algebramix_doc 0.3
|
Cantor & Zassenhaus algorithm, as described in Chapter 14 of "Modern Computer Algebra" by von zur Gathen and Gerhard.
typedef algebraic_number_extension<rational,ball<complex<floating<> > > > algebraic_complex_extension |
Definition at line 61 of file algebraic_number.hpp.
typedef algebraic<rational,algebraic_complex_extension> algebraic_number |
Definition at line 65 of file algebraic_number.hpp.
typedef algebraic<rational,algebraic_real_extension> algebraic_real |
Definition at line 63 of file algebraic_number.hpp.
typedef algebraic_number_extension<rational,ball<floating<> > > algebraic_real_extension |
Definition at line 59 of file algebraic_number.hpp.
typedef matrix_unrolled<4,matrix_unrolled<4,matrix_naive> > matrix_unrolled_4_4 |
Definition at line 30 of file matrix_modular_int.hpp.
algebraic_real mmx::abs | ( | const algebraic_number & | z | ) | [inline] |
Definition at line 435 of file algebraic_number.hpp.
References conj(), algebraic_number_extension< C, Ball >::ext, field(), normalize(), Re(), sqrt(), value(), and algebraic_number_extension< C, Ball >::x.
Referenced by pivot_helper< complex< double > >::better(), pivot_helper< double >::better(), GLUE_54(), GLUE_58(), GLUE_68(), and improve_zero().
{ algebraic_number x= normalize (sqrt (z * conj (z))); algebraic_complex_extension cext= field (x); algebraic_real_extension rext (cext.ext, Re (cext.x)); return algebraic_real (rext, value (x)); }
Definition at line 669 of file matrix.hpp.
{ return unary_map<abs_op> (m); }
polynomial<Abs_type(C),V> mmx::abs | ( | const polynomial< C, V > & | p | ) |
Definition at line 1393 of file polynomial.hpp.
{ return unary_map<abs_op> (p); }
Definition at line 60 of file series_matrix.hpp.
References Series_rep.
Referenced by as_matrix(), as_vector(), vector_access_series_rep< C, V, W >::expression(), matrix_access_series_rep< C, V, U >::expression(), flatten(), implicit_series(), and solver_series_rep< C, V >::name_component().
{ return (Series_rep*) new matrix_access_series_rep<C,V,U> (f, i, j); }
Definition at line 66 of file series_vector.hpp.
References Series_rep.
{ return (Series_rep*) new vector_access_series_rep<C,V,W> (f, i); }
Definition at line 65 of file series_elementary.hpp.
Referenced by GLUE_40(), and GLUE_55().
{
return unary_recursive_series<acos_op> (f);
}
Definition at line 70 of file series_elementary.hpp.
{
return unary_recursive_series<acos_op> (f, c);
}
nat mmx::aligned_size | ( | nat | r, |
nat | c | ||
) | [inline] |
Definition at line 78 of file matrix_naive.hpp.
{
return aligned_size<C,V> (r * c); }
polynomial< C > annihilator | ( | const algebraic_number_extension< C, Ball > & | ext, |
const typename algebraic_number_extension< C, Ball >::El & | p | ||
) |
Definition at line 355 of file algebraic_number.hpp.
References annihilator().
{ return annihilator (ext.ext, p); }
polynomial<C> mmx::annihilator | ( | const algebraic_extension< C > & | ext, |
const typename algebraic_extension< C >::El & | p | ||
) |
Definition at line 311 of file algebraic_extension.hpp.
References CF(), deg(), Element, N(), Polynomial, rem(), row(), row_echelon(), and square_free().
{ nat n= deg (ext.mp); matrix<C> m (promote (0, CF(ext)), n+1, n); Element pp= promote (1, CF(ext)); for (nat i=0; i<=n; i++) { for (nat j=0; j<N(pp); j++) m (i, j)= pp[j]; pp= rem (p * pp, ext.mp); } matrix<C> e, k; e= row_echelon (m, k); for (nat i=0; i<=n; i++) { bool ok= true; for (nat j=0; j<n; j++) if (e (i, j) != 0) ok= false; if (ok) return square_free (Polynomial (row (k, i))); } ERROR ("unexpected situation"); }
polynomial<C> mmx::annihilator | ( | const algebraic< C, Extension > & | a | ) | [inline] |
Definition at line 176 of file algebraic.hpp.
References field(), and value().
Referenced by annihilator(), GLUE_3(), GLUE_35(), GLUE_6(), is_zero(), normalize(), and sign().
{ return annihilator (field (a), value (a)); }
polynomial<C,typename polynomial_variant_helper< C >::PV > mmx::annulator | ( | const vector< C > & | x | ) | [inline] |
Definition at line 1126 of file polynomial.hpp.
Referenced by implementation< polynomial_evaluate, V, polynomial_naive >::annulator(), GLUE_34(), GLUE_42(), and GLUE_93().
{
return annulator_bis<C,typename Polynomial_variant(C) > (x);
}
polynomial<C,V> mmx::annulator_bis | ( | const vector< C > & | x | ) | [inline] |
Definition at line 1120 of file polynomial.hpp.
{ typedef implementation<polynomial_evaluate,V> Pol; return Pol::template annulator<Polynomial> (x); }
mmx::ARITH_SCALAR_INT_SUGAR | ( | template< typename C, typename V > | , |
polynomial< C, V > | |||
) |
mmx::ARITH_SCALAR_INT_SUGAR | ( | template< typename C, typename Extension > | , |
algebraic< C, Extension > | |||
) |
mmx::ARITH_SCALAR_INT_SUGAR | ( | template< typename NT, typename DT > | , |
quotient< NT, DT > | |||
) |
mmx::ARITH_SCALAR_INT_SUGAR | ( | template< typename Series, typename Monomial > | , |
quotient_series< Series, Monomial > | |||
) |
mmx::ARITH_SCALAR_INT_SUGAR | ( | template< typename C, typename V > | , |
series< C, V > | |||
) |
Ball mmx::as_ball | ( | const algebraic< C, algebraic_number_extension< C, Ball > > & | a | ) |
Definition at line 218 of file algebraic_number.hpp.
References eval(), field(), and value().
Referenced by mmx_ball().
Definition at line 1003 of file matrix.hpp.
References N().
Referenced by ldiv_mat_series_rep< C, V, W, U >::initialize(), ldiv_mat_mat_series_rep< C, V, U >::initialize(), ldiv_sc_mat_mat_series_rep< C, V, U, UU >::initialize(), ser_ldiv_mat_mat(), ser_ldiv_sc_mat_mat(), solve_lde(), and solve_lde_init().
{ nat n= N(p); matrix<C> m (promote (0, fm), n, n); for (nat i=0; i<n; i++) for (nat j=0; j<n; j++) m (i, j) = promote (i == p (j) ? 1 : 0, fm); return m; }
Definition at line 65 of file series_matrix.hpp.
References access(), cols(), Matrix_series, rows(), and Series.
{ nat nr= rows (f[0]), nc= cols (f[0]); Matrix_series m (Series (0), nr, nc); for (nat i=0; i<nr; i++) for (nat j=0; j<nc; j++) m (i, j)= access (f, i, j); return m; }
polynomial< modular<modulus<C,U1>,U2> ,typename polynomial_carry_variant_helper< modular<modulus<C,U1>,U2> >::PV> mmx::as_p_expansion | ( | const Lift_type(modular< modulus< C, U1 >, U2 >)& | a, |
const modulus< C, U1 > & | p | ||
) |
Definition at line 57 of file p_expansion.hpp.
References Base_transformer_unsigned, C, direct_base(), M, N(), and V.
{ typedef typename polynomial_carry_variant_helper<M>::PV V; typedef typename Base_transformer_unsigned(Lift_type (M),C) Baser; Baser baser (* p); M::set_modulus (p); vector<C> x; direct_base (x, a, baser); nat n= N(x), l= aligned_size<M,V> (N(x)); M* c= mmx_new<M> (l); for (nat i= 0; i < n; i++) c[i]= M (x[i], true); format<M> fm; // FIMXE: which format should be taken here? return polynomial<M,V> (c, n, l, fm); }
polynomial< modular< modulus< C >, modular_local > > as_polynomial_modular | ( | const polynomial< C > & | f, |
const modulus< C > & | p | ||
) |
Definition at line 15 of file glue_algebraic_generic.cpp.
{
modular<modulus<C>, modular_local>::set_modulus (p);
return as<polynomial<modular<modulus<C>, modular_local> > > (f); }
Definition at line 117 of file series_matrix.hpp.
Referenced by system_root_series_rep< M, V, W >::_ev_der(), cos_sin(), ldiv_mat_series_rep< C, V, W, U >::initialize(), ldiv_sc_mat_series_rep< C, V, W, U >::initialize(), ldiv_mat_mat_series_rep< C, V, U >::initialize(), ldiv_sc_mat_mat_series_rep< C, V, U, UU >::initialize(), system_root_series_rep< M, V, W >::initialize(), lshiftz_series_matrix(), lshiftz_series_vector(), rec_prod(), rec_square(), ser_ldiv_mat(), ser_ldiv_mat_mat(), ser_ldiv_sc_mat(), ser_ldiv_sc_mat_mat(), solve_lde(), and solve_lde_init().
{ return (series_rep<Matrix,V>*) new matrix_series_rep<C,V,U> (m); }
Definition at line 123 of file series_vector.hpp.
{ return (series_rep<Vector,V>*) new vector_series_rep<C,V,W> (v); }
Definition at line 71 of file series_vector.hpp.
References access(), CF(), Series, and Vector_series.
Referenced by system_root_series_rep< M, V, W >::_eps(), as_vector(), carry_add_rem(), carry_mul_rem_series(), cos_sin(), fixed_point_vector_series(), GLUE_1(), GLUE_104(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_3(), GLUE_4(), GLUE_5(), GLUE_52(), GLUE_53(), GLUE_6(), GLUE_7(), GLUE_76(), GLUE_8(), implicit_vector_series(), ldiv_mat_series_rep< C, V, W, U >::initialize(), ldiv_sc_mat_series_rep< C, V, W, U >::initialize(), fixed_point_vector_series_rep< C >::initialize(), system_root_series_rep< M, V, W >::initialize(), implementation< polynomial_gcd, X, polynomial_series< BV > >::invert_mod(), iterate(), rec_prod(), rec_square(), ser_ldiv_mat(), ser_ldiv_sc_mat(), solve_lde_init(), and system_root_series().
{ Vector_series v (Series (get_format1 (CF(f))), n); for (nat i=0; i<n; i++) v[i]= access (f, i); return v; }
Definition at line 79 of file series_vector.hpp.
References as_vector(), and N().
Definition at line 75 of file series_elementary.hpp.
Referenced by GLUE_41(), and GLUE_56().
{
return unary_recursive_series<asin_op> (f);
}
Definition at line 80 of file series_elementary.hpp.
{
return unary_recursive_series<asin_op> (f, c);
}
Definition at line 85 of file series_elementary.hpp.
Referenced by GLUE_42(), and GLUE_57().
{
return unary_recursive_series<atan_op> (f);
}
Definition at line 90 of file series_elementary.hpp.
{
return unary_recursive_series<atan_op> (f, c);
}
Definition at line 213 of file matrix_bareiss.hpp.
References bareiss_pivoting(), copy(), Matrix, nbcol(), and range().
{ // ASSERT (is_non_scalar (m), "non-scalar matrix expected"); Matrix c (copy (m)); unsigned // nr=nbrow(c), nc=nbcol(c), rk; bareiss_pivoting(c,rk); return range (c, 0, 0, rk, nc); }
Compute the cokernel of the matrix @ using Bareiss pivoting.
Definition at line 170 of file matrix_bareiss.hpp.
References bareiss_extended_pivoting(), copy(), Matrix, nbrow(), and range().
Scalar mmx::bareiss_det | ( | const matrix< Scalar, V > & | m | ) |
Definition at line 226 of file matrix_bareiss.hpp.
References bareiss_pivoting(), copy(), Matrix, nbcol(), and nbrow().
{ // ASSERT (is_non_scalar (m), "non-scalar matrix expected"); ASSERT (nbcol(m) == nbrow(m), "square matrix expected"); Matrix c (copy (m)); unsigned r; return bareiss_pivoting (c, r); }
void mmx::bareiss_extended_pivoting | ( | matrix< Scalar, V > & | A, |
matrix< Scalar, V > & | P, | ||
unsigned & | r | ||
) |
Bareiss method. The operations are performed inplace. The output value is the last element on the diagonal. If the matrix is invertible, it is its determinant. The rank is stored in rk
.
Definition at line 94 of file matrix_bareiss.hpp.
References nbcol(), nbrow(), row_div(), rows_linsub(), and swap_row().
Referenced by bareiss_cokernel(), bareiss_extended_pivoting(), and bareiss_kernel().
{ typedef unsigned size_t; r=0; size_t nr = nbrow(A), nc = nbcol(A); ASSERT(nbrow(A)==nbrow(P),"number of rows of A and P don't match"); size_t i;//,j; int s = 1; Scalar d=1;// t; for(size_t k=0; k< min (nr, nc) && r < nr; k++) { for(i=r; i<nr && (A(i,k) == 0);i++); // for(j=i+1; j<nr; j++) { // if(A(j,k) !=0){// && size(A(j, k)) < size(A(i,k))){ // i=j; // } // } if(i < nr) { if( i != r) { s *= -1; swap_row(A,i,r); // swap_row(A,i,r,k,nc); swap_row(P,i,r); // swap_row(P,i,r,0,nbcol(P)); // for(j=k;j<nc;j++) { swap (A(i,j), A(r,j)); } } for(i = r+1;i<nr;i++) { rows_linsub(P,i,A(r,k),r,A(i,k)); // rows_combine(P,i,A(r,k),r,-A(i,k),0,nbrow(P),0,nbcol(P)); rows_linsub(A,i,A(r,k),r,A(i,k)); // rows_combine(A,i,A(r,k),r,-A(i,k),0,nr,k+1,nc); A(i, k) = 0; row_div(A,d,i); row_div(P,d,i); } d= A(r, k); r++; } } }
Definition at line 138 of file matrix_bareiss.hpp.
References bareiss_extended_pivoting().
{ unsigned r=0; bareiss_extended_pivoting(A,P,r); }
Definition at line 200 of file matrix_bareiss.hpp.
References bareiss_pivoting(), Matrix, nbcol(), range(), and transpose().
Referenced by bareiss_krylov().
Compute the kernel of a matrix and output as a matrix which number of columns is the dimension of the kernel and its number of rows is the number of columns of @. It computes a triangulation of the transposed of @ based on Bareiss method.
Definition at line 186 of file matrix_bareiss.hpp.
References bareiss_extended_pivoting(), Matrix, nbrow(), range(), and transpose().
matrix<Scalar,V> mmx::bareiss_krylov | ( | const matrix< Scalar, V > & | m, |
const matrix< Scalar, V > & | v | ||
) |
Definition at line 236 of file matrix_bareiss.hpp.
References bareiss_image(), horizontal_join(), is_square_matrix(), Matrix, and nbrow().
{ // ASSERT (is_non_scalar (m), "non-scalar matrix expected"); ASSERT (is_square_matrix (m), "square matrix expected"); Matrix r= bareiss_image (v); Matrix p= m*r; while (true) { unsigned rk= nbrow (r); r= bareiss_image (horizontal_join (r, p)); if (nbrow (r) <= rk) return r; p = m*p; } }
Scalar mmx::bareiss_pivoting | ( | matrix< Scalar, V > & | A, |
unsigned & | r | ||
) |
Bareiss method. The operations are performed inplace. The output value is the last element on the diagonal. If the matrix is invertible, it is its determinant. The rank is stored in rk
.
Definition at line 35 of file matrix_bareiss.hpp.
References nbcol(), nbrow(), row_div(), rows_linsub(), and swap_row().
Referenced by bareiss_coimage(), bareiss_det(), bareiss_image(), bareiss_pivoting(), bareiss_rank(), and bareiss_triangulate().
{ typedef unsigned size_t; r=0; size_t nr = nbrow(A), nc = nbcol(A); size_t i;//,j; int s = 1; Scalar d=1;// t; for(size_t k=0; k< min (nr, nc) && r < nr; k++) { for(i=r; i<nr && ( A(i,k) == 0);i++); // for(j=i+1; j<nr; j++) { // if(A(j,k) !=0 && size(A(j, k)) < size(A(i,k))){ // i=j; // } // } if(i < nr) { if( i != r) { s *= -1; swap_row(A,i,r); // swap_row(A,i,r,k,nc); // for(j=k;j<nc;j++) {swap (A(i,j), A(r,j)); } } for(i = r+1;i<nr;i++) { rows_linsub(A,i,A(r,k),r,A(i,k)); // rows_combine(A,i,A(r,k),r,-A(i,k),0,nr,k+1,nc); row_div(A,d,i); // for(j=k+1;j<nc;j++) { // A(i,j) = (A(i,j)*A(r,k) - A(r,j)*A(i,k)); // A(i,j) /= d; // } A(i, k) = 0; } d = A(r, k); r++; } } if(s==-1) return -A(nr-1,nc-1); else return A(nr-1,nc-1); }
Scalar mmx::bareiss_pivoting | ( | matrix< Scalar, V > & | A | ) | [inline] |
Definition at line 81 of file matrix_bareiss.hpp.
References bareiss_pivoting().
{ unsigned rk=0; return bareiss_pivoting(A,rk); }
unsigned mmx::bareiss_rank | ( | const matrix< Scalar, V > & | m | ) |
Definition at line 148 of file matrix_bareiss.hpp.
References bareiss_pivoting(), copy(), and Matrix.
{ // ASSERT (is_non_scalar (m), "non-scalar matrix expected"); Matrix c (copy (m)); unsigned r; bareiss_pivoting (c, r); //0, 0, nbrow(c), nbcol(c)); return r; }
Triangulate the matrix @ using Bareiss pivoting.
Definition at line 158 of file matrix_bareiss.hpp.
References bareiss_pivoting(), C, copy(), and Matrix.
{ // ASSERT (is_non_scalar (m), "non-scalar matrix expected"); typedef Scalar C; Matrix c (copy (m)); (void) bareiss_pivoting (c); return c; }
bool mmx::better_pivot | ( | const C & | x1, |
const C & | x2 | ||
) | [inline] |
Definition at line 528 of file matrix_naive.hpp.
References pivot_helper< C >::better().
Referenced by reduce().
{
return pivot_helper<C>::better (x1, x2);
}
Definition at line 631 of file matrix.hpp.
Referenced by GLUE_32(), GLUE_50(), GLUE_77(), and implementation< polynomial_evaluate, V, polynomial_naive >::multi_rem().
{ return big<add_op> (m); }
polynomial<C,V> mmx::big_add | ( | const vector< polynomial< C, V > > & | a | ) |
Definition at line 472 of file polynomial.hpp.
References C, CF(), Format, N(), Polynomial, and seg().
{ typedef implementation<polynomial_linear,V> Pol; nat i, k= N(a), n=0; nat l= aligned_size<C,V> (n); for (i=0; i<k; i++) n= max (N(a[i]), n); C* r= mmx_formatted_new<C> (l, CF (get_sample (CF (a)))); Pol::set (r, 0, n); for (i=0; i<k; i++) Pol::add (r, seg (a[i]), N(a[i])); return Polynomial (r, n, l, Format (CF(a))); }
polynomial<C,V> mmx::big_mul | ( | const vector< polynomial< C, V > > & | a | ) |
Definition at line 567 of file polynomial.hpp.
Definition at line 632 of file matrix.hpp.
{ return big<sup_op> (m); }
matrix<Binary_return_type(Op,C1,C2),V> mmx::binary_map | ( | const matrix< C1, V > & | m, |
const matrix< C2, V > & | n | ||
) |
Definition at line 427 of file matrix.hpp.
