::cosh(), implementation< ball_elementary, W, ball_rounded >::exp(), implementation< ball_elementary, IV, ball_complex< BV > >::exp(), binary_helper< ball< C, R, V > >::full_type_name(), implementation< ball_complex_construct, IV, ball_complex< BV > >::gauss(), implementation< ball_root, W, ball_rounded >::hypot(), implementation< ball_multiplicative, W, ball_rounded >::invert(), implementation< ball_multiplicative, W, ball_rough >::invert(), implementation< ball_elementary, W, ball_rounded >::log(), implementation< ball_elementary, IV, ball_complex< BV > >::log(), implementation< ball_multiplicative, W, ball_rounded >::mul(), implementation< ball_multiplicative, W, ball_rough >::mul(), binary_helper< ball< C, R, V > >::read(), rnd_floating< V, R >::rnd(), set_fuzz(), implementation< ball_shift, W, ball_rough >::shiftl(), implementation< ball_shift, W, ball_rough >::shiftr(), binary_helper< ball< C, R, V > >::short_type_name(), implementation< ball_elementary, W, ball_rounded >::sin(), implementation< ball_elementary, IV, ball_complex< BV > >::sin(), implementation< ball_elementary, W, ball_rounded >::sinh(), implementation< ball_elementary, IV, ball_complex< BV > >::sinh(), implementation< ball_root, W, ball_rounded >::sqrt(), implementation< ball_root, W, ball_rough >::sqrt(), implementation< ball_root, IV, ball_complex< BV > >::sqrt(), implementation< ball_multiplicative, W, ball_rounded >::square(), implementation< ball_multiplicative, W, ball_rough >::square(), implementation< ball_additive, W, ball_rounded >::sub(), and make_interval_helper< ball< C, R, V >, C2 >::val().
Definition at line 66 of file complex.hpp.
Definition at line 67 of file modulus.hpp.
Definition at line 160 of file affine.hpp.
Referenced by affine_limits_helper< C, VC >::get_domain(), binary_helper< affine< C, VC > >::read(), and binary_helper< affine< C, VC > >::short_type_name().