References CF(), cols(), extend(), is_a_scalar(), is_non_scalar(), rows(), matrix< C, V >::scalar(), and tab().
{ typedef implementation<vector_linear,V> Vec; typedef Binary_return_type(Op,C1,C2) T; format<T> fm= binary_map<Op> (CF(m), CF(n)); if (is_a_scalar (m) || is_a_scalar (n)) { if (is_non_scalar (m)) return binary_map<Op> (m, extend (n, m)); if (is_non_scalar (n)) return binary_map<Op> (extend (m, n), n); return matrix<T,V> (Op::op (m.scalar(), n.scalar())); } nat nrows= rows (m); nat ncols= cols (m); ASSERT (rows (n) == nrows, "unequal number of rows"); ASSERT (cols (n) == ncols, "unequal number of columns"); nat l= aligned_size<T,V> (nrows * ncols); T* r= mmx_formatted_new<T> (l, fm); Vec::template vec_binary<Op> (r, tab (m), tab (n), nrows*ncols); return matrix<T,V> (r, nrows, ncols, fm); }
matrix<Binary_return_type(Op,C,X),V> mmx::binary_map_scalar | ( | const matrix< C, V > & | m, |
const X & | x | ||
) |
Definition at line 448 of file matrix.hpp.
References C, CF(), cols(), is_a_scalar(), rows(), matrix< C, V >::scalar(), and tab().
{ typedef implementation<vector_linear,V> Vec; typedef Binary_return_type(Op,C,X) T; format<T> fm= binary_map_scalar<C> (CF(m), x); if (is_a_scalar (m)) return matrix<T,V> (Op::op (m.scalar(), x)); nat nrows= rows (m); nat ncols= cols (m); nat l= aligned_size<T,V> (nrows * ncols); T* r= mmx_formatted_new<T> (l, fm); Vec::template vec_binary_scalar<Op> (r, tab (m), x, nrows*ncols); return matrix<T,V> (r, nrows, ncols, fm); }
polynomial<Binary_return_type(Op,C,X),V> mmx::binary_map_scalar | ( | const polynomial< C, V > & | p, |
const X & | x | ||
) |
Definition at line 1321 of file polynomial.hpp.
References C, CF(), N(), and seg().
{ typedef implementation<vector_linear,V> Vec; typedef Binary_return_type(Op,C,X) T; nat n= N(p); nat l= aligned_size<T,V> (n); format<T> fm= binary_map_scalar<Op> (CF(p), x); T* r= mmx_formatted_new<T> (l, fm); Vec::template vec_binary_scalar<Op> (r, seg (p), x, n); return polynomial<T,V> (r, n, l, fm); }
series<M,V> mmx::binary_monoblock_series | ( | const series< M, V > & | f, |
const series< M, V > & | g | ||
) | [inline] |
Definition at line 225 of file series_carry_blocks.hpp.
References Series_rep.
{ typedef binary_monoblock_series_rep<Op,M,V,s,BV,t> Op_rep; return (Series_rep*) new Op_rep (f, g); }
series<C,V> mmx::binary_recursive_series | ( | const series< C, V > & | f, |
const series< C, V > & | g | ||
) | [inline] |
Definition at line 631 of file series.hpp.
References recursive(), Series, and Series_rep.
{ typedef implementation<series_recursive_abstractions,V> Ser; typedef typename Ser::template binary_recursive_series_rep<Op,C,V> Binary; Series_rep* rep= new Binary (f, g); return recursive (Series (rep)); }
mmx::BINARY_RETURN_TYPE | ( | STMPL | , |
gaussian_op | , | ||
algebraic_real | , | ||
algebraic_real | , | ||
algebraic_number | |||
) |
series<M,V> mmx::binary_scalar_recursive_monoblock_series | ( | const series< M, V > & | f, |
const X & | x | ||
) | [inline] |
Definition at line 317 of file series_carry_blocks.hpp.
References Series_rep.
Referenced by implementation< series_separable_root, U, series_carry_monoblock< W, s, BV, t > >::sep_root(), implementation< series_separable_root, U, series_carry_monoblock< W, s, BV, t > >::sep_root_init(), and implementation< series_pth_root_reg, U, series_carry_monoblock< W, s, BV, t > >::unsep_root_reg().
{ typedef binary_scalar_recursive_monoblock_series_rep<Op,M,V,s,BV,t,X> Op_rep; return (Series_rep*) new Op_rep (f, x); }
Definition at line 639 of file series.hpp.
References recursive(), Series, and Series_rep.
Referenced by implementation< series_separable_root, U, series_carry_naive >::sep_root(), and implementation< series_pth_root_reg, U, series_carry_p_adic< W > >::unsep_root_reg().
{ typedef implementation<series_recursive_abstractions,V> Ser; typedef typename Ser:: template binary_scalar_recursive_series_rep<Op,C,V,X> Binary; Series_rep* rep= new Binary (f, x); return recursive (Series (rep)); }
series<C,V> mmx::binary_scalar_recursive_series | ( | const series< C, V > & | f, |
const X & | x, | ||
const C & | init | ||
) | [inline] |
Definition at line 648 of file series.hpp.
References recursive(), Series, and Series_rep.
{ typedef implementation<series_recursive_abstractions,V> Ser; typedef typename Ser:: template binary_scalar_recursive_series_rep<Op,C,V,X> Binary; Series_rep* rep= new Binary (f, x, init); return recursive (Series (rep)); }
Definition at line 536 of file series.hpp.
References Series_rep.
{ typedef implementation<series_scalar_abstractions,V> Ser; typedef typename Ser::template binary_scalar_series_rep<Op,C,V,X> Binary_rep; return (Series_rep*) new Binary_rep (f, x); }
Definition at line 668 of file series.hpp.
References Series_rep.
{ typedef implementation<series_abstractions,V> Ser; typedef typename Ser::template binary_series_rep<Op,C,V> Binary; return (Series_rep*) new Binary (f, g); }
Definition at line 503 of file matrix.hpp.
References cols(), extend(), is_a_scalar(), is_non_scalar(), rows(), matrix< C, V >::scalar(), and tab().
{ typedef implementation<vector_linear,V> Vec; if (is_a_scalar (m) || is_a_scalar (n)) { if (is_non_scalar (m)) return binary_test<Op> (m, extend (n, m)); if (is_non_scalar (n)) return binary_test<Op> (extend (m, n), n); return Op::op (m.scalar(), n.scalar()); } nat nrows= rows (m); nat ncols= cols (m); if (rows (n) != nrows || cols (n) != ncols) return false; return Vec::template vec_binary_test<Op> (tab (m), tab (n), nrows*ncols); }
Definition at line 288 of file series.hpp.
{ for (nat n=0; n< Series::get_cancel_order (); n++) if (Op::not_op (f1[n], f2[n])) return false; return true; }
Definition at line 135 of file series_implicit.hpp.
{ if (Op::not_op (c1->b, c2->b)) return false; if (c1->i1 == c1->i2 || c2->i1 == c2->i2) return c1->i1 == c1->i2 && c2->i1 == c2->i2; if (Op::not_op (c1->f, c2->f)) return false; if (Op::not_op (c1->i1, c2->i1)) return false; if (Op::not_op (c1->i2, c2->i2)) return false; for (nat i= c1->i1; i<c1->i2; i++) if (Op::not_op (c1->s[i - c1->i1], c2->s[i - c1->i1])) return false; return true; }
Definition at line 380 of file polynomial.hpp.
References N().
static nat mmx::bit_mirror | ( | nat | i, |
nat | n | ||
) | [static] |
Definition at line 29 of file fft_roots.hpp.
Referenced by roots_helper< CC, UU, SS >::create_roots().
{ if (n == 1) return i; else return (bit_mirror (i & ((n>>1) -1), n>>1) << 1) + i / (n>>1); }
polynomial<C,V> mmx::blur | ( | const polynomial< C, V > & | p, |
const K & | x | ||
) | [inline] |
Definition at line 1408 of file polynomial.hpp.
{
return binary_map_scalar<blur_op> (p, x); }
Definition at line 684 of file matrix.hpp.
{
return binary_map_scalar<blur_op> (m, x); }
Definition at line 687 of file matrix.hpp.
{
return binary_map<blur_op> (m, n); }
Definition at line 1203 of file series.hpp.
{
return binary_map_scalar<blur_op> (f, x); }
static series<C,V> mmx::carry_add_rem | ( | const series< C, V > & | a, |
const series< C, V > & | b, | ||
series< C, V > & | q | ||
) | [inline, static] |
Definition at line 249 of file series_vector.hpp.
References as_vector().
Referenced by matrix_mul_quo().
{ series<vector<C>,V> s= (series_rep<vector<C>,V> *) new carry_add_quorem_series_rep<C,V> (a, b); vector<Series> v= as_vector (s); q= v[0]; return v[1]; }
static series<C,V> mmx::carry_mul_rem_series | ( | const C & | c, |
const series< C, V > & | f, | ||
series< C, V > & | q | ||
) | [inline, static] |
Definition at line 208 of file series_vector.hpp.
References as_vector().
Referenced by matrix_mul_quo().
{ series<vector<C>,V> s= (series_rep<vector<C>,V> *) new carry_mul_quorem_series_rep<C,V,C> (c, f); vector<Series> v= as_vector (s); q= v[0]; return v[1]; }
static series<C,V> mmx::carry_special_add | ( | const series< C, V > & | a, |
const series< C, V > & | b, | ||
const series< C, V > & | c | ||
) | [inline, static] |
Definition at line 285 of file series_vector.hpp.
References Series_rep.
Referenced by matrix_mul_quo().
{ return (Series_rep *) new carry_special_add_series_rep<C,V> (a, b, c); }
polynomial<Center_type(C),V> mmx::center | ( | const polynomial< C, V > & | p | ) |
Definition at line 1398 of file polynomial.hpp.
{
return unary_map<center_op> (p); }
Definition at line 674 of file matrix.hpp.
Referenced by improve_zero().
{
return unary_map<center_op> (m); }
mmx::Center_type | ( | Ball | ) | const |
Referenced by improve_zero(), and increase_precision().
format<NT> mmx::CF | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 99 of file quotient.hpp.
References numerator().
{ return get_format (numerator (x)); }
Definition at line 108 of file series.hpp.
{ return f->tfm (); }
format<C> mmx::CF | ( | const algebraic_extension< C > & | x | ) | [inline] |
format<C> mmx::CF | ( | const algebraic< C, Extension > & | x | ) | [inline] |
Definition at line 93 of file algebraic.hpp.
Referenced by system_root_series_rep< M, V, W >::_ev_der(), annihilator(), implementation< polynomial_evaluate, V, polynomial_naive >::annulator(), as_vector(), big_add(), binary_map(), binary_map_scalar(), CF(), coefficients(), column(), column_echelon(), column_orthogonalization(), column_orthonormalization(), compose(), as_helper< polynomial< T, TV >, polynomial< F, FV > >::cv(), as_helper< matrix< T, TV >, matrix< F, FV > >::cv(), fast_helper< polynomial< C, V > >::dd(), fast_helper< matrix< C, V > >::dd(), decode_kronecker(), deflate(), delete_col(), delete_row(), derive(), det(), dilate(), direct_base(), direct_crt(), encode_kronecker(), implementation< polynomial_evaluate, V, polynomial_naive >::evaluate(), expand(), extract_mod(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::gcd(), implementation< polynomial_gcd, V, polynomial_naive >::gcd(), gcd(), get_matrix_format(), get_vector_format(), graeffe(), hankel_matrix(), horizontal_join(), image(), truncate_mul_monoblock_series_rep< M, V, s, BV, t >::Increase_order(), integrate(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), invert(), invert_hi(), invert_lo(), is_reliable(), join(), kernel(), lshiftz(), lshiftz_series_matrix(), lshiftz_series_vector(), matrix< series< C, V >, U >::matrix(), matrix_mul_quo(), mul_matrix(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_rem(), lshiftz_series_vector_rep< C, V, W >::next(), vector_series_rep< C, V, W >::next(), xderive_series_rep< C, V >::next(), derive_series_rep< C, V >::next(), normalize(), operator*(), operator+(), operator-(), operator/(), polynomial< series< C, V >, U >::operator[](), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::pade(), implementation< polynomial_gcd, V, polynomial_naive >::pade(), polynomial< series< C, V >, U >::polynomial(), pow_matrix(), pquo(), prem(), primitive_part(), q_difference(), quo(), range(), rec_cst(), rec_lin(), rem(), restrict(), resultant(), reverse(), root(), row(), row_matrix(), row_orthogonalization(), row_orthonormalization(), rshiftz(), implementation< series_separable_root, U, series_naive >::sep_root(), implementation< series_separable_root, U, series_carry_naive >::sep_root(), implementation< series_compose, U, series_naive >::ser_compose(), implementation< series_divide, U, series_naive >::ser_div(), implementation< series_divide, U, series_carry_naive >::ser_div(), implementation< series_divide, U, series_carry_monoblock< W, s, BV, t > >::ser_div(), ser_ldiv_mat(), ser_ldiv_mat_mat(), ser_ldiv_sc_mat(), ser_ldiv_sc_mat_mat(), implementation< series_multiply, U, series_relaxed< W > >::ser_mul(), implementation< series_multiply, U, series_naive >::ser_mul(), implementation< series_multiply, U, series_fast >::ser_mul(), implementation< series_multiply, U, series_carry_relaxed< W > >::ser_mul(), implementation< series_multiply, U, series_carry_lift< W > >::ser_mul(), implementation< series_multiply, U, series_carry_naive >::ser_mul(), implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::ser_mul(), implementation< series_multiply, U, series_carry_monoblock< W, s, BV, t > >::ser_mul(), implementation< series_multiply, U, series_carry_modular_int_naive< W > >::ser_mul(), implementation< series_divide, U, series_naive >::ser_quo(), implementation< series_divide, U, series_naive >::ser_rdiv_sc(), implementation< series_divide, U, series_carry_naive >::ser_rdiv_sc(), implementation< series_divide, U, series_naive >::ser_rquo_sc(), implementation< series_divide, U, series_naive >::ser_rrem_sc(), implementation< series_divide, U, series_carry_naive >::ser_rrem_sc(), implementation< series_divide, U, series_carry_monoblock< W, s, BV, t > >::ser_rrem_sc(), implementation< series_multiply, U, series_relaxed< W > >::ser_truncate_mul(), implementation< series_multiply, U, series_naive >::ser_truncate_mul(), implementation< series_multiply, U, series_fast >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_relaxed< W > >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_lift< W > >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_naive >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_monoblock< W, s, BV, t > >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_modular_int_naive< W > >::ser_truncate_mul(), set_as(), shift(), shift1(), shift2(), skew_div(), sqrt(), square(), subresultant(), implementation< polynomial_subresultant_base, V, polynomial_naive >::subresultant_sequence(), subresultants(), tensor_matrix(), implementation< polynomial_evaluate, V, polynomial_naive >::tevaluate(), tmul(), toeplitz_matrix(), tquo(), transpose(), trem(), truncate(), unary_map(), implementation< series_map_as_abstractions, U, series_naive >::unary_map_as(), implementation< series_pth_root, U, series_carry_p_adic< W > >::unsep_root(), upgrade(), fast_helper< polynomial< C, V > >::uu(), fast_helper< matrix< C, V > >::uu(), vandermonde(), vertical_join(), binary_helper< polynomial< C, V > >::write(), binary_helper< matrix< C, V > >::write(), and xderive().
{ return CF(x.p); }
Definition at line 191 of file polynomial.hpp.
{ return P->tfm (); }
Definition at line 183 of file matrix.hpp.
{ return m->tfm (); }
polynomial<C,V> mmx::change_precision | ( | const polynomial< C, V > & | P, |
xnat | p | ||
) | [inline] |
Definition at line 1379 of file polynomial.hpp.
{
return binary_map_scalar<change_precision_op> (P, p); }
Definition at line 655 of file matrix.hpp.
Referenced by change_precision_series_rep< C, V >::next().
{
return binary_map_scalar<change_precision_op> (m, p); }
Definition at line 1192 of file series.hpp.
References Series_rep.
{ return (Series_rep*) new change_precision_series_rep<C,V> (f, p); }
Definition at line 194 of file polynomial.hpp.
Referenced by root_series_rep< M, V >::_derive(), system_root_series_rep< M, V, W >::_ev_der(), ser_carry_separable_root_op::binpow_no_tangent(), ser_carry_pth_root_reg_op::binpow_no_tangent_normalized(), ser_carry_separable_root_op::def(), ser_carry_pth_root_reg_op::def(), binary_helper< polynomial< C, V > >::disassemble(), implementation< polynomial_gcd, X, polynomial_series< BV > >::inv_mod_polynomial_series_rep< C, U, V, W >::initialize(), and rec_square().
Definition at line 201 of file polynomial.hpp.
References CF().
{ if (b >= e) return vector<C> (); vector<C> v (get_sample (CF(P)), e - b); for (nat i= 0; i < e - b; i++) v[i]= P[b+i]; return v; }
Definition at line 1144 of file matrix.hpp.
References cols(), first_minor(), is_non_scalar(), and rows().
{ ASSERT (is_non_scalar (m), "non-scalar matrix expected"); ASSERT (cols(m) == rows(m), "square matrix expected"); ASSERT (i < rows(m), "index out of range"); ASSERT (j < cols(m), "index out of range"); C c= first_minor (m, i, j); return ((i + j) & 1) ? -c : c; }
void mmx::col_div | ( | matrix< C, V > & | m, |
C | c, | ||
nat | i | ||
) |
Definition at line 994 of file matrix.hpp.
Referenced by implementation< matrix_orthogonalization, V, matrix_naive >::col_orthonormalize(), and implementation< matrix_kernel, V, matrix_naive >::kernel().
{
void mmx::col_mul | ( | matrix< C, V > & | m, |
C | c, | ||
nat | i | ||
) |
Definition at line 993 of file matrix.hpp.
{
nat mmx::cols | ( | const matrix< C, matrix_fixed< V, RS, CS > > & | m | ) | [inline] |
nat cols | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 179 of file matrix.hpp.
Referenced by matrix_iterator_rep< C, V >::advance(), as_matrix(), binary_map(), binary_map_scalar(), binary_test(), cofactor(), column_echelon(), column_orthogonalization(), column_orthonormalization(), column_reduced_echelon(), as_helper< matrix< T, TV >, matrix< F, FV > >::cv(), fast_helper< matrix< C, V > >::dd(), delete_col(), delete_row(), det(), binary_helper< matrix< C, V > >::disassemble(), extend(), first_minor(), flatten(), get_matrix_format(), GLUE_10(), GLUE_11(), GLUE_25(), GLUE_7(), GLUE_8(), horizontal_join(), image(), ldiv_mat_series_rep< C, V, W, U >::Increase_order(), ldiv_mat_mat_series_rep< C, V, U >::Increase_order(), ldiv_sc_mat_mat_series_rep< C, V, U, UU >::Increase_order(), matrix_series_rep< C, V, U >::Increase_order(), ldiv_mat_mat_series_rep< C, V, U >::initialize(), ldiv_sc_mat_mat_series_rep< C, V, U, UU >::initialize(), invert(), is_square_matrix(), kernel(), map(), matrix< series< C, V >, U >::matrix(), matrix_mul_quo(), matrix_new(), N(), nbcol(), matrix_series_rep< C, V, U >::next(), nullary_set(), operator!=(), matrix< series< C, V >, U >::operator()(), operator*(), operator<=(), operator==(), operator>=(), permute_columns(), permute_rows(), implementation< matrix_vectorial, V, matrix_naive >::print(), range(), rank(), REP_STRUCT_1(), reverse_cols(), row(), row_orthogonalization(), row_orthonormalization(), ser_ldiv_mat(), ser_ldiv_mat_mat(), ser_ldiv_sc_mat(), ser_ldiv_sc_mat_mat(), implementation< matrix_vectorial, V, matrix_naive >::set(), solve_lde(), swap_col(), swap_row(), implementation< matrix_vectorial, V, matrix_naive >::transpose(), transpose(), unary_hash(), unary_map(), unary_set(), unary_set_scalar(), fast_helper< matrix< C, V > >::uu(), vertical_join(), and binary_helper< matrix< C, V > >::write().
{ return m->nc; }
void mmx::cols_linsub | ( | matrix< C, V > & | m, |
nat | i, | ||
C | ci, | ||
nat | j, | ||
C | cj | ||
) |
Definition at line 996 of file matrix.hpp.
{
Definition at line 1057 of file matrix.hpp.
References cols(), copy(), is_non_scalar(), Matrix, rows(), and tab().
Referenced by column_reduced_echelon(), GLUE_103(), GLUE_33(), GLUE_58(), and row_echelon().
matrix<C,V> mmx::column_echelon | ( | const matrix< C, V > & | m, |
matrix< C, V > & | k, | ||
bool | reduced = false |
||
) |
Definition at line 1084 of file matrix.hpp.
References CF(), cols(), copy(), is_non_scalar(), Matrix, rows(), and tab().
Definition at line 1245 of file matrix.hpp.
References CF(), cols(), copy(), is_non_scalar(), Matrix, rows(), seg(), and tab().
{ typedef implementation<matrix_orthogonalization,V> Mat; ASSERT (is_non_scalar (m), "non-scalar matrix expected"); Matrix c= copy (m); vector<C> n (promote (0, CF(m)), cols(m)); l= Matrix (promote (0, CF(m)), cols(m), cols(m)); Mat::col_orthogonalize (tab(c), rows(m), cols(m), tab(l), seg(n)); return c; }
Definition at line 1224 of file matrix.hpp.
References CF(), cols(), copy(), is_non_scalar(), Matrix, rows(), seg(), and tab().
Definition at line 1265 of file matrix.hpp.
References cols(), copy(), is_non_scalar(), Matrix, rows(), and tab().
matrix<C,V> mmx::column_orthonormalization | ( | const matrix< C, V > & | m, |
matrix< C, V > & | l | ||
) | [inline] |
Definition at line 1284 of file matrix.hpp.
References CF(), cols(), copy(), is_non_scalar(), Matrix, rows(), and tab().
Definition at line 1072 of file matrix.hpp.
References cols(), copy(), is_non_scalar(), Matrix, rows(), and tab().
{ typedef implementation<matrix_echelon,V> Mat; ASSERT (is_non_scalar (m), "non-scalar matrix expected"); Matrix c= copy (m); C* k= NULL; nat* buf= mmx_new<nat> (default_aligned_size<nat> (cols(m))); Mat::col_echelon (tab(c), k, rows(m), cols(m), true, buf); permut= permutation (vector<nat> (buf, cols(m), format<nat> ())); return c; }
Definition at line 1094 of file matrix.hpp.
References column_echelon().
{ return column_echelon (m, k, true); }
Definition at line 1067 of file matrix.hpp.
References column_echelon().
Referenced by GLUE_105(), GLUE_35(), GLUE_60(), wrap_column_reduced_echelon_with_permutation(), and wrap_column_reduced_echelon_with_transform().
{ return column_echelon (m, true); }
void mmx::combine_crt | ( | typename Crter::base & | d, |
const typename Crter::modulus_base * | src, | ||
Crter & | crter | ||
) | [inline] |
Definition at line 343 of file crt_naive.hpp.
Referenced by combine_crt(), and implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tevaluate().
{ crter.combine (d, src); }
void mmx::combine_crt | ( | typename Crter::base & | d, |
const vector< typename Crter::modulus_base, W > & | src, | ||
Crter & | crter | ||
) | [inline] |
Crter::base mmx::combine_crt | ( | const vector< typename Crter::modulus_base, W > & | src, |
Crter & | crter | ||
) | [inline] |
Definition at line 353 of file crt_naive.hpp.
References C, combine_crt(), and seg().
{ C d; combine_crt (d, seg (src), crter); return d; }
Crter::base mmx::comodulus | ( | const Crter & | crter, |
nat | i | ||
) | [inline] |
Definition at line 318 of file crt_naive.hpp.
{
return crter.comodulus (i);
}
Definition at line 346 of file series.hpp.
References compare().
{ for (nat n=0; n< Series::get_cancel_order (); n++) { int sgn= compare (f1[n], f2[n]); if (sgn != 0) return sgn; } return 0; }
Definition at line 370 of file polynomial.hpp.
Referenced by implementation< polynomial_linear, V, polynomial_naive >::cmp(), and compare().
mmx::COMPARE_INT_SUGAR | ( | template< typename NT, typename DT > | , |
quotient< NT, DT > | |||
) |
mmx::COMPARE_INT_SUGAR | ( | template< typename C, typename Extension > | , |
algebraic< C, Extension > | |||
) |
mmx::COMPARE_SUGAR | ( | template< typename NT, typename DT > | , |
quotient< NT, DT > | |||
) |
mmx::COMPARE_SUGAR | ( | template< typename C, typename Extension > | , |
algebraic< C, Extension > | |||
) |
polynomial<C,V> mmx::compose | ( | const polynomial< C, V > & | P1, |
const polynomial< K, V > & | P2 | ||
) |
Definition at line 1051 of file polynomial.hpp.
References C, CF(), compose(), N(), Polynomial, and seg().
{ typedef implementation<polynomial_compose,V> Pol; nat n1= N(P1), n2= N(P2); if (n1 <= 1) return P1; if (n2 == 0) return P1[0]; nat n= (n1-1) * (n2-1) + 1; nat l= aligned_size<C,V> (n); C* r= mmx_formatted_new<C> (l, CF(P1)); Pol::compose (r, seg (P1), seg (P2), n1, n2); return Polynomial (r, n, l, CF(P1)); }
algebraic_extension<C>::El mmx::compose | ( | const algebraic_extension< C > & | ext, |
const polynomial< C > & | p, | ||
const typename algebraic_extension< C >::El & | q | ||
) |
Definition at line 284 of file algebraic_extension.hpp.
References deg(), Element, and rem().
Referenced by implementation< polynomial_compose, V, polynomial_naive >::compose(), compose(), GLUE_134(), GLUE_28(), GLUE_31(), GLUE_37(), GLUE_39(), GLUE_90(), implementation< series_compose, U, series_naive >::reverse_series_rep< C, V >::initialize(), implementation< polynomial_compose, V, polynomial_naive >::shift(), and upgrade().
Definition at line 1160 of file series.hpp.
{ typedef implementation<series_compose,V> Ser; return Ser::ser_compose (f, g); }
polynomial<C,V> mmx::conj | ( | const polynomial< C, V > & | p | ) |
Definition at line 1396 of file polynomial.hpp.
{ return unary_map<conj_op> (p); }
Definition at line 672 of file matrix.hpp.
{ return unary_map<conj_op> (m); }
algebraic_number_extension<C,Ball> mmx::conj | ( | const algebraic_number_extension< C, Ball > & | ext | ) | [inline] |
algebraic_number mmx::conj | ( | const algebraic_number & | z | ) | [inline] |
Definition at line 417 of file algebraic_number.hpp.
References conj(), field(), and value().
{ return algebraic_number (conj (field (z)), value (z)); }
Definition at line 778 of file polynomial.hpp.
Referenced by GLUE_38(), GLUE_46(), and primitive_part().
V polynomial<C,V> mmx::copy | ( | const polynomial< C, V > & | P | ) |
Definition at line 1338 of file polynomial.hpp.
{
return unary_map<id_op> (P); }
Definition at line 567 of file matrix.hpp.
Referenced by bareiss_coimage(), bareiss_cokernel(), bareiss_det(), bareiss_rank(), bareiss_triangulate(), column_echelon(), column_orthogonalization(), column_orthonormalization(), column_reduced_echelon(), implementation< polynomial_compose, V, polynomial_naive >::compose(), implementation< polynomial_vectorial, V, polynomial_naive >::copy(), implementation< polynomial_vectorial, V, polynomial_carry_naive< W > >::copy(), implementation< matrix_vectorial, V, matrix_naive >::copy(), decode_kronecker(), implementation< matrix_determinant, V, matrix_naive >::det(), implementation< series_multiply, U, series_fast >::nrelax_mul_series_rep< C, V >::direct_transform(), implementation< polynomial_exact_divide, V, polynomial_naive >::div(), div_kronecker(), implementation< polynomial_euclidean, V, polynomial_naive >::euclidean_sequence(), implementation< polynomial_gcd, V, polynomial_naive >::gcd(), implementation< polynomial_euclidean, V, polynomial_naive >::gcd(), implementation< polynomial_graeffe, V, polynomial_unrolled< W, m > >::graeffe(), implementation< matrix_image, V, matrix_naive >::image(), improve_zero(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), fkt_package< V >::inverse_fkt_step(), implementation< matrix_invert, V, matrix_naive >::invert(), invert_lo(), implementation< matrix_kernel, V, matrix_naive >::kernel(), lshiftz(), implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_triadic_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_inc< W, Th, Th_rec > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul_negative_cyclic(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul_negative_cyclic_truncated(), implementation< polynomial_multiply, V, polynomial_schonhage_triadic_inc< W, Th > >::mul_triadic(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_mod(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_rem(), operator+(), operator-(), implementation< polynomial_euclidean, V, polynomial_naive >::pade(), implementation< polynomial_euclidean, V, polynomial_dicho< BV > >::pade(), pquo(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::pquo_rem(), prem(), quo(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::quo_rem(), implementation< matrix_image, V, matrix_ring_naive< W > >::rank(), implementation< matrix_image, V, matrix_naive >::rank(), rem(), row_orthogonalization(), row_orthonormalization(), implementation< series_multiply, U, series_fast >::nrelax_mul_series_rep< C, V >::Set_order(), implementation< polynomial_compose, V, polynomial_naive >::shift(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::shift(), shrink(), implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::square(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tevaluate(), implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate(), tmul(), tquo(), implementation< polynomial_divide, V, polynomial_ring_dicho_inc< W > >::tquo_rem(), implementation< polynomial_divide, V, polynomial_naive >::tquo_rem(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::tquo_rem(), and trem().
{
return unary_map<id_op> (m); }
Definition at line 114 of file series_elementary.hpp.
Referenced by GLUE_37(), GLUE_52(), and primitive_root_helper< C >::op().
{
return unary_recursive_series<cos_op> (f);
}
Definition at line 109 of file series_elementary.hpp.
References as_series(), as_vector(), and trig().
permutation cycle | ( | nat | n, |
int | plus = 1 |
||
) |
Definition at line 28 of file permutation.cpp.
References id_vector().
Referenced by GLUE_4().
{ if (plus >= 0) plus= ((nat) plus) % n; else plus= (n-1) - (((nat) (-1-plus)) % n); vector<nat> v= id_vector (n); for (nat i=0; i<n; i++) if (i + plus < n) v[i]= i + plus; else v[i]= i + plus - n; return permutation (v); }
void decode_kronecker | ( | signed char * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src | ||
) |
Definition at line 103 of file kronecker_int.cpp.
Referenced by decode_kronecker(), decode_kronecker_int(), div_kronecker(), mul_kronecker(), mul_kronecker_int(), square_kronecker(), and square_kronecker_int().
{ \
void decode_kronecker | ( | unsigned char * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src | ||
) |
Definition at line 92 of file kronecker_int.cpp.
{ \
void decode_kronecker | ( | short int * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src | ||
) |
Definition at line 104 of file kronecker_int.cpp.
{ \
void decode_kronecker | ( | unsigned short int * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src | ||
) |
Definition at line 93 of file kronecker_int.cpp.
{ \
void decode_kronecker | ( | int * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src | ||
) |
Definition at line 105 of file kronecker_int.cpp.
{ \
void decode_kronecker | ( | unsigned int * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src | ||
) |
Definition at line 94 of file kronecker_int.cpp.
{ \
void decode_kronecker | ( | long int * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src | ||
) |
Definition at line 106 of file kronecker_int.cpp.
{ \
void decode_kronecker | ( | unsigned long int * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src | ||
) |
Definition at line 95 of file kronecker_int.cpp.
{ \
void decode_kronecker | ( | long long int * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src | ||
) |
Definition at line 107 of file kronecker_int.cpp.
{ \
void decode_kronecker | ( | unsigned long long int * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src | ||
) |
Definition at line 96 of file kronecker_int.cpp.
{ \
void decode_kronecker | ( | integer * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src | ||
) |
Definition at line 36 of file kronecker_integer.cpp.
References decode_kronecker().
{ if (n == 0); else if (n == 1) dest[0]= src; else if (src > 0) { nat h= n>>1; integer aux= src >> (h*bits); if (src[h*bits-1]) aux += 1; decode_kronecker (dest+h, n-h, bits, aux); aux= src - (aux << (h*bits)); decode_kronecker (dest, h, bits, aux); } else { integer bis= -src; nat h= n>>1; integer aux= bis >> (h*bits); if (bis[h*bits-1]) aux += 1; decode_kronecker (dest+h, n-h, bits, -aux); aux= bis - (aux << (h*bits)); decode_kronecker (dest, h, bits, -aux); } }
void mmx::decode_kronecker | ( | polynomial< C, V > * | dest, |
const polynomial< C, V > & | src, | ||
nat | n, | ||
nat | m | ||
) |
Definition at line 45 of file kronecker_polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
{ typedef implementation<polynomial_linear,V> Pol; if (n == 0) return; nat l= aligned_size<C,V> (m), i, j; C* x; const C* y= seg (src); for (i= 0, j= 0; i + 1 < n && j + m < N(src); i++, j += m, y += m) { x= mmx_new<C> (l); Pol::copy (x, y, m); dest[i]= Polynomial (x, m, l, CF(src)); } if (i < n && N(src) > i * m) { m= N(src) - i * m; l= aligned_size<C,V> (m); x= mmx_new<C> (l); Pol::copy (x, y, m); dest[i]= Polynomial (x, m, l, CF(src)); i++; } for (; i < n; i++) dest[i]= Polynomial (C(0)); }
static void mmx::decode_kronecker_int | ( | I * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src | ||
) | [inline, static] |
Definition at line 51 of file kronecker_int.cpp.
References decode_kronecker(), and I.
Referenced by decode_kronecker_uint().
{ static const integer mask= (integer (1) << (8 * sizeof (I))) - 1; if (n == 0); else if (n == 1) dest[0]= src > 0 ? as<I> (src & mask) : - as<I> ((-src) & mask); else if (src > 0) { nat h= n>>1; integer aux= src >> (h*bits); if (src[h*bits-1]) aux += 1; decode_kronecker (dest+h, n-h, bits, aux); aux= src - (aux << (h*bits)); decode_kronecker (dest, h, bits, aux); } else { integer bis= -src; nat h= n>>1; integer aux= bis >> (h*bits); if (bis[h*bits-1]) aux += 1; decode_kronecker (dest+h, n-h, bits, -aux); aux= bis - (aux << (h*bits)); decode_kronecker (dest, h, bits, -aux); } }
void decode_kronecker_mod | ( | signed char * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src, | ||
const signed char & | p | ||
) |
Definition at line 42 of file kronecker_modular_int.cpp.
Referenced by mul_kronecker_mod_int(), and square_kronecker_mod_int().
{ \
void decode_kronecker_mod | ( | unsigned char * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src, | ||
const unsigned char & | p | ||
) |
Definition at line 43 of file kronecker_modular_int.cpp.
{ \
void decode_kronecker_mod | ( | short int * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src, | ||
const short int & | p | ||
) |
Definition at line 44 of file kronecker_modular_int.cpp.
{ \
void decode_kronecker_mod | ( | unsigned short int * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src, | ||
const unsigned short int & | p | ||
) |
Definition at line 45 of file kronecker_modular_int.cpp.
{ \
void decode_kronecker_mod | ( | unsigned int * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src, | ||
const unsigned int & | p | ||
) |
Definition at line 47 of file kronecker_modular_int.cpp.
{ \
void decode_kronecker_mod | ( | int * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src, | ||
const int & | p | ||
) |
Definition at line 46 of file kronecker_modular_int.cpp.
{ \
void decode_kronecker_mod | ( | long int * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src, | ||
const long int & | p | ||
) |
Definition at line 48 of file kronecker_modular_int.cpp.
{ \
void decode_kronecker_mod | ( | unsigned long int * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src, | ||
const unsigned long int & | p | ||
) |
Definition at line 49 of file kronecker_modular_int.cpp.
{ \
void decode_kronecker_mod | ( | long long int * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src, | ||
const long long int & | p | ||
) |
Definition at line 50 of file kronecker_modular_int.cpp.
{ \
void decode_kronecker_mod | ( | unsigned long long int * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src, | ||
const unsigned long long int & | p | ||
) |
Definition at line 51 of file kronecker_modular_int.cpp.
{ \
void mmx::decode_kronecker_mod_int | ( | I * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src, | ||
const I & | p | ||
) | [inline] |
Definition at line 24 of file kronecker_modular_int.cpp.
{ if (n == 0); else if (n == 1) dest[0]= as<I> (p == 0 ? src : src % p); else { nat h= n>>1; integer aux= src >> (h*bits); decode_kronecker_mod_int (dest+h, n-h, bits, aux, p); aux= src - (aux << (h*bits)); decode_kronecker_mod_int (dest, h, bits, aux, p); } }
static void mmx::decode_kronecker_uint | ( | I * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src | ||
) | [inline, static] |
Definition at line 76 of file kronecker_int.cpp.
References decode_kronecker_int().
{ if (n == 0); else if (n == 1) dest[0]= as<I> (src); else { nat h= n>>1; integer aux= src >> (h*bits); decode_kronecker_int (dest+h, n-h, bits, aux); aux= src - (aux << (h*bits)); decode_kronecker_int (dest, h, bits, aux); } }
void mmx::decode_modular_int | ( | modular< modulus< C, V1 >, V2 > * | dest, |
const D * | src, | ||
nat | r, | ||
nat | rr, | ||
nat | c, | ||
nat | cc | ||
) |
Definition at line 98 of file matrix_modular_int.hpp.
References C, D, Modular, and Set.
{ typedef implementation<matrix_linear,V> Mat; typedef typename Op::nomul_op Set; C p = *Modular::get_modulus (); nat dest_rs= Mat::index (1, 0, rr, cc); nat dest_cs= Mat::index (0, 1, rr, cc); nat src_rs = Mat::index (1, 0, r, c); nat src_cs = Mat::index (0, 1, r, c); Modular* dest_row= dest; const D* src_row= src; for (nat i=0; i<r; i++, dest_row += dest_rs, src_row += src_rs) { Modular* dest_col= dest_row; const D* src_col= src_row; for (nat j=0; j<c; j++, dest_col += dest_cs, src_col += src_cs) Set::set_op (*dest_col, Modular ((*src_col) % p, true)); } }
nat mmx::default_aligned_size | ( | nat | r, |
nat | c | ||
) | [inline] |
Definition at line 82 of file matrix_naive.hpp.
{
return default_aligned_size<C> (r * c); }
mmx::DEFINE_UNARY_FORMAT_2 | ( | quotient | ) |
mmx::DEFINE_VARIANT | ( | crt_naive_integer | , |
crt_signed< crt_naive > | |||
) |
Definition at line 27 of file crt_integer.hpp.
: public implementation<crt_project,crt_signed<crt_naive> > { template<typename C, typename I, typename W> static inline I mod (const C& a, const modulus<I,W>& p) { static integer r; return (I) mpz_fdiv_r_ui (*r, *a, *p); } template<typename C, typename W> static inline C mod (const C& a, const modulus<integer,W>& p) { return rem (a, *p); } }; #endif STMPL struct crt_naive_variant_helper<integer> { typedef crt_naive_integer CV; };
mmx::DEFINE_VARIANT | ( | crt_dicho_integer | , |
crt_dicho< crt_naive_integer > | |||
) |
Definition at line 49 of file crt_integer.hpp.
{
typedef crt_dicho_integer CV; };
mmx::DEFINE_VARIANT | ( | crt_int | , |
crt_signed< crt_naive > | |||
) |
mmx::DEFINE_VARIANT | ( | polynomial_int | , |
polynomial_ring_dicho< polynomial_balanced< polynomial_kronecker< polynomial_naive > > > | |||
) |
Definition at line 27 of file polynomial_int.hpp.
References DECLARE_HELPER.
{ \ typedef polynomial_int PV; }; DECLARE_HELPER(signed char)
mmx::DEFINE_VARIANT | ( | polynomial_integer | , |
polynomial_gcd_ring_dicho< polynomial_balanced< polynomial_kronecker< polynomial_naive > > > | |||
) |
Definition at line 27 of file polynomial_integer.hpp.
{
typedef polynomial_integer PV;
};
mmx::DEFINE_VARIANT | ( | polynomial_modular_int | , |
polynomial_dicho< polynomial_balanced< polynomial_kronecker< polynomial_naive > > > | |||
) |
mmx::DEFINE_VARIANT | ( | polynomial_modular_integer | , |
polynomial_modular< polynomial_dicho< polynomial_naive > > | |||
) |
mmx::DEFINE_VARIANT | ( | polynomial_rational | , |
polynomial_quotient< polynomial_dicho< polynomial_naive > > | |||
) |
Definition at line 21 of file polynomial_rational.hpp.
{
typedef polynomial_rational PV;
};
mmx::DEFINE_VARIANT | ( | polynomial_generic_schonhage | , |
polynomial_ring_dicho< polynomial_schonhage< polynomial_ring_naive< polynomial_naive > > > | |||
) |
mmx::DEFINE_VARIANT | ( | polynomial_series_dicho | , |
polynomial_series< polynomial_dicho< polynomial_naive > > | |||
) |
mmx::DEFINE_VARIANT | ( | series_complex | , |
series_relaxed< series_naive > | |||
) |
Definition at line 21 of file series_complex.hpp.
{
typedef series_complex SV;
};
mmx::DEFINE_VARIANT | ( | matrix_double | , |
matrix_strassen< matrix_threads< Matrix_simd_variant(double)> > | |||
) |
mmx::DEFINE_VARIANT | ( | series_int | , |
series_relaxed< series_naive > | |||
) |
Definition at line 21 of file series_int.hpp.
References DECLARE_HELPER.
{ \ typedef series_int SV; \ }; DECLARE_HELPER(unsigned char)
mmx::DEFINE_VARIANT | ( | series_integer | , |
series_relaxed< series_naive > | |||
) |
Definition at line 21 of file series_integer.hpp.
{
typedef series_integer SV;
};
mmx::DEFINE_VARIANT | ( | matrix_integer | , |
matrix_balanced< matrix_crt< matrix_ring_naive< matrix_naive > > > | |||
) |
mmx::DEFINE_VARIANT | ( | matrix_modular_int | , |
matrix_strassen< matrix_threads< matrix_unrolled_4_4 > > | |||
) |
mmx::DEFINE_VARIANT | ( | matrix_modular_integer | , |
matrix_naive | |||
) |
mmx::DEFINE_VARIANT | ( | series_modular_int | , |
series_relaxed< series_naive > | |||
) |
mmx::DEFINE_VARIANT | ( | series_modular_integer | , |
series_relaxed< series_naive > | |||
) |
mmx::DEFINE_VARIANT | ( | series_rational | , |
series_relaxed< series_naive > | |||
) |
Definition at line 21 of file series_rational.hpp.
{
typedef series_rational SV;
};
mmx::DEFINE_VARIANT | ( | matrix_rational | , |
matrix_quotient< matrix_naive > | |||
) |
mmx::DEFINE_VARIANT | ( | base_naive_int | , |
base_signed< base_naive > | |||
) |
base_signed<base_dicho<base_naive> > mmx::DEFINE_VARIANT | ( | base_naive_uint | , |
base_naive | |||
) |
mmx::DEFINE_VARIANT | ( | base_naive_integer | , |
base_signed< base_naive > | |||
) |
mmx::DEFINE_VARIANT_1 | ( | typename V | , |
V | , | ||
polynomial_ring_dicho | , | ||
polynomial_ring_dicho_inc< polynomial_ring_naive< polynomial_dicho< V > > > | |||
) |
Definition at line 41 of file polynomial_ring_dicho.hpp.
: public V {};
mmx::DEFINE_VARIANT_1 | ( | typename V | , |
V | , | ||
polynomial_gcd_ring_dicho | , | ||
polynomial_gcd_ring_dicho_inc< polynomial_gcd_ring_naive< polynomial_ring_dicho< V > > > | |||
) |
mmx::DEFINE_VARIANT_1 | ( | typename V | , |
V | , | ||
polynomial_gcd_ring_naive | , | ||
polynomial_gcd_ring_naive_inc< polynomial_ring_naive< V > > | |||
) |
Definition at line 60 of file polynomial_ring_naive.hpp.
: public V { typedef typename V::Vec Vec; typedef polynomial_gcd_ring_ducos_inc<typename V::Naive> Naive; typedef polynomial_gcd_ring_ducos_inc<typename V::Positive> Positive; typedef polynomial_gcd_ring_ducos_inc<typename V::No_simd> No_simd; typedef polynomial_gcd_ring_ducos_inc<typename V::No_thread> No_thread; typedef polynomial_gcd_ring_ducos_inc<typename V::No_scaled> No_scaled; };
mmx::DEFINE_VARIANT_1 | ( | typename V | , |
V | , | ||
polynomial_gcd_ring_ducos | , | ||
polynomial_gcd_ring_ducos_inc< polynomial_gcd_ring_naive< V > > | |||
) |
mmx::DEFINE_VARIANT_1 | ( | typename V | , |
V | , | ||
polynomial_schonhage | , | ||
polynomial_balanced_tft< polynomial_schonhage_inc< polynomial_karatsuba< V > > > | |||
) |
mmx::DEFINE_VARIANT_1 | ( | typename V | , |
V | , | ||
polynomial_schonhage_strassen | , | ||
polynomial_balanced_tft< polynomial_schonhage_strassen_inc< polynomial_karatsuba< V > > > | |||
) |
mmx::DEFINE_VARIANT_1 | ( | typename V | , |
V | , | ||
polynomial_schonhage_triadic | , | ||
polynomial_balanced< polynomial_schonhage_triadic_inc< polynomial_karatsuba< V > > > | |||
) |
mmx::DEFINE_VARIANT_1 | ( | typename V | , |
V | , | ||
polynomial_tft | , | ||
polynomial_dicho< polynomial_balanced_tft< polynomial_tft_inc< polynomial_karatsuba< V > > > > | |||
) |
mmx::DEFINE_VARIANT_1 | ( | typename I | , |
I | , | ||
matrix_int_simd | , | ||
matrix_strassen< typename Matrix_simd_variant(I) > | |||
) |
Definition at line 1052 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
{ if (is_exact_zero (f)) return Series (CF(f)); return (Series_rep*) new deflate_series_rep<C,V> (f, p); }
int deg | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 187 of file polynomial.hpp.
Referenced by annihilator(), compose(), eval(), flatten(), GLUE_5(), GLUE_58(), GLUE_6(), GLUE_7(), modulus_polynomial_inv_naive< V >::inv_mod(), implementation< polynomial_gcd, X, polynomial_series< BV > >::invert_mod(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::invert_mod(), implementation< polynomial_gcd, V, polynomial_naive >::invert_mod(), polynomial_iterator_rep< C, V >::is_busy(), is_zero(), join(), root_modular_naive::linear_factorization(), root_modular_naive::linear_splitting(), minimal_polynomial_bis(), mul_matrix(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::_vector_sort_by_increasing_degree_op::not_op(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::_vector_sort_by_increasing_degree_op::op(), pexponent(), pow_matrix(), root_modular_naive::roots(), shift1(), shift2(), sign(), square_free(), subresultant(), and subresultants().
{ return ((int) P->n) - 1; }
int degree | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 188 of file polynomial.hpp.
Referenced by implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::_half_gcd(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::_multi_rem(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_ducos_inc< BV > >::defected_prem(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_naive_inc< W > >::defected_prem(), resultant(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_ducos_inc< BV > >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_naive_inc< W > >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::subresultant_sequence(), and implementation< polynomial_subresultant, V, polynomial_naive >::subresultant_sequence().
{ return ((int) P->n) - 1; }
Definition at line 847 of file matrix.hpp.
References CF(), cols(), is_non_scalar(), Matrix, and rows().
Referenced by first_minor().
{ ASSERT (is_non_scalar (m), "non-scalar matrix expected"); ASSERT (c < cols (m), "index out of range"); Matrix d (promote (0, CF(m)), rows (m), cols (m) - 1); for (nat j= 0; j < c; j++) for (nat i= 0; i < rows (m); i++) d(i,j)= m(i,j); for (nat j= c+1; j < cols (m); j++) for (nat i= 0; i < rows (m); i++) d(i,j-1)= m(i,j); return d; }
Definition at line 835 of file matrix.hpp.
References CF(), cols(), is_non_scalar(), Matrix, and rows().
Referenced by first_minor().
{ ASSERT (is_non_scalar (m), "non-scalar matrix expected"); ASSERT (r < rows (m), "index out of range"); Matrix d (promote (0, CF(m)), rows (m) - 1, cols (m)); for (nat i= 0; i < r; i++) for (nat j= 0; j < cols (m); j++) d(i,j)= m(i,j); for (nat i= r+1; i < rows (m); i++) for (nat j= 0; j < cols (m); j++) d(i-1,j)= m(i,j); return d; }
DT denominator | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 97 of file quotient.hpp.
Referenced by derive(), binary_helper< quotient< NT, DT > >::disassemble(), exact_eq(), exact_hash(), flatten(), GLUE_6(), hard_eq(), hard_hash(), hash(), map(), operator*(), operator+(), operator-(), operator/(), operator==(), precision(), sign(), binary_helper< quotient< NT, DT > >::write(), and xderive().
{ return x.d; }
Denominator_type | ( | C | ) | const |
polynomial<C,V> mmx::derive | ( | const polynomial< C, V > & | P | ) |
Definition at line 1009 of file polynomial.hpp.
References C, CF(), derive(), N(), Polynomial, and seg().
{ typedef implementation<polynomial_linear,V> Pol; nat n= N(P); if (n <= 1) return promote (0, P); nat l= aligned_size<C,V> (n-1); C* r= mmx_formatted_new<C> (l, CF(P)); Pol::derive (r, seg (P), n); return Polynomial (r, n-1, l, CF(P)); }
polynomial<C,V> mmx::derive | ( | const polynomial< C, V > & | P, |
const nat & | order | ||
) |
Definition at line 1020 of file polynomial.hpp.
References C, CF(), derive(), N(), Polynomial, and seg().
{ typedef implementation<polynomial_linear,V> Pol; nat n= N(P); if (n <= order) return promote (0, P); nat l= aligned_size<C,V> (n-order); C* r= mmx_formatted_new<C> (l, CF(P)); Pol::derive (r, seg (P), n, order); return Polynomial (r, n-order, l, CF(P)); }
Definition at line 305 of file quotient.hpp.
References denominator(), derive(), numerator(), Quotient, and square().
{ return Quotient (derive (numerator (x)) * denominator (x) - numerator (x) * derive (denominator (x)), square (denominator (x)), true); }
Definition at line 321 of file quotient.hpp.
References denominator(), derive(), numerator(), Quotient, and square().
{ return Quotient (derive (numerator (x), v) * denominator (x) - numerator (x) * derive (denominator (x), v), square (denominator (x)), true); }
Definition at line 626 of file matrix.hpp.
Referenced by derive(), discriminant(), derive_series_rep< C, V >::expression(), GLUE_121(), GLUE_16(), GLUE_17(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_43(), GLUE_74(), GLUE_95(), improve_zero(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), is_zero(), sign(), square_free(), implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate(), and implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate().
{
return unary_map<derive_op> (m); }
Definition at line 893 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
{ if (is_exact_zero (f)) return Series (CF(f)); return (Series_rep*) new derive_series_rep<C,V> (f); }
Definition at line 899 of file series.hpp.
{
return binary_scalar_series<derive_op> (f, v);
}
Definition at line 1125 of file matrix.hpp.
References CF(), cols(), is_non_scalar(), rows(), and tab().
Referenced by first_minor(), GLUE_101(), GLUE_31(), and GLUE_56().
static nat mmx::digit_mirror_triadic | ( | nat | i, |
nat | n | ||
) | [static] |
Definition at line 36 of file fft_roots.hpp.
Referenced by roots_triadic_helper< CC, UU, SS >::create_roots(), and roots_triadic_helper< CC, UU, SS >::create_stoor().
{ if (n == 1) return i; else return digit_mirror_triadic (i % (n / 3), n / 3) * 3 + i / (n / 3); }
polynomial<C,V> mmx::dilate | ( | const polynomial< C, V > & | P, |
nat | p | ||
) |
Definition at line 1091 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Referenced by GLUE_123(), GLUE_19(), GLUE_26(), GLUE_27(), GLUE_33(), GLUE_39(), GLUE_41(), GLUE_92(), GLUE_97(), and ramify().
{ typedef implementation<polynomial_linear,V> Pol; if (p == 1) return P; nat n= N(P); if (n <= 1) return P; nat k= (n-1)*p + 1; nat l= aligned_size<C,V> (k); C* r= mmx_formatted_new<C> (l, CF(P)); Pol::dilate (r, seg (P), p, n); return Polynomial (r, k, l, CF(P)); }
Definition at line 1031 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
{ if (is_exact_zero (f)) return Series (CF(f)); return (Series_rep*) new dilate_series_rep<C,V> (f, p); }
void mmx::direct_base | ( | vector< typename Baser::modulus_base, W > & | dest, |
const typename Baser::base & | s, | ||
Baser & | baser | ||
) | [inline] |
Definition at line 166 of file base_naive.hpp.
References CF(), I, and size_bound().
{ nat n= size_bound (s, baser); nat l= aligned_size<I,W> (n); I* tmp= mmx_formatted_new<I> (l, CF(dest)); n= baser.direct_transform (tmp, n, s); dest= vector<I,W> (tmp, n, l, CF(dest)); }
vector< typename Baser::modulus_base > mmx::direct_base | ( | const typename Baser::base & | s, |
Baser & | baser | ||
) | [inline] |
Definition at line 175 of file base_naive.hpp.
References direct_base().
{ vector<I> dest; direct_base (dest, s, baser); return dest; }
nat mmx::direct_base | ( | typename Baser::modulus_base * | dest, |
nat | n, | ||
const typename Baser::base & | s, | ||
Baser & | baser | ||
) | [inline] |
Definition at line 160 of file base_naive.hpp.
Referenced by as_p_expansion(), as_helper< polynomial< modular< modulus< C, U1 >, U2 >, V >, Lift_type(modular< modulus< C, U1 >, U2 >)>::cv(), implementation< base_transform, V, base_blocks< W > >::direct(), direct_base(), base_unsigned_integer_transformer< I >::direct_transform(), and base_integer_transformer< I >::direct_transform().
{ // return the size filled in dest return baser.direct_transform (dest, n, s); }
void mmx::direct_crt | ( | typename Crter::modulus_base * | dest, |
const typename Crter::base & | s, | ||
Crter & | crter | ||
) | [inline] |
Definition at line 323 of file crt_naive.hpp.
Referenced by implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::_multi_rem(), direct_crt(), implementation< matrix_multiply, V, matrix_crt< W > >::mat_direct_crt(), and implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate().
{ crter.direct_transform (dest, s); }
void mmx::direct_crt | ( | vector< typename Crter::modulus_base, W > & | dest, |
const typename Crter::base & | s, | ||
Crter & | crter | ||
) | [inline] |
vector< typename Crter::modulus_base > mmx::direct_crt | ( | const typename Crter::base & | s, |
Crter & | crter | ||
) | [inline] |
Definition at line 336 of file crt_naive.hpp.
References direct_crt().
{ vector<I> dest; direct_crt (dest, s, crter); return dest; }
void mmx::direct_fft | ( | C * | dest, |
nat | n | ||
) | [inline] |
Definition at line 208 of file fft_naive.hpp.
References fft_naive_transformer< C, V >::direct_transform().
{ fft_naive_transformer<C> ffter (n); ffter.direct_transform (dest); }
void mmx::direct_fft_triadic | ( | C * | dest, |
nat | n | ||
) | [inline] |
Definition at line 182 of file fft_triadic_naive.hpp.
References fft_triadic_naive_transformer< C, VV >::direct_transform_triadic().
{ fft_triadic_naive_transformer<C> ffter (n); ffter.direct_transform_triadic (dest); }
void mmx::direct_kronecker | ( | integer & | dest, |
const integer * | src, | ||
nat | n, | ||
xnat | bits | ||
) |
Definition at line 999 of file polynomial.hpp.
References derive(), and resultant().
Referenced by GLUE_29(), GLUE_35(), GLUE_37(), and GLUE_88().
algebraic_number_extension<C,Ball>::El mmx::div | ( | const algebraic_number_extension< C, Ball > & | ext, |
const C & | c1, | ||
const typename algebraic_number_extension< C, Ball >::El & | p2 | ||
) | [inline] |
Definition at line 247 of file algebraic_number.hpp.
References div().
{ return div (ext.ext, c1, p2); }
algebraic_number_extension<C,Ball>::El mmx::div | ( | const algebraic_number_extension< C, Ball > & | ext, |
const typename algebraic_number_extension< C, Ball >::El & | p1, | ||
const typename algebraic_number_extension< C, Ball >::El & | p2 | ||
) | [inline] |
Definition at line 252 of file algebraic_number.hpp.
References div().
{ return div (ext.ext, p1, p2); }
algebraic_extension<C>::El mmx::div | ( | const algebraic_extension< C > & | ext, |
const C & | c1, | ||
const typename algebraic_extension< C >::El & | p2 | ||
) |
Definition at line 113 of file algebraic_extension.hpp.
References Element, and gcd().
Referenced by implementation< polynomial_exact_divide, V, polynomial_polynomial< W > >::div(), div(), implementation< polynomial_vectorial, V, polynomial_naive >::div_sc(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), operator/(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::shift(), and implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate().
algebraic_extension<C>::El mmx::div | ( | const algebraic_extension< C > & | ext, |
const typename algebraic_extension< C >::El & | p1, | ||
const typename algebraic_extension< C >::El & | p2 | ||
) |
void mmx::div_kronecker | ( | polynomial< C, V > * | dest, |
const polynomial< C, V > * | s1, | ||
nat | n1, | ||
const polynomial< C, V > * | s2, | ||
nat | n2 | ||
) | [inline] |
Definition at line 95 of file kronecker_polynomial.hpp.
References copy(), decode_kronecker(), encode_kronecker(), is_exact_zero(), max_polynomial_size(), and Polynomial.
Referenced by implementation< polynomial_exact_divide, V, polynomial_polynomial< W > >::div().
{ typedef implementation<polynomial_linear,V> Pol; ASSERT (n2 != 0, "division by zero"); if (n1 == 0) return; nat m1= max_polynomial_size (s1, n1); nat m2= max_polynomial_size (s2, n2); nat n= n1 - n2 + 1; Polynomial x1, x2, y; encode_kronecker (x1, s1, n1, m1); encode_kronecker (x2, s2, n2, m1); y= x1 / x2; nat l= default_aligned_size<C> (n1); Polynomial* tmp= mmx_new<Polynomial> (l); decode_kronecker (tmp, y, n1, m1); while (n1 > 0 && is_exact_zero (tmp[n1-1])) n1--; nat m= max_polynomial_size (tmp, n1); if (n1 <= n && m1 != m + m2 - 1) { mmx_delete<Polynomial> (tmp, l); ERROR ("unexact division"); } Pol::copy (dest, tmp, n); mmx_delete<Polynomial> (tmp, l); }
Definition at line 675 of file polynomial.hpp.
References rem().
Referenced by GLUE_130(), GLUE_24(), GLUE_25(), GLUE_31(), GLUE_33(), and GLUE_84().
{ return rem (P2, P1) == 0; }
list<Monomial > mmx::dominant_monomials | ( | const quotient_series< Series, Monomial > & | f | ) |
Definition at line 128 of file quotient_series.hpp.
{ return stair_mul (f->m, dominant_monomials (f->f)); }
polynomial<C,V> mmx::duplicate | ( | const polynomial< C, V > & | P | ) |
Definition at line 1340 of file polynomial.hpp.
{
return unary_map<duplicate_op> (P); }
Definition at line 569 of file matrix.hpp.
{
return unary_map<duplicate_op> (m); }
void encode_kronecker | ( | integer & | dest, |
const signed char * | src, | ||
nat | n, | ||
xnat | bits | ||
) |
Definition at line 43 of file kronecker_int.cpp.
Referenced by div_kronecker(), encode_kronecker(), mul_kronecker(), mul_kronecker_int(), mul_kronecker_mod_int(), square_kronecker(), square_kronecker_int(), and square_kronecker_mod_int().
{
void encode_kronecker | ( | integer & | dest, |
const unsigned char * | src, | ||
nat | n, | ||
xnat | bits | ||
) |
Definition at line 38 of file kronecker_int.cpp.
{
void encode_kronecker | ( | integer & | dest, |
const short int * | src, | ||
nat | n, | ||
xnat | bits | ||
) |
Definition at line 44 of file kronecker_int.cpp.
{
void mmx::encode_kronecker | ( | integer & | dest, |
const unsigned short int * | src, | ||
nat | n, | ||
xnat | bits | ||
) |
void encode_kronecker | ( | integer & | dest, |
const int * | src, | ||
nat | n, | ||
xnat | bits | ||
) |
Definition at line 45 of file kronecker_int.cpp.
{
void encode_kronecker | ( | integer & | dest, |
const unsigned int * | src, | ||
nat | n, | ||
xnat | bits | ||
) |
Definition at line 40 of file kronecker_int.cpp.
{
void encode_kronecker | ( | integer & | dest, |
const long int * | src, | ||
nat | n, | ||
xnat | bits | ||
) |
Definition at line 46 of file kronecker_int.cpp.
{
void encode_kronecker | ( | integer & | dest, |
const unsigned long int * | src, | ||
nat | n, | ||
xnat | bits | ||
) |
Definition at line 41 of file kronecker_int.cpp.
{
void encode_kronecker | ( | integer & | dest, |
const long long int * | src, | ||
nat | n, | ||
xnat | bits | ||
) |
Definition at line 47 of file kronecker_int.cpp.
{
void encode_kronecker | ( | integer & | dest, |
const unsigned long long int * | src, | ||
nat | n, | ||
xnat | bits | ||
) |
Definition at line 42 of file kronecker_int.cpp.
{
void encode_kronecker | ( | integer & | dest, |
const integer * | src, | ||
nat | n, | ||
xnat | bits | ||
) |
Definition at line 23 of file kronecker_integer.cpp.
References encode_kronecker().
{ if (n == 0) dest= 0; else if (n == 1) dest= src[0]; else { nat h= n>>1; integer aux; encode_kronecker (aux , src+h, n-h, bits); encode_kronecker (dest, src , h , bits); dest += (aux << (h*bits)); } }
void mmx::encode_kronecker | ( | integer & | dest, |
const unsigned short * | src, | ||
nat | n, | ||
xnat | bits | ||
) |
Definition at line 39 of file kronecker_int.cpp.
{
void mmx::encode_kronecker | ( | polynomial< C, V > & | dest, |
const polynomial< C, V > * | src, | ||
nat | n, | ||
nat | m | ||
) |
Definition at line 33 of file kronecker_polynomial.hpp.
References C, CF(), and Polynomial.
{ if (n == 0) return; nat p= n * m; nat l= aligned_size<C,V> (p); C* x= mmx_new<C> (l); C* y= x; for (nat i= 0; i < n; i++, x += m, src++) for (nat j= 0; j < m; j++) x[j]= (*src)[j]; dest= Polynomial (y, p, l, CF(src[0])); }
static void mmx::encode_kronecker_int | ( | integer & | dest, |
const I * | src, | ||
nat | n, | ||
xnat | bits | ||
) | [inline, static] |
Definition at line 22 of file kronecker_int.cpp.
{ if (n == 0) dest= 0; else if (n == 1) dest= src[0]; else { nat h= n>>1; integer aux; encode_kronecker_int (aux , src+h, n-h, bits); encode_kronecker_int (dest, src , h , bits); dest += (aux << (h*bits)); } }
void mmx::encode_modular_int | ( | D * | dest, |
const modular< modulus< C, V1 >, V2 > * | src, | ||
nat | r, | ||
nat | rr, | ||
nat | c, | ||
nat | cc | ||
) |
Definition at line 78 of file matrix_modular_int.hpp.
{ typedef implementation<matrix_linear,V> Mat; nat dest_rs= Mat::index (1, 0, r, c); nat dest_cs= Mat::index (0, 1, r, c); nat src_rs = Mat::index (1, 0, rr, cc); nat src_cs = Mat::index (0, 1, rr, cc); D* dest_row= dest; const Modular* src_row= src; for (nat i=0; i<r; i++, dest_row += dest_rs, src_row += src_rs) { D* dest_col= dest_row; const Modular* src_col= src_row; for (nat j=0; j<c; j++, dest_col += dest_cs, src_col += src_cs) *dest_col= (D) (*(*src_col)); } }
mmx::EQUAL_INT_SUGAR | ( | template< typename NT, typename DT > | , |
quotient< NT, DT > | |||
) |
mmx::EQUAL_INT_SUGAR | ( | template< typename C, typename Extension > | , |
algebraic< C, Extension > | |||
) |
K mmx::eval | ( | const polynomial< C, V > & | p, |
const K & | x | ||
) |
Definition at line 117 of file algebraic_number.hpp.
References deg().
Referenced by as_ball(), improve_zero(), is_zero(), join(), normalize(), and sign().
{ K sum= 0; for (int i=deg(p); i>=0; i--) { sum *= x; sum += as<K> (p[i]); } return sum; }
Ball mmx::eval | ( | const algebraic_number_extension< C, Ball > & | ext, |
const typename algebraic_number_extension< C, Ball >::El & | p1 | ||
) |
Definition at line 190 of file algebraic_number.hpp.
References deg(), and increase_precision().
{ increase_precision (ext); Ball sum= 0; for (int i=deg(p1); i>=0; i--) { sum *= ext.x; sum += as<Ball> (p1[i]); } return sum; }
Ball mmx::eval | ( | const algebraic_number_extension< C, Ball > & | ext1, |
const algebraic_number_extension< C, Ball > & | ext2, | ||
const vector< C > & | v | ||
) |
Definition at line 201 of file algebraic_number.hpp.
References deg(), and increase_precision().
{ increase_precision (ext1); increase_precision (ext2); Ball sum1= 0; for (int i1=deg(ext1.ext.mp)-1; i1>=0; i1--) { Ball sum2= 0; for (int i2=deg(ext2.ext.mp)-1; i2>=0; i2--) { sum2 *= ext2.x; sum2 += as<Ball> (v[i1*deg(ext2.ext.mp) + i2]); } sum1 *= ext1.x; sum1 += sum2; } return sum1; }
Definition at line 1131 of file polynomial.hpp.
Referenced by eval(), implementation< polynomial_evaluate, V, polynomial_naive >::evaluate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::evaluate(), evaluate(), GLUE_18(), GLUE_19(), GLUE_20(), GLUE_21(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_76(), GLUE_77(), GLUE_78(), GLUE_79(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), polynomial_evaluate_helper< V, C >::op(), and implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate().
{ typedef implementation<polynomial_evaluate,V> Pol; return Pol::evaluate (seg (p), x, N(p)); }
Definition at line 1156 of file polynomial.hpp.
References evaluate().
{ typedef implementation<polynomial_evaluate,V> Pol; return Pol::evaluate (p, x); }
bool mmx::exact_eq | ( | const algebraic< C, Extension > & | x1, |
const algebraic< C, Extension > & | x2 | ||
) | [inline] |
Definition at line 111 of file algebraic.hpp.
References field(), and value().
Referenced by implementation< polynomial_vectorial, V, polynomial_naive >::exact_eq(), exact_eq(), and exact_neq().
bool mmx::exact_eq | ( | const quotient< NT, DT > & | x1, |
const quotient< NT, DT > & | x2 | ||
) | [inline] |
Definition at line 147 of file quotient.hpp.
References denominator(), exact_eq(), and numerator().
{ return exact_eq (numerator (x1), numerator (x2)) && exact_eq (denominator (x1), denominator (x2)); }
bool mmx::exact_eq | ( | const quotient_series< Series, Monomial > & | f, |
const quotient_series< Series, Monomial > & | g | ||
) | [inline] |
Definition at line 102 of file quotient_series.hpp.
References exact_eq().
bool mmx::exact_eq | ( | const algebraic_number_extension< C, Ball > & | x, |
const algebraic_number_extension< C, Ball > & | y | ||
) | [inline] |
Definition at line 82 of file algebraic_number.hpp.
References exact_eq().
{ return exact_eq (*x, *y); }
bool mmx::exact_eq | ( | const algebraic_extension< C > & | x, |
const algebraic_extension< C > & | y | ||
) | [inline] |
Definition at line 62 of file algebraic_extension.hpp.
References exact_eq().
{ return exact_eq (*x, *y); }
nat mmx::exact_hash | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 136 of file quotient.hpp.
References denominator(), exact_hash(), and numerator().
{ nat h= exact_hash (numerator (x)); return (h<<1) ^ (h<<5) ^ (h>>29) ^ exact_hash (denominator (x)); }
nat mmx::exact_hash | ( | const algebraic_number_extension< C, Ball > & | x | ) | [inline] |
Definition at line 76 of file algebraic_number.hpp.
References exact_hash().
{ return exact_hash (*x); }
nat mmx::exact_hash | ( | const quotient_series< Series, Monomial > & | f | ) | [inline] |
Definition at line 99 of file quotient_series.hpp.
References exact_hash().
{ return exact_hash (f->f) ^ exact_hash (f->m); }
nat mmx::exact_hash | ( | const algebraic< C, Extension > & | x | ) | [inline] |
Definition at line 105 of file algebraic.hpp.
References field(), and value().
Referenced by exact_hash().
{ nat h= exact_hash (value (x)); return (h<<1) ^ (h<<5) ^ (h>>29) ^ exact_hash (field (x)); }
nat mmx::exact_hash | ( | const algebraic_extension< C > & | x | ) | [inline] |
Definition at line 56 of file algebraic_extension.hpp.
References exact_hash().
{ return exact_hash (*x); }
bool mmx::exact_neq | ( | const quotient< NT, DT > & | x1, |
const quotient< NT, DT > & | x2 | ||
) | [inline] |
bool mmx::exact_neq | ( | const quotient_series< Series, Monomial > & | f, |
const quotient_series< Series, Monomial > & | g | ||
) | [inline] |
Definition at line 105 of file quotient_series.hpp.
References exact_eq().
{ return !exact_eq (f, g); }
bool mmx::exact_neq | ( | const algebraic_number_extension< C, Ball > & | x, |
const algebraic_number_extension< C, Ball > & | y | ||
) | [inline] |
Definition at line 84 of file algebraic_number.hpp.
References exact_neq().
{ return exact_neq (*x, *y); }
bool mmx::exact_neq | ( | const algebraic< C, Extension > & | x1, |
const algebraic< C, Extension > & | x2 | ||
) | [inline] |
Definition at line 114 of file algebraic.hpp.
References exact_eq().
Referenced by exact_neq(), implementation< series_multiply, U, series_relaxed< W > >::mul_series_rep< C, V >::next(), and implementation< series_multiply, U, series_carry_relaxed< W > >::mul_series_rep< M, V >::next().
{ return !exact_eq (x1, x2); }
bool mmx::exact_neq | ( | const algebraic_extension< C > & | x, |
const algebraic_extension< C > & | y | ||
) | [inline] |
Definition at line 64 of file algebraic_extension.hpp.
References exact_neq().
{ return exact_neq (*x, *y); }
Definition at line 40 of file series_elementary.hpp.
Referenced by GLUE_35(), GLUE_50(), pow(), and ramify().
{
return unary_recursive_series<exp_op> (f);
}
vector< polynomial<C,V> > mmx::expand | ( | const polynomial< C, V > & | p, |
const vector< C > & | v, | ||
const vector< nat > & | mu | ||
) |
Definition at line 1195 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
{ typedef implementation<polynomial_evaluate,V> Pol; nat k= N(v); ASSERT (N(mu) == k, "dimensions don't match"); C** r= mmx_new<C*> (k); for (nat i=0; i<k; i++) r[i]= mmx_formatted_new<C> (aligned_size<C,V> (mu[i]), CF(p)); Pol::expand (r, seg (p), seg (v), seg (mu), N (p), k); nat l= default_aligned_size<Polynomial > (k); Polynomial* ret= mmx_formatted_new<Polynomial > (l, get_format (p)); for (nat i=0; i<k; i++) ret[i]= Polynomial (r[i], mu[i], aligned_size<C,V> (mu[i]), CF(p)); mmx_delete<C*> (r, k); return vector<Polynomial > (ret, k, l); }
xint mmx::exponent | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1384 of file polynomial.hpp.
{
return big<max_exponent_op> (p); }
xint mmx::exponent | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 660 of file matrix.hpp.
{
return big<max_exponent_op> (m); }
Definition at line 194 of file matrix.hpp.
References cols(), is_a_scalar(), is_non_scalar(), Matrix, and rows().
Referenced by binary_map(), binary_test(), base_dicho_transformer< C, S, V >::direct_transform(), base_dicho_transformer< C, S, V >::inverse_transform(), polynomial< C, V >::operator+=(), coprime_moduli_sequence< M, V >::operator[](), and unary_set().
{ VERIFY (is_a_scalar (m), "scalar matrix expected"); VERIFY (is_non_scalar (n), "non-scalar matrix expected"); return Matrix (m.scalar(), rows (n), cols (n)); }
polynomial<C,V> mmx::extract_mod | ( | const polynomial< C, V > & | P, |
nat | k, | ||
nat | p | ||
) |
Definition at line 1225 of file polynomial.hpp.
References C, CF(), N(), and Polynomial.
{ typedef implementation<polynomial_linear,V> Pol; nat n= (N(P) - k + p - 1) / p; nat l= aligned_size<C,V> (n); C* r= mmx_formatted_new<C> (l, CF(P)); for (nat i=0; i<n; i++) r[i]= P[i*p+k]; return Polynomial (r, n, l, CF(P)); }
void mmx::fft_mul | ( | double * | dest, |
const double * | s1, | ||
const double * | s2, | ||
nat | n1, | ||
nat | n2 | ||
) |
Definition at line 33 of file fft_double.cpp.
References mul().
{ typedef polynomial_dicho< polynomial_tft< polynomial_karatsuba< polynomial_naive> > > PV; typedef implementation<vector_linear,PV> Vec; typedef implementation<polynomial_multiply,PV> Pol; //mmout << "s1= "; Vec::print (mmout, s1, n1); mmout << "\n"; //mmout << "s2= "; Vec::print (mmout, s2, n2); mmout << "\n"; nat nd = n1 + n2 - 1; nat spc= n1 + n2 + nd; complex<double>* m1= mmx_new<complex<double> > (spc); complex<double>* m2= m1 + n1; complex<double>* md= m2 + n2; Vec::cast (m1, s1, n1); Vec::cast (m2, s2, n2); Pol::mul (md, m1, m2, n1, n2); Vec::vec_unary<Re_op> (dest, md, nd); mmx_delete<complex<double> > (m1, spc); //mmout << "dd= "; Vec::print (mmout, dest, nd); mmout << "\n"; }
Extension mmx::field | ( | const algebraic< C, Extension > & | x | ) | [inline] |
Definition at line 94 of file algebraic.hpp.
Referenced by abs(), annihilator(), as_ball(), conj(), binary_helper< algebraic< C, Extension > >::disassemble(), exact_eq(), exact_hash(), flatten(), hard_eq(), hard_hash(), hash(), invert(), is_zero(), normalize(), operator*(), operator+(), operator-(), operator/(), Re(), root(), sign(), square(), upgrade(), and binary_helper< algebraic< C, Extension > >::write().
{ return x.ext; }
polynomial<C> mmx::field_modulus | ( | const algebraic< C, Extension > & | x | ) | [inline] |
Definition at line 96 of file algebraic.hpp.
{ return x.ext.mp; }
Definition at line 1135 of file matrix.hpp.
References cols(), delete_col(), delete_row(), det(), is_non_scalar(), and rows().
Referenced by cofactor().
{ ASSERT (is_non_scalar (m), "non-scalar matrix expected"); ASSERT (cols(m) == rows(m), "square matrix expected"); ASSERT (i < rows(m), "index out of range"); ASSERT (j < cols(m), "index out of range"); return det (delete_col (delete_row (m, i), j)); }
Definition at line 52 of file series_sugar.hpp.
References recursive().
Referenced by fixed_point_series(), GLUE_145(), GLUE_47(), GLUE_66(), and integrate_series().
{ series_rep<C>* rep= new fixed_point_series_rep<C> (fun, c); return recursive (series<C> (rep)); }
Definition at line 58 of file series_sugar.hpp.
References fixed_point_series().
{ return fixed_point_series (fun, vec<C> (c)); }
series<vector<C> > mmx::fixed_point_series_vector | ( | const routine & | fun, |
const vector< vector< C > > & | c | ||
) | [inline] |
Definition at line 88 of file series_sugar.hpp.
References recursive().
Referenced by fixed_point_series_vector(), and fixed_point_vector_series().
{ series_rep<vector<C> >* rep= new fixed_point_vector_series_rep<C> (fun, c); return recursive (series<vector<C> > (rep)); }
series<vector<C> > mmx::fixed_point_series_vector | ( | const routine & | fun, |
const vector< C > & | c | ||
) | [inline] |
Definition at line 99 of file series_sugar.hpp.
References fixed_point_series_vector().
{ return fixed_point_series_vector (fun, vec<vector<C> > (c)); }
vector<series<C> > mmx::fixed_point_vector_series | ( | const routine & | fun, |
const vector< vector< C > > & | c | ||
) | [inline] |
Definition at line 94 of file series_sugar.hpp.
References as_vector(), and fixed_point_series_vector().
Referenced by fixed_point_vector_series(), and gen_fixed_point_vector_series().
{ return as_vector (fixed_point_series_vector (fun, c)); }
vector<series<C> > mmx::fixed_point_vector_series | ( | const routine & | fun, |
const vector< C > & | c | ||
) | [inline] |
Definition at line 103 of file series_sugar.hpp.
References fixed_point_vector_series().
{ return fixed_point_vector_series (fun, vec<vector<C> > (c)); }
syntactic mmx::flatten | ( | const matrix< C, V > & | m | ) |
Definition at line 338 of file matrix.hpp.
References cols(), flatten(), is_a_scalar(), and rows().
{ if (is_a_scalar (m)) return flatten (m.scalar()); int i, j, nr= rows(m), nc= cols(m); vector<syntactic> v; for (i=0; i<nr; i++) { vector<syntactic> h; for (j=0; j<nc; j++) h << flatten (m (i, j)); v << apply (GEN_ROW, h); } return apply (GEN_SQTUPLE, v); }
syntactic mmx::flatten | ( | const quotient< NT, DT > & | x | ) |
Definition at line 161 of file quotient.hpp.
References denominator(), flatten(), and numerator().
{ return flatten (numerator (x)) / flatten (denominator (x)); }
syntactic mmx::flatten | ( | const quotient_series< Series, Monomial > & | f | ) | [inline] |
Definition at line 108 of file quotient_series.hpp.
References flatten().
syntactic flatten | ( | const series< C, V > & | f, |
const syntactic & | z | ||
) |
Definition at line 307 of file series.hpp.
syntactic mmx::flatten | ( | const algebraic< C, Extension > & | x | ) |
Definition at line 136 of file algebraic.hpp.
References field(), and value().
Referenced by ldiv_mat_series_rep< C, V, W, U >::expression(), ldiv_sc_mat_series_rep< C, V, W, U >::expression(), carry_special_add_series_rep< C, V >::expression(), carry_add_quorem_series_rep< C, V >::expression(), carry_mul_quorem_series_rep< C, V, X >::expression(), lshiftz_series_vector_rep< C, V, W >::expression(), vector_series_rep< C, V, W >::expression(), vector_access_series_rep< C, V, W >::expression(), implicit_vector_series_rep< C, V >::expression(), implicit_series_rep< C, V >::expression(), fixed_point_vector_series_rep< C >::expression(), fixed_point_series_rep< C >::expression(), implementation< series_multiply, U, series_relaxed< W > >::mul_series_rep< C, V >::expression(), implementation< series_compose, U, series_naive >::reverse_series_rep< C, V >::expression(), implementation< series_compose, U, series_naive >::compose_series_rep< C, V >::expression(), implementation< series_abstractions, U, series_naive >::binary_series_rep< Op, C, V >::expression(), implementation< series_abstractions, U, series_naive >::unary_series_rep< Op, C, V >::expression(), implementation< series_recursive_abstractions, U, series_naive >::binary_scalar_recursive_series_rep< Op, C, V, X >::expression(), implementation< series_recursive_abstractions, U, series_naive >::binary_recursive_series_rep< Op, C, V >::expression(), implementation< series_recursive_abstractions, U, series_naive >::unary_recursive_series_rep< Op, C, V >::expression(), implementation< series_recursive_abstractions, U, series_naive >::nullary_recursive_series_rep< Op, C, V >::expression(), implementation< series_map_as_abstractions, U, series_naive >::unary_map_as_series_rep< Op, C, V, S, SV >::expression(), implementation< series_scalar_abstractions, U, series_naive >::ternary_scalar_series_rep< Op, C, V, X, Y >::expression(), implementation< series_scalar_abstractions, U, series_naive >::binary_scalar_series_rep< Op, C, V, X >::expression(), ldiv_mat_mat_series_rep< C, V, U >::expression(), ldiv_sc_mat_mat_series_rep< C, V, U, UU >::expression(), lshiftz_series_matrix_rep< C, V, U >::expression(), matrix_series_rep< C, V, U >::expression(), matrix_access_series_rep< C, V, U >::expression(), solver_container_series_rep< C, V >::expression(), known_series_rep< C, V, UV >::expression(), implementation< series_multiply, U, series_fast >::nrelax_mul_series_rep< C, V >::expression(), implementation< series_multiply, U, series_carry_relaxed< W > >::mul_series_rep< M, V >::expression(), implementation< series_divide, U, series_carry_naive >::div_series_rep< M, V >::expression(), implementation< series_divide, U, series_carry_naive >::rdiv_sc_series_rep< M, V, X >::expression(), implementation< series_divide, U, series_carry_naive >::carry_mul_sc_series_rep< M, V, X >::expression(), implementation< series_abstractions, U, series_carry_naive >::binary_series_rep< Op, M, V >::expression(), implementation< series_abstractions, U, series_carry_naive >::unary_series_rep< Op, M, V >::expression(), implementation< series_scalar_abstractions, U, series_carry_naive >::binary_scalar_series_rep< Op, M, V, X >::expression(), implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::mul_series_rep< M, V >::expression(), binary_scalar_recursive_monoblock_series_rep< Op, M, V, s, BV, t, X >::expression(), truncate_mul_monoblock_series_rep< M, V, s, BV, t >::expression(), binary_monoblock_series_rep< Op, M, V, s, BV, t >::expression(), change_precision_series_rep< C, V >::expression(), deflate_series_rep< C, V >::expression(), dilate_series_rep< C, V >::expression(), q_difference_series_rep< C, V >::expression(), shift_series_rep< C, V >::expression(), integrate_series_rep< C, V >::expression(), xderive_series_rep< C, V >::expression(), derive_series_rep< C, V >::expression(), piecewise_series_rep< C, V >::expression(), restrict_series_rep< C, V >::expression(), lshiftz_series_rep< C, V >::expression(), lcm_series_rep< C, V >::expression(), gcd_series_rep< C, V >::expression(), map_series_rep< C, V, S, SV >::expression(), cast_series_rep< C, V, K, W >::expression(), slow_series_rep< C, V >::expression(), fast_series_rep< C, V >::expression(), polynomial_series_rep< C, V >::expression(), scalar_series_rep< C, V >::expression(), zero_series_rep::expression(), recursive_container_series_rep< C, V >::expression(), implementation< polynomial_gcd, X, polynomial_series< BV > >::inv_mod_polynomial_series_rep< C, U, V, W >::expression(), flatten(), and solver_series_rep< C, V >::name_component().
syntactic mmx::flatten | ( | const algebraic_number_extension< C, Ball > & | x | ) | [inline] |
Definition at line 91 of file algebraic_number.hpp.
References flatten().
syntactic mmx::flatten | ( | const series< C, V > & | f | ) |
syntactic mmx::flatten | ( | const unknown< C, V > & | c | ) |
syntactic mmx::flatten | ( | const matrix< series< C, V >, U > & | m, |
const syntactic & | z | ||
) |
syntactic mmx::flatten | ( | const algebraic_extension< C > & | x | ) | [inline] |
Definition at line 71 of file algebraic_extension.hpp.
References flatten().
{ return syn ("Extension", flatten (x.mp)); }
syntactic mmx::flatten | ( | const modulus< polynomial< C, PV >, MV > & | c | ) | [inline] |
Definition at line 81 of file modular_polynomial.hpp.
References flatten(), and polynomial< C, V >::get_variable_name().
{ generic x= polynomial<C, PV>::get_variable_name (); generic a= gen (GEN_PRIME, x); if (x == "x") a= "a"; if (x == "y") a= "b"; if (x == "z") a= "c"; return flatten (*c, as_syntactic (a)); }
syntactic mmx::flatten | ( | const modular< modulus< polynomial< C, PV >, MW >, MV > & | c | ) | [inline] |
Definition at line 71 of file modular_polynomial.hpp.
References flatten(), and polynomial< C, V >::get_variable_name().
{ generic x= polynomial<C, PV>::get_variable_name (); generic a= gen (GEN_PRIME, x); if (x == "x") a= "a"; if (x == "y") a= "b"; if (x == "z") a= "c"; return flatten (*c, as_syntactic (a)); }
syntactic mmx::flatten | ( | const vector< series< C, V >, W > & | v, |
const syntactic & | z | ||
) |
syntactic mmx::flatten | ( | const permutation & | p | ) | [inline] |
syntactic mmx::flatten | ( | const polynomial< C, V > & | P, |
const syntactic & | v | ||
) |
syntactic mmx::flatten | ( | const polynomial< C, V > & | P | ) |
Definition at line 122 of file series_matrix.hpp.
{ return (series_rep<Matrix,V>*) new matrix_series_rep<C,V,U> (m); }
series<M,V> mmx::from_monoblock | ( | const series< modular< modulus< Lift_type(M)>, modular_global_series_carry_monoblock< M, s, BV > >, BV > & | f, |
const series_carry_monoblock_transformer< M, V, s, BV > & | blocker | ||
) |
Definition at line 185 of file series_carry_blocks.hpp.
Referenced by binary_scalar_recursive_monoblock_series_rep< Op, M, V, s, BV, t, X >::Increase_order(), truncate_mul_monoblock_series_rep< M, V, s, BV, t >::Increase_order(), binary_monoblock_series_rep< Op, M, V, s, BV, t >::Increase_order(), and implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::mul_series_rep< M, V >::mul_series_rep().
{
return blocker.from_monoblock (f);
}
Definition at line 128 of file series_vector.hpp.
Referenced by fixed_point_vector_series_rep< C >::initialize().
{ return (series_rep<Vector,V>*) new vector_series_rep<C,V,W> (v); }
algebraic_number mmx::gaussian | ( | const algebraic_real & | x, |
const algebraic_real & | y | ||
) | [inline] |
Definition at line 407 of file algebraic_number.hpp.
References times_i().
Referenced by GLUE_53(), and primitive_root_helper< C >::op().
{ return algebraic_number (x) + times_i (algebraic_number (y)); }
polynomial<C,V> mmx::gcd | ( | const polynomial< C, V > & | P1, |
const polynomial< C, V > & | P2, | ||
polynomial< C, V > & | U1, | ||
polynomial< C, V > & | U2 | ||
) | [inline] |
Definition at line 801 of file polynomial.hpp.
Referenced by root_modular_naive::degree_one_factorization(), div(), gcd_series_rep< C, V >::expression(), implementation< polynomial_gcd, V, polynomial_naive >::gcd(), implementation< polynomial_euclidean, V, polynomial_naive >::gcd(), implementation< polynomial_euclidean, V, polynomial_dicho< BV > >::gcd(), gcd(), GLUE_131(), GLUE_25(), GLUE_34(), GLUE_40(), GLUE_48(), invert(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::invert_mod(), implementation< polynomial_gcd, V, polynomial_naive >::invert_mod(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::lcm(), implementation< polynomial_gcd, V, polynomial_naive >::lcm(), root_modular_naive::linear_splitting(), operator*(), operator+(), operator-(), operator/(), operator==(), quotient< NT, DT >::quotient(), and square_free().
polynomial<C,V> mmx::gcd | ( | const polynomial< C, V > & | P1, |
const polynomial< C, V > & | P2, | ||
polynomial< C, V > & | U1 | ||
) | [inline] |
Definition at line 810 of file polynomial.hpp.
References CF(), gcd(), and Polynomial.
{ Polynomial U2(0); U1= promote (1, CF(P1)); return gcd (P1, P2, U1, U2); }
polynomial<C,V> mmx::gcd | ( | const polynomial< C, V > & | P1, |
const polynomial< C, V > & | P2 | ||
) | [inline] |
Definition at line 816 of file polynomial.hpp.
References gcd().
{ typedef implementation<polynomial_gcd,V> Pol; return Pol::gcd (P1, P2); }
static vector< polynomial<C,V> > mmx::gcd | ( | const polynomial< C, V > & | p, |
const vector< polynomial< C, V > > & | q | ||
) | [static] |
Definition at line 822 of file polynomial.hpp.
{ typedef implementation<polynomial_evaluate,V> Pol; return Pol::multi_gcd (p, q); }
Definition at line 768 of file series.hpp.
References Series_rep.
{ return (Series_rep*) new gcd_series_rep<C,V> (f, g); }
mmx::GCD_SUGAR | ( | template< typename NT, typename DT > | , |
quotient< NT, DT > | |||
) |
vector<generic> mmx::gen_fixed_point_vector_series | ( | const routine & | fun, |
const vector< C > & | c | ||
) | [inline] |
Definition at line 108 of file series_sugar.hpp.
References fixed_point_vector_series().
Referenced by gen_integrate_vector_series(), GLUE_146(), GLUE_48(), and GLUE_67().
{ return as<vector<generic> > (fixed_point_vector_series (fun, c)); }
vector<generic> mmx::gen_implicit_vector_series | ( | const routine & | fun, |
const vector< C > & | c | ||
) | [inline] |
Definition at line 201 of file series_sugar.hpp.
References implicit_vector_series().
Referenced by GLUE_150(), GLUE_52(), and GLUE_71().
{ return as<vector<generic> > (implicit_vector_series (fun, c)); }
vector<generic> mmx::gen_integrate_vector_series | ( | const routine & | fun, |
const vector< C > & | c | ||
) | [inline] |
Definition at line 113 of file series_sugar.hpp.
References gen_fixed_point_vector_series(), and integrate().
Referenced by GLUE_148(), GLUE_50(), and GLUE_69().
{ return gen_fixed_point_vector_series (integrate (fun), c); }
static vector<int> mmx::GLUE_1 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 72 of file glue_matrix_integer.cpp.
References arg_1.
{ return as<vector<int> > (arg_1); }
static row_tuple<mmx_modular(integer) > mmx::GLUE_1 | ( | const tuple< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 76 of file glue_matrix_modular_integer.cpp.
References arg_1, and as_vector().
static vector<rational> mmx::GLUE_1 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 74 of file glue_matrix_rational.cpp.
References arg_1.
{ return as<vector<rational> > (arg_1); }
static void mmx::GLUE_1 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 34 of file glue_p_adic_modular_integer.cpp.
References arg_2, and set_variable_name().
{ set_variable_name (arg_1, arg_2); }
static permutation mmx::GLUE_1 | ( | const tuple< int > & | arg_1 | ) | [static] |
Definition at line 14 of file glue_permutation.cpp.
References as_vector().
static polynomial<generic> mmx::GLUE_1 | ( | const tuple< generic > & | arg_1 | ) | [static] |
Definition at line 28 of file glue_polynomial_generic.cpp.
References as_vector(), and polynomial_reverse().
{ return polynomial_reverse (as_vector (arg_1)); }
static polynomial<integer> mmx::GLUE_1 | ( | const tuple< integer > & | arg_1 | ) | [static] |
Definition at line 30 of file glue_polynomial_integer.cpp.
References as_vector(), and polynomial_reverse().
{ return polynomial_reverse (as_vector (arg_1)); }
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_1 | ( | const tuple< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 57 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_1, as_vector(), and polynomial_reverse().
{ return polynomial_reverse (as_vector (arg_1)); }
static polynomial<rational> mmx::GLUE_1 | ( | const tuple< rational > & | arg_1 | ) | [static] |
Definition at line 34 of file glue_polynomial_rational.cpp.
References as_vector(), and polynomial_reverse().
{ return polynomial_reverse (as_vector (arg_1)); }
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_1 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
Definition at line 35 of file glue_quotient_polynomial_rational.cpp.
References simple_quotient.
{ return (simple_quotient(polynomial<rational> ) (arg_1, arg_2)); }
static generic mmx::GLUE_1 | ( | const integer & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
Definition at line 37 of file glue_series_integer.cpp.
static void mmx::GLUE_1 | ( | const series< rational > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 42 of file glue_series_rational.cpp.
References arg_2, and set_variable_name().
{ set_variable_name (arg_1, arg_2); }
static algebraic<generic> mmx::GLUE_1 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 28 of file glue_algebraic_generic.cpp.
References arg_1.
Referenced by glue_algebraic_generic(), glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
{ return algebraic<generic > (arg_1); }
static algebraic_real mmx::GLUE_1 | ( | const polynomial< rational > & | arg_1, |
const mmx_ball(mmx_floating, mmx_floating)& | arg_2 | ||
) | [static] |
Definition at line 41 of file glue_algebraic_number.cpp.
{ return algebraic_real (arg_1, arg_2); }
static generic mmx::GLUE_1 | ( | const int & | arg_1 | ) | [static] |
Definition at line 72 of file glue_matrix_generic.cpp.
{ return integer_construct (arg_1); }
static int mmx::GLUE_10 | ( | const matrix< integer > & | arg_1 | ) | [static] |
static int mmx::GLUE_10 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 119 of file glue_matrix_rational.cpp.
References cols().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_10 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1 | ) | [static] |
static permutation mmx::GLUE_10 | ( | const permutation & | arg_1, |
const permutation & | arg_2 | ||
) | [static] |
static polynomial<generic> mmx::GLUE_10 | ( | const polynomial< generic > & | arg_1, |
const polynomial< generic > & | arg_2 | ||
) | [static] |
Definition at line 73 of file glue_polynomial_generic.cpp.
References arg_2.
static polynomial<integer> mmx::GLUE_10 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 75 of file glue_polynomial_integer.cpp.
References square().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_10 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
static polynomial<rational> mmx::GLUE_10 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 79 of file glue_polynomial_rational.cpp.
References square().
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_10 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | ||
) | [static] |
Definition at line 80 of file glue_quotient_polynomial_rational.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_10 | ( | const series< generic > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
static integer mmx::GLUE_10 | ( | const series< integer > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static iterator<generic> mmx::GLUE_10 | ( | const series< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 93 of file glue_series_modular_integer.cpp.
References iterate().
static polynomial<rational> mmx::GLUE_10 | ( | const series< rational > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
static alias<vector<int> > mmx::GLUE_10 | ( | const alias< vector< int > > & | arg_1, |
const vector< int > & | arg_2 | ||
) | [static] |
Definition at line 59 of file glue_vector_int.cpp.
static alias<vector<integer> > mmx::GLUE_10 | ( | const alias< vector< integer > > & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
Definition at line 55 of file glue_vector_integer.cpp.
References arg_1.
static alias<vector<rational> > mmx::GLUE_10 | ( | const alias< vector< rational > > & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 57 of file glue_vector_rational.cpp.
References arg_1.
static algebraic<generic> mmx::GLUE_10 | ( | const algebraic< generic > & | arg_1, |
const algebraic< generic > & | arg_2 | ||
) | [static] |
Definition at line 73 of file glue_algebraic_generic.cpp.
References arg_2.
Referenced by glue_algebraic_generic(), glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static algebraic_real mmx::GLUE_10 | ( | const algebraic_real & | arg_1, |
const algebraic_real & | arg_2 | ||
) | [static] |
Definition at line 86 of file glue_algebraic_number.cpp.
References arg_2.
static alias<generic> mmx::GLUE_10 | ( | const alias< matrix< generic > > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_100 | ( | const matrix< complex< rational > > & | arg_1, |
const matrix< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 569 of file glue_matrix_rational.cpp.
References arg_1, arg_2, and krylov().
Referenced by glue_matrix_rational(), and glue_series_rational().
static void mmx::GLUE_100 | ( | const series< unknown< rational > > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 537 of file glue_series_rational.cpp.
References arg_1, arg_2, and set_variable_name().
{ set_variable_name (arg_1, arg_2); }
static complex<rational> mmx::GLUE_101 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 574 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), and glue_series_rational().
static void mmx::GLUE_101 | ( | const series< unknown< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 542 of file glue_series_rational.cpp.
References arg_1, and set_output_order().
{ set_output_order (arg_1, arg_2); }
static matrix<complex<rational> > mmx::GLUE_102 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 579 of file glue_matrix_rational.cpp.
References arg_1, and row_echelon().
Referenced by glue_matrix_rational(), and glue_series_rational().
{ return row_echelon (arg_1); }
static void mmx::GLUE_102 | ( | const series< unknown< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 547 of file glue_series_rational.cpp.
References arg_1, and set_cancel_order().
{ set_cancel_order (arg_1, arg_2); }
static matrix<complex<rational> > mmx::GLUE_103 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 584 of file glue_matrix_rational.cpp.
References arg_1, and column_echelon().
Referenced by glue_matrix_rational(), and glue_series_rational().
{ return column_echelon (arg_1); }
static void mmx::GLUE_103 | ( | const series< unknown< rational > > & | arg_1, |
const bool & | arg_2 | ||
) | [static] |
Definition at line 552 of file glue_series_rational.cpp.
References arg_1, and set_formula_output().
{ set_formula_output (arg_1, arg_2); }
static series<unknown<rational> > mmx::GLUE_104 | ( | const tuple< unknown< rational > > & | arg_1 | ) | [static] |
Definition at line 557 of file glue_series_rational.cpp.
References arg_1, and as_vector().
static matrix<complex<rational> > mmx::GLUE_104 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 589 of file glue_matrix_rational.cpp.
References arg_1, and row_reduced_echelon().
Referenced by glue_matrix_rational(), and glue_series_rational().
{ return row_reduced_echelon (arg_1); }
static matrix<complex<rational> > mmx::GLUE_105 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 594 of file glue_matrix_rational.cpp.
References arg_1, and column_reduced_echelon().
Referenced by glue_matrix_rational(), and glue_series_rational().
{ return column_reduced_echelon (arg_1); }
Definition at line 562 of file glue_series_rational.cpp.
References arg_1.
{ return series<unknown<rational> > (arg_1); }
static vector<generic> mmx::GLUE_106 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 599 of file glue_matrix_rational.cpp.
References arg_1, and wrap_row_reduced_echelon_with_transform().
Referenced by glue_matrix_rational(), and glue_series_rational().
{ return wrap_row_reduced_echelon_with_transform (arg_1); }
static iterator<generic> mmx::GLUE_106 | ( | const series< unknown< rational > > & | arg_1 | ) | [static] |
static vector<generic> mmx::GLUE_107 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 604 of file glue_matrix_rational.cpp.
References arg_1, and wrap_column_reduced_echelon_with_transform().
Referenced by glue_matrix_rational(), and glue_series_rational().
{ return wrap_column_reduced_echelon_with_transform (arg_1); }
static unknown<rational> mmx::GLUE_107 | ( | const series< unknown< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static vector<generic> mmx::GLUE_108 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 609 of file glue_matrix_rational.cpp.
References arg_1, and wrap_column_reduced_echelon_with_permutation().
Referenced by glue_matrix_rational(), and glue_series_rational().
{ return wrap_column_reduced_echelon_with_permutation (arg_1); }
static matrix<complex<rational> > mmx::GLUE_109 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 614 of file glue_matrix_rational.cpp.
References arg_1, and kernel().
Referenced by glue_matrix_rational(), and glue_series_rational().
static int mmx::GLUE_11 | ( | const matrix< integer > & | arg_1 | ) | [static] |
static rational mmx::GLUE_11 | ( | const matrix< rational > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
Definition at line 124 of file glue_matrix_rational.cpp.
References arg_1.
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_11 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1 | ) | [static] |
Definition at line 84 of file glue_p_adic_modular_integer.cpp.
References square().
static permutation mmx::GLUE_11 | ( | const permutation & | arg_1 | ) | [static] |
static polynomial<generic> mmx::GLUE_11 | ( | const polynomial< generic > & | arg_1, |
const polynomial< generic > & | arg_2 | ||
) | [static] |
Definition at line 78 of file glue_polynomial_generic.cpp.
References arg_2.
static polynomial<integer> mmx::GLUE_11 | ( | const polynomial< integer > & | arg_1, |
const polynomial< integer > & | arg_2 | ||
) | [static] |
Definition at line 80 of file glue_polynomial_integer.cpp.
References arg_2.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_11 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | ||
) | [static] |
static polynomial<rational> mmx::GLUE_11 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
Definition at line 84 of file glue_polynomial_rational.cpp.
References arg_2.
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_11 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | ||
) | [static] |
Definition at line 85 of file glue_quotient_polynomial_rational.cpp.
References arg_2.
static series<generic> mmx::GLUE_11 | ( | const series< generic > & | arg_1 | ) | [static] |
static polynomial<integer> mmx::GLUE_11 | ( | const series< integer > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
static series<rational> mmx::GLUE_11 | ( | const series< rational > & | arg_1 | ) | [static] |
static vector<int> mmx::GLUE_11 | ( | const int & | arg_1, |
const vector< int > & | arg_2 | ||
) | [static] |
Definition at line 64 of file glue_vector_int.cpp.
static vector<integer> mmx::GLUE_11 | ( | const integer & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
Definition at line 60 of file glue_vector_integer.cpp.
static vector<rational> mmx::GLUE_11 | ( | const rational & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 62 of file glue_vector_rational.cpp.
static algebraic_real mmx::GLUE_11 | ( | const algebraic_real & | arg_1, |
const algebraic_real & | arg_2 | ||
) | [static] |
Definition at line 91 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static matrix<generic> mmx::GLUE_11 | ( | const matrix< generic > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3, | ||
const int & | arg_4, | ||
const int & | arg_5 | ||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_110 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 619 of file glue_matrix_rational.cpp.
References arg_1, and image().
Referenced by glue_matrix_rational(), and glue_series_rational().
static int mmx::GLUE_111 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 624 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), and glue_series_rational().
static matrix<complex<rational> > mmx::GLUE_112 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 629 of file glue_matrix_rational.cpp.
References arg_1, and invert().
Referenced by glue_matrix_rational(), and glue_series_rational().
static series<unknown<rational> > mmx::GLUE_113 | ( | const unknown< rational > & | arg_1, |
const series< unknown< rational > > & | arg_2 | ||
) | [static] |
Definition at line 602 of file glue_series_rational.cpp.
References arg_2.
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_114 | ( | const series< unknown< rational > > & | arg_1, |
const unknown< rational > & | arg_2 | ||
) | [static] |
Definition at line 607 of file glue_series_rational.cpp.
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_115 | ( | const unknown< rational > & | arg_1, |
const series< unknown< rational > > & | arg_2 | ||
) | [static] |
Definition at line 612 of file glue_series_rational.cpp.
References arg_2.
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_116 | ( | const series< unknown< rational > > & | arg_1, |
const unknown< rational > & | arg_2 | ||
) | [static] |
Definition at line 617 of file glue_series_rational.cpp.
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_117 | ( | const unknown< rational > & | arg_1, |
const series< unknown< rational > > & | arg_2 | ||
) | [static] |
Definition at line 622 of file glue_series_rational.cpp.
References arg_2.
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_118 | ( | const series< unknown< rational > > & | arg_1, |
const unknown< rational > & | arg_2 | ||
) | [static] |
Definition at line 627 of file glue_series_rational.cpp.
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_119 | ( | const series< unknown< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 632 of file glue_series_rational.cpp.
References arg_1.
Referenced by glue_series_rational().
static integer mmx::GLUE_12 | ( | const matrix< integer > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
Definition at line 127 of file glue_matrix_integer.cpp.
References arg_1.
static alias<rational> mmx::GLUE_12 | ( | const alias< matrix< rational > > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
static integer mmx::GLUE_12 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 65 of file glue_vector_integer.cpp.
{ return car (arg_1); }
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_12 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
Definition at line 89 of file glue_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_12 | ( | const polynomial< generic > & | arg_1, |
const polynomial< generic > & | arg_2 | ||
) | [static] |
Definition at line 83 of file glue_polynomial_generic.cpp.
References arg_2.
static polynomial<integer> mmx::GLUE_12 | ( | const polynomial< integer > & | arg_1, |
const polynomial< integer > & | arg_2 | ||
) | [static] |
Definition at line 85 of file glue_polynomial_integer.cpp.
References arg_2.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_12 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | ||
) | [static] |
static rational mmx::GLUE_12 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 67 of file glue_vector_rational.cpp.
{ return car (arg_1); }
static polynomial<rational> mmx::GLUE_12 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
Definition at line 89 of file glue_polynomial_rational.cpp.
References arg_2.
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_12 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | ||
) | [static] |
Definition at line 90 of file glue_quotient_polynomial_rational.cpp.
References arg_2.
static series<generic> mmx::GLUE_12 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 92 of file glue_series_generic.cpp.
References square().
static series<integer> mmx::GLUE_12 | ( | const series< integer > & | arg_1 | ) | [static] |
static series<rational> mmx::GLUE_12 | ( | const series< rational > & | arg_1 | ) | [static] |
Definition at line 97 of file glue_series_rational.cpp.
References square().
static int mmx::GLUE_12 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 69 of file glue_vector_int.cpp.
{ return car (arg_1); }
static algebraic_real mmx::GLUE_12 | ( | const algebraic_real & | arg_1, |
const algebraic_real & | arg_2 | ||
) | [static] |
Definition at line 96 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<generic> mmx::GLUE_12 | ( | const matrix< generic > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static series<unknown<rational> > mmx::GLUE_120 | ( | const series< unknown< rational > > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
Definition at line 637 of file glue_series_rational.cpp.
References arg_1.
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_121 | ( | const series< unknown< rational > > & | arg_1 | ) | [static] |
Definition at line 642 of file glue_series_rational.cpp.
References arg_1, and derive().
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_122 | ( | const series< unknown< rational > > & | arg_1 | ) | [static] |
Definition at line 647 of file glue_series_rational.cpp.
References arg_1, and xderive().
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_123 | ( | const series< unknown< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 652 of file glue_series_rational.cpp.
References arg_1, and dilate().
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_124 | ( | const series< unknown< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 657 of file glue_series_rational.cpp.
References arg_1, and lshiftz().
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_125 | ( | const series< unknown< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 662 of file glue_series_rational.cpp.
References arg_1, and rshiftz().
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_126 | ( | const series< complex< rational > > & | arg_1, |
const series< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 667 of file glue_series_rational.cpp.
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_127 | ( | const complex< rational > & | arg_1, |
const series< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 672 of file glue_series_rational.cpp.
References arg_2.
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_128 | ( | const series< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
Definition at line 677 of file glue_series_rational.cpp.
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_129 | ( | const series< complex< rational > > & | arg_1, |
const series< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 682 of file glue_series_rational.cpp.
Referenced by glue_series_rational().
static alias<integer> mmx::GLUE_13 | ( | const alias< matrix< integer > > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
static matrix<rational> mmx::GLUE_13 | ( | const matrix< rational > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3, | ||
const int & | arg_4, | ||
const int & | arg_5 | ||
) | [static] |
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_13 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
Definition at line 94 of file glue_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_13 | ( | const polynomial< generic > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 88 of file glue_polynomial_generic.cpp.
static polynomial<integer> mmx::GLUE_13 | ( | const polynomial< integer > & | arg_1, |
const polynomial< integer > & | arg_2 | ||
) | [static] |
Definition at line 90 of file glue_polynomial_integer.cpp.
References arg_2.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_13 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | ||
) | [static] |
static polynomial<rational> mmx::GLUE_13 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
Definition at line 94 of file glue_polynomial_rational.cpp.
References arg_2.
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_13 | ( | const polynomial< rational > & | arg_1, |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | ||
) | [static] |
Definition at line 95 of file glue_quotient_polynomial_rational.cpp.
References arg_2.
static series<generic> mmx::GLUE_13 | ( | const series< generic > & | arg_1, |
const series< generic > & | arg_2 | ||
) | [static] |
static series<integer> mmx::GLUE_13 | ( | const series< integer > & | arg_1 | ) | [static] |
Definition at line 97 of file glue_series_integer.cpp.
References square().
static series<rational> mmx::GLUE_13 | ( | const series< rational > & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
Definition at line 102 of file glue_series_rational.cpp.
References arg_2.
static vector<int> mmx::GLUE_13 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 74 of file glue_vector_int.cpp.
{ return cdr (arg_1); }
static vector<integer> mmx::GLUE_13 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 70 of file glue_vector_integer.cpp.
{ return cdr (arg_1); }
static vector<rational> mmx::GLUE_13 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 72 of file glue_vector_rational.cpp.
{ return cdr (arg_1); }
static algebraic_real mmx::GLUE_13 | ( | const algebraic_real & | arg_1, |
const algebraic_real & | arg_2 | ||
) | [static] |
Definition at line 101 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<generic> mmx::GLUE_13 | ( | const matrix< generic > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static bool mmx::GLUE_130 | ( | const series< complex< rational > > & | arg_1, |
const series< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 687 of file glue_series_rational.cpp.
References arg_1, arg_2, and divides().
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_131 | ( | const series< complex< rational > > & | arg_1, |
const series< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 692 of file glue_series_rational.cpp.
References arg_1, arg_2, and gcd().
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_132 | ( | const series< complex< rational > > & | arg_1, |
const series< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 697 of file glue_series_rational.cpp.
References arg_1, arg_2, and lcm().
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_133 | ( | const series< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 702 of file glue_series_rational.cpp.
References arg_1, and integrate().
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_134 | ( | const series< complex< rational > > & | arg_1, |
const series< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 707 of file glue_series_rational.cpp.
References arg_1, arg_2, and compose().
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_135 | ( | const series< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 712 of file glue_series_rational.cpp.
References arg_1, and reverse().
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_136 | ( | const series< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
Definition at line 717 of file glue_series_rational.cpp.
References arg_1, and q_difference().
Referenced by glue_series_rational().
{ return q_difference (arg_1, arg_2); }
static series<complex<rational> > mmx::GLUE_137 | ( | const series< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
Definition at line 722 of file glue_series_rational.cpp.
References arg_1, and series_shift_default.
Referenced by glue_series_rational().
{ return series_shift_default (arg_1, arg_2); }
static series<complex<rational> > mmx::GLUE_138 | ( | const series< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
Definition at line 727 of file glue_series_rational.cpp.
References arg_1, and shift().
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_139 | ( | const series< integer > & | arg_1 | ) | [static] |
Definition at line 732 of file glue_series_rational.cpp.
References arg_1.
Referenced by glue_series_rational().
{ return as<series<complex<rational> > > (arg_1); }
static matrix<integer> mmx::GLUE_14 | ( | const matrix< integer > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3, | ||
const int & | arg_4, | ||
const int & | arg_5 | ||
) | [static] |
static vector<rational> mmx::GLUE_14 | ( | const matrix< rational > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_14 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
Definition at line 99 of file glue_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_14 | ( | const polynomial< generic > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static polynomial<integer> mmx::GLUE_14 | ( | const integer & | arg_1, |
const polynomial< integer > & | arg_2 | ||
) | [static] |
Definition at line 95 of file glue_polynomial_integer.cpp.
References arg_2.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_14 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | ||
) | [static] |
Definition at line 122 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<rational> mmx::GLUE_14 | ( | const rational & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
Definition at line 99 of file glue_polynomial_rational.cpp.
References arg_2.
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_14 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
Definition at line 100 of file glue_quotient_polynomial_rational.cpp.
References arg_2.
static series<generic> mmx::GLUE_14 | ( | const series< generic > & | arg_1, |
const series< generic > & | arg_2 | ||
) | [static] |
static series<integer> mmx::GLUE_14 | ( | const series< integer > & | arg_1, |
const series< integer > & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_14 | ( | const series< rational > & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
Definition at line 107 of file glue_series_rational.cpp.
References arg_2.
static bool mmx::GLUE_14 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 79 of file glue_vector_int.cpp.
{ return is_nil (arg_1); }
static bool mmx::GLUE_14 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 75 of file glue_vector_integer.cpp.
{ return is_nil (arg_1); }
static bool mmx::GLUE_14 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 77 of file glue_vector_rational.cpp.
{ return is_nil (arg_1); }
static algebraic_real mmx::GLUE_14 | ( | const rational & | arg_1, |
const algebraic_real & | arg_2 | ||
) | [static] |
Definition at line 106 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static matrix<generic> mmx::GLUE_14 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 137 of file glue_matrix_generic.cpp.
References transpose().
Definition at line 737 of file glue_series_rational.cpp.
References arg_1.
Referenced by glue_series_rational().
{ return as<series<unknown<rational> > > (arg_1); }
static series<complex<rational> > mmx::GLUE_141 | ( | const series< rational > & | arg_1 | ) | [static] |
Definition at line 742 of file glue_series_rational.cpp.
References arg_1.
Referenced by glue_series_rational().
{ return as<series<complex<rational> > > (arg_1); }
Definition at line 747 of file glue_series_rational.cpp.
References arg_1.
Referenced by glue_series_rational().
{ return as<series<unknown<rational> > > (arg_1); }
static series<generic> mmx::GLUE_143 | ( | const series< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 752 of file glue_series_rational.cpp.
References arg_1.
Referenced by glue_series_rational().
{ return as<series<generic> > (arg_1); }
static series<generic> mmx::GLUE_144 | ( | const series< unknown< rational > > & | arg_1 | ) | [static] |
Definition at line 757 of file glue_series_rational.cpp.
References arg_1.
Referenced by glue_series_rational().
{ return as<series<generic> > (arg_1); }
static series<complex<rational> > mmx::GLUE_145 | ( | const routine & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
Definition at line 762 of file glue_series_rational.cpp.
References fixed_point_series().
Referenced by glue_series_rational().
{ return fixed_point_series (arg_1, arg_2); }
static vector<generic> mmx::GLUE_146 | ( | const routine & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 767 of file glue_series_rational.cpp.
References arg_2, and gen_fixed_point_vector_series().
Referenced by glue_series_rational().
{ return gen_fixed_point_vector_series (arg_1, arg_2); }
static series<complex<rational> > mmx::GLUE_147 | ( | const routine & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
Definition at line 772 of file glue_series_rational.cpp.
References integrate_series().
Referenced by glue_series_rational().
{ return integrate_series (arg_1, arg_2); }
static vector<generic> mmx::GLUE_148 | ( | const routine & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 777 of file glue_series_rational.cpp.
References arg_2, and gen_integrate_vector_series().
Referenced by glue_series_rational().
{ return gen_integrate_vector_series (arg_1, arg_2); }
static series<complex<rational> > mmx::GLUE_149 | ( | const routine & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
Definition at line 782 of file glue_series_rational.cpp.
References implicit_series().
Referenced by glue_series_rational().
{ return implicit_series (arg_1, arg_2); }
static bool mmx::GLUE_15 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 84 of file glue_vector_int.cpp.
{ return is_atom (arg_1); }
static vector<integer> mmx::GLUE_15 | ( | const matrix< integer > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static vector<rational> mmx::GLUE_15 | ( | const matrix< rational > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_15 | ( | const mmx_modular(integer)& | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
Definition at line 104 of file glue_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_15 | ( | const polynomial< generic > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static polynomial<integer> mmx::GLUE_15 | ( | const polynomial< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
Definition at line 100 of file glue_polynomial_integer.cpp.
References arg_2.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_15 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
Definition at line 127 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<rational> mmx::GLUE_15 | ( | const polynomial< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 104 of file glue_polynomial_rational.cpp.
References arg_2.
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_15 | ( | const polynomial< rational > & | arg_1, |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | ||
) | [static] |
Definition at line 105 of file glue_quotient_polynomial_rational.cpp.
References arg_2.
static series<generic> mmx::GLUE_15 | ( | const series< generic > & | arg_1, |
const series< generic > & | arg_2 | ||
) | [static] |
static series<integer> mmx::GLUE_15 | ( | const series< integer > & | arg_1, |
const series< integer > & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_15 | ( | const series< rational > & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
Definition at line 112 of file glue_series_rational.cpp.
References arg_2.
static bool mmx::GLUE_15 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 80 of file glue_vector_integer.cpp.
{ return is_atom (arg_1); }
static bool mmx::GLUE_15 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 82 of file glue_vector_rational.cpp.
{ return is_atom (arg_1); }
static algebraic_real mmx::GLUE_15 | ( | const algebraic_real & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 111 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static matrix<generic> mmx::GLUE_15 | ( | const matrix< generic > & | arg_1, |
const matrix< generic > & | arg_2 | ||
) | [static] |
Definition at line 142 of file glue_matrix_generic.cpp.
References horizontal_join().
{ return horizontal_join (arg_1, arg_2); }
static vector<generic> mmx::GLUE_150 | ( | const routine & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 787 of file glue_series_rational.cpp.
References arg_2, and gen_implicit_vector_series().
Referenced by glue_series_rational().
{ return gen_implicit_vector_series (arg_1, arg_2); }
static series<rational> mmx::GLUE_16 | ( | const rational & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
Definition at line 117 of file glue_series_rational.cpp.
References arg_2.
static matrix<generic> mmx::GLUE_16 | ( | const matrix< generic > & | arg_1, |
const matrix< generic > & | arg_2 | ||
) | [static] |
Definition at line 147 of file glue_matrix_generic.cpp.
References vertical_join().
{ return vertical_join (arg_1, arg_2); }
static vector<integer> mmx::GLUE_16 | ( | const matrix< integer > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static matrix<rational> mmx::GLUE_16 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 149 of file glue_matrix_rational.cpp.
References transpose().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_16 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const mmx_modular(integer)& | arg_2 | ||
) | [static] |
Definition at line 109 of file glue_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_16 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 103 of file glue_polynomial_generic.cpp.
References derive().
static polynomial<integer> mmx::GLUE_16 | ( | const integer & | arg_1, |
const polynomial< integer > & | arg_2 | ||
) | [static] |
Definition at line 105 of file glue_polynomial_integer.cpp.
References arg_2.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_16 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | ||
) | [static] |
Definition at line 132 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<rational> mmx::GLUE_16 | ( | const rational & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
Definition at line 109 of file glue_polynomial_rational.cpp.
References arg_2.
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_16 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
Definition at line 110 of file glue_quotient_polynomial_rational.cpp.
References arg_2.
static series<generic> mmx::GLUE_16 | ( | const series< generic > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 112 of file glue_series_generic.cpp.
static vector<integer> mmx::GLUE_16 | ( | const vector< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
Definition at line 85 of file glue_vector_integer.cpp.
static series<integer> mmx::GLUE_16 | ( | const series< integer > & | arg_1, |
const series< integer > & | arg_2 | ||
) | [static] |
static vector<int> mmx::GLUE_16 | ( | const vector< int > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 89 of file glue_vector_int.cpp.
static algebraic_real mmx::GLUE_16 | ( | const rational & | arg_1, |
const algebraic_real & | arg_2 | ||
) | [static] |
Definition at line 116 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<rational> mmx::GLUE_16 | ( | const vector< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 87 of file glue_vector_rational.cpp.
static matrix<generic> mmx::GLUE_17 | ( | const generic & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
Definition at line 152 of file glue_matrix_generic.cpp.
References arg_1, and fill_matrix().
{ return fill_matrix (arg_1, arg_2, arg_3); }
static matrix<integer> mmx::GLUE_17 | ( | const matrix< integer > & | arg_1 | ) | [static] |
Definition at line 152 of file glue_matrix_integer.cpp.
References transpose().
static matrix<rational> mmx::GLUE_17 | ( | const matrix< rational > & | arg_1, |
const matrix< rational > & | arg_2 | ||
) | [static] |
Definition at line 154 of file glue_matrix_rational.cpp.
References horizontal_join().
{ return horizontal_join (arg_1, arg_2); }
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_17 | ( | const mmx_modular(integer)& | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
Definition at line 114 of file glue_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_17 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 108 of file glue_polynomial_generic.cpp.
References xderive().
static polynomial<integer> mmx::GLUE_17 | ( | const polynomial< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
Definition at line 110 of file glue_polynomial_integer.cpp.
References arg_2.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_17 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
Definition at line 137 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<rational> mmx::GLUE_17 | ( | const polynomial< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 114 of file glue_polynomial_rational.cpp.
References arg_2.
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_17 | ( | const polynomial< rational > & | arg_1, |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | ||
) | [static] |
Definition at line 115 of file glue_quotient_polynomial_rational.cpp.
References arg_2.
static int mmx::GLUE_17 | ( | const vector< int > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 94 of file glue_vector_int.cpp.
static series<generic> mmx::GLUE_17 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 117 of file glue_series_generic.cpp.
References derive().
static series<integer> mmx::GLUE_17 | ( | const integer & | arg_1, |
const series< integer > & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_17 | ( | const series< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 122 of file glue_series_rational.cpp.
References arg_2.
static int mmx::GLUE_17 | ( | const vector< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
Definition at line 90 of file glue_vector_integer.cpp.
static int mmx::GLUE_17 | ( | const vector< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 92 of file glue_vector_rational.cpp.
static algebraic_real mmx::GLUE_17 | ( | const algebraic_real & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 121 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static matrix<generic> mmx::GLUE_18 | ( | const generic & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 157 of file glue_matrix_generic.cpp.
References arg_1, and jordan_matrix().
{ return jordan_matrix (arg_1, arg_2); }
static series<integer> mmx::GLUE_18 | ( | const series< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
static matrix<integer> mmx::GLUE_18 | ( | const matrix< integer > & | arg_1, |
const matrix< integer > & | arg_2 | ||
) | [static] |
Definition at line 157 of file glue_matrix_integer.cpp.
References horizontal_join().
{ return horizontal_join (arg_1, arg_2); }
static matrix<rational> mmx::GLUE_18 | ( | const matrix< rational > & | arg_1, |
const matrix< rational > & | arg_2 | ||
) | [static] |
Definition at line 159 of file glue_matrix_rational.cpp.
References vertical_join().
{ return vertical_join (arg_1, arg_2); }
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_18 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const mmx_modular(integer)& | arg_2 | ||
) | [static] |
Definition at line 119 of file glue_p_adic_modular_integer.cpp.
References arg_2.
static generic mmx::GLUE_18 | ( | const polynomial< generic > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 113 of file glue_polynomial_generic.cpp.
References arg_2, and evaluate().
static polynomial<integer> mmx::GLUE_18 | ( | const integer & | arg_1, |
const polynomial< integer > & | arg_2 | ||
) | [static] |
Definition at line 115 of file glue_polynomial_integer.cpp.
References arg_2.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_18 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | ||
) | [static] |
Definition at line 142 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static bool mmx::GLUE_18 | ( | const vector< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 97 of file glue_vector_rational.cpp.
static polynomial<rational> mmx::GLUE_18 | ( | const rational & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
Definition at line 119 of file glue_polynomial_rational.cpp.
References arg_2.
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_18 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
Definition at line 120 of file glue_quotient_polynomial_rational.cpp.
References arg_2.
static series<generic> mmx::GLUE_18 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 122 of file glue_series_generic.cpp.
References xderive().
static series<rational> mmx::GLUE_18 | ( | const rational & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
Definition at line 127 of file glue_series_rational.cpp.
References arg_2.
static bool mmx::GLUE_18 | ( | const vector< int > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 99 of file glue_vector_int.cpp.
static bool mmx::GLUE_18 | ( | const vector< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
Definition at line 95 of file glue_vector_integer.cpp.
static algebraic_real mmx::GLUE_18 | ( | const rational & | arg_1, |
const algebraic_real & | arg_2 | ||
) | [static] |
Definition at line 126 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static matrix<generic> mmx::GLUE_19 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 162 of file glue_matrix_generic.cpp.
References toeplitz_matrix().
{ return toeplitz_matrix (arg_1); }
static matrix<integer> mmx::GLUE_19 | ( | const matrix< integer > & | arg_1, |
const matrix< integer > & | arg_2 | ||
) | [static] |
Definition at line 162 of file glue_matrix_integer.cpp.
References vertical_join().
{ return vertical_join (arg_1, arg_2); }
static row_tuple<complex<rational> > mmx::GLUE_19 | ( | const tuple< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 164 of file glue_matrix_rational.cpp.
References arg_1, and as_vector().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_19 | ( | const mmx_modular(integer)& | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
Definition at line 124 of file glue_p_adic_modular_integer.cpp.
References arg_2.
static vector<generic> mmx::GLUE_19 | ( | const polynomial< generic > & | arg_1, |
const vector< generic > & | arg_2 | ||
) | [static] |
Definition at line 118 of file glue_polynomial_generic.cpp.
References evaluate().
static polynomial<integer> mmx::GLUE_19 | ( | const polynomial< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
Definition at line 120 of file glue_polynomial_integer.cpp.
References arg_2.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_19 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
Definition at line 147 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<rational> mmx::GLUE_19 | ( | const polynomial< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 124 of file glue_polynomial_rational.cpp.
References arg_2.
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_19 | ( | const polynomial< rational > & | arg_1, |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | ||
) | [static] |
Definition at line 125 of file glue_quotient_polynomial_rational.cpp.
References arg_2.
static series<generic> mmx::GLUE_19 | ( | const series< generic > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static vector<int> mmx::GLUE_19 | ( | const vector< int > & | arg_1 | ) | [static] |
static series<integer> mmx::GLUE_19 | ( | const integer & | arg_1, |
const series< integer > & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_19 | ( | const series< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 132 of file glue_series_rational.cpp.
References arg_2.
static vector<integer> mmx::GLUE_19 | ( | const vector< integer > & | arg_1 | ) | [static] |
static algebraic_real mmx::GLUE_19 | ( | const algebraic_real & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 131 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<integer> mmx::GLUE_2 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 77 of file glue_matrix_integer.cpp.
References arg_1.
{ return as<vector<integer> > (arg_1); }
static matrix<mmx_modular(integer) > mmx::GLUE_2 | ( | const tuple< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 81 of file glue_matrix_modular_integer.cpp.
References arg_1, as_vector(), and matrix_new().
{ return matrix_new (as_vector (arg_1)); }
static void mmx::GLUE_2 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 39 of file glue_p_adic_modular_integer.cpp.
References set_output_order().
{ set_output_order (arg_1, arg_2); }
static void mmx::GLUE_2 | ( | const polynomial< mmx_modular(integer), polynomial_carry_variant_helper< mmx_modular(integer) >::PV > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 35 of file glue_p_expansion_modular_integer.cpp.
References arg_2, and set_variable_name().
{ set_variable_name (arg_1, arg_2); }
static permutation mmx::GLUE_2 | ( | const int & | arg_1 | ) | [static] |
Definition at line 19 of file glue_permutation.cpp.
{ return permutation (arg_1); }
static polynomial<integer> mmx::GLUE_2 | ( | const tuple< integer > & | arg_1 | ) | [static] |
Definition at line 35 of file glue_polynomial_integer.cpp.
References as_vector().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_2 | ( | const tuple< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 62 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_1, and as_vector().
static polynomial<rational> mmx::GLUE_2 | ( | const tuple< rational > & | arg_1 | ) | [static] |
Definition at line 39 of file glue_polynomial_rational.cpp.
References as_vector().
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_2 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 40 of file glue_quotient_polynomial_rational.cpp.
References simple_quotient.
{ return (simple_quotient(polynomial<rational> ) (arg_1)); }
static void mmx::GLUE_2 | ( | const series< generic > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 42 of file glue_series_generic.cpp.
References arg_2, and set_variable_name().
{ set_variable_name (arg_1, arg_2); }
static void mmx::GLUE_2 | ( | const series< integer > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 42 of file glue_series_integer.cpp.
References arg_2, and set_variable_name().
{ set_variable_name (arg_1, arg_2); }
static series<generic> mmx::GLUE_2 | ( | const series< generic > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
Definition at line 53 of file glue_series_modular_integer.cpp.
static void mmx::GLUE_2 | ( | const series< rational > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 47 of file glue_series_rational.cpp.
References set_output_order().
{ set_output_order (arg_1, arg_2); }
static vector<int> mmx::GLUE_2 | ( | const tuple< int > & | arg_1 | ) | [static] |
Definition at line 19 of file glue_vector_int.cpp.
References as_vector().
static algebraic<generic> mmx::GLUE_2 | ( | const polynomial< generic > & | arg_1, |
const polynomial< generic > & | arg_2 | ||
) | [static] |
Definition at line 33 of file glue_algebraic_generic.cpp.
Referenced by glue_algebraic_generic(), glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static algebraic_real mmx::GLUE_2 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2, | ||
const mmx_ball(mmx_floating, mmx_floating)& | arg_3 | ||
) | [static] |
Definition at line 46 of file glue_algebraic_number.cpp.
{ return algebraic_real (arg_1, arg_2, arg_3); }
static row_tuple<generic> mmx::GLUE_2 | ( | const tuple< generic > & | arg_1 | ) | [static] |
Definition at line 77 of file glue_matrix_generic.cpp.
References as_vector().
static matrix<generic> mmx::GLUE_20 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 167 of file glue_matrix_generic.cpp.
References hankel_matrix().
{ return hankel_matrix (arg_1); }
static matrix<integer> mmx::GLUE_20 | ( | const integer & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
Definition at line 167 of file glue_matrix_integer.cpp.
References fill_matrix().
{ return fill_matrix (arg_1, arg_2, arg_3); }
static matrix<complex<rational> > mmx::GLUE_20 | ( | const tuple< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 169 of file glue_matrix_rational.cpp.
References arg_1, as_vector(), and matrix_new().
{ return matrix_new (as_vector (arg_1)); }
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_20 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const mmx_modular(integer)& | arg_2 | ||
) | [static] |
Definition at line 129 of file glue_p_adic_modular_integer.cpp.
References arg_2.
static generic mmx::GLUE_20 | ( | const polynomial< generic > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 123 of file glue_polynomial_generic.cpp.
References arg_2, and evaluate().
static polynomial<integer> mmx::GLUE_20 | ( | const polynomial< integer > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 125 of file glue_polynomial_integer.cpp.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_20 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 152 of file glue_polynomial_p_adic_modular_integer.cpp.
static polynomial<rational> mmx::GLUE_20 | ( | const polynomial< rational > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 129 of file glue_polynomial_rational.cpp.
static series<generic> mmx::GLUE_20 | ( | const series< generic > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static series<integer> mmx::GLUE_20 | ( | const series< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_20 | ( | const rational & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
Definition at line 137 of file glue_series_rational.cpp.
References arg_2.
static vector<integer> mmx::GLUE_20 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 105 of file glue_vector_integer.cpp.
References square().
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_20 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
Definition at line 130 of file glue_quotient_polynomial_rational.cpp.
References arg_2.
static vector<int> mmx::GLUE_20 | ( | const vector< int > & | arg_1 | ) | [static] |
static algebraic_real mmx::GLUE_20 | ( | const rational & | arg_1, |
const algebraic_real & | arg_2 | ||
) | [static] |
Definition at line 136 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static matrix<generic> mmx::GLUE_21 | ( | const vector< generic > & | arg_1, |
const vector< generic > & | arg_2 | ||
) | [static] |
Definition at line 172 of file glue_matrix_generic.cpp.
References tensor_matrix().
{ return tensor_matrix (arg_1, arg_2); }
static matrix<integer> mmx::GLUE_21 | ( | const integer & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 172 of file glue_matrix_integer.cpp.
References jordan_matrix().
{ return jordan_matrix (arg_1, arg_2); }
static matrix<complex<rational> > mmx::GLUE_21 | ( | const tuple< row_tuple< complex< rational > > > & | arg_1 | ) | [static] |
Definition at line 174 of file glue_matrix_rational.cpp.
References arg_1, as_vector(), and matrix_new().
{ return matrix_new (as_vector (arg_1)); }
static iterator<generic> mmx::GLUE_21 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
static series<generic> mmx::GLUE_21 | ( | const series< generic > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_21 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 134 of file glue_p_adic_modular_integer.cpp.
static vector<generic> mmx::GLUE_21 | ( | const polynomial< generic > & | arg_1, |
const vector< generic > & | arg_2 | ||
) | [static] |
Definition at line 128 of file glue_polynomial_generic.cpp.
References evaluate().
static polynomial<integer> mmx::GLUE_21 | ( | const polynomial< integer > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_21 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static polynomial<rational> mmx::GLUE_21 | ( | const polynomial< rational > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static series<integer> mmx::GLUE_21 | ( | const integer & | arg_1, |
const series< integer > & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_21 | ( | const series< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 142 of file glue_series_rational.cpp.
References arg_2.
static vector<int> mmx::GLUE_21 | ( | const vector< int > & | arg_1, |
const vector< int > & | arg_2 | ||
) | [static] |
static vector<integer> mmx::GLUE_21 | ( | const vector< integer > & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
static algebraic_real mmx::GLUE_21 | ( | const algebraic_real & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 141 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static matrix<generic> mmx::GLUE_22 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 177 of file glue_matrix_generic.cpp.
References vandermonde().
{ return vandermonde (arg_1); }
static matrix<integer> mmx::GLUE_22 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 177 of file glue_matrix_integer.cpp.
References toeplitz_matrix().
{ return toeplitz_matrix (arg_1); }
static matrix<complex<rational> > mmx::GLUE_22 | ( | const tuple< row_tuple< complex< rational > > > & | arg_1 | ) | [static] |
Definition at line 179 of file glue_matrix_rational.cpp.
References arg_1, as_vector(), and matrix_new().
{ return matrix_new (as_vector (arg_1)); }
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_22 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
Definition at line 139 of file glue_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_22 | ( | const polynomial< generic > & | arg_1, |
const polynomial< generic > & | arg_2 | ||
) | [static] |
Definition at line 133 of file glue_polynomial_generic.cpp.
References arg_2.
static polynomial<integer> mmx::GLUE_22 | ( | const polynomial< integer > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_22 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static series<integer> mmx::GLUE_22 | ( | const series< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
static polynomial<rational> mmx::GLUE_22 | ( | const polynomial< rational > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static series<generic> mmx::GLUE_22 | ( | const series< generic > & | arg_1, |
const series< generic > & | arg_2 | ||
) | [static] |
static int mmx::GLUE_22 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
static series<rational> mmx::GLUE_22 | ( | const series< rational > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 147 of file glue_series_rational.cpp.
static vector<int> mmx::GLUE_22 | ( | const vector< int > & | arg_1, |
const vector< int > & | arg_2 | ||
) | [static] |
static vector<integer> mmx::GLUE_22 | ( | const vector< integer > & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
static algebraic_real mmx::GLUE_22 | ( | const algebraic_real & | arg_1 | ) | [static] |
Definition at line 146 of file glue_algebraic_number.cpp.
References sqrt().
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static matrix<generic> mmx::GLUE_23 | ( | const matrix< generic > & | arg_1 | ) | [static] |
static matrix<integer> mmx::GLUE_23 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 182 of file glue_matrix_integer.cpp.
References hankel_matrix().
{ return hankel_matrix (arg_1); }
static int mmx::GLUE_23 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_23 | ( | const mmx_modular(integer)& | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
Definition at line 144 of file glue_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_23 | ( | const polynomial< generic > & | arg_1, |
const polynomial< generic > & | arg_2 | ||
) | [static] |
static polynomial<integer> mmx::GLUE_23 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 140 of file glue_polynomial_integer.cpp.
References derive().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_23 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 167 of file glue_polynomial_p_adic_modular_integer.cpp.
References derive().
static vector<int> mmx::GLUE_23 | ( | const vector< int > & | arg_1, |
const vector< int > & | arg_2 | ||
) | [static] |
static polynomial<rational> mmx::GLUE_23 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 144 of file glue_polynomial_rational.cpp.
References derive().
static series<generic> mmx::GLUE_23 | ( | const series< generic > & | arg_1, |
const series< generic > & | arg_2 | ||
) | [static] |
static series<integer> mmx::GLUE_23 | ( | const series< integer > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 147 of file glue_series_integer.cpp.
static series<rational> mmx::GLUE_23 | ( | const series< rational > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
Definition at line 152 of file glue_series_rational.cpp.
static vector<integer> mmx::GLUE_23 | ( | const vector< integer > & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
static complex<rational> mmx::GLUE_23 | ( | const vector< complex< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static algebraic_real mmx::GLUE_23 | ( | const algebraic_real & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 151 of file glue_algebraic_number.cpp.
References root().
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static matrix<generic> mmx::GLUE_24 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 187 of file glue_matrix_generic.cpp.
References square().
static matrix<integer> mmx::GLUE_24 | ( | const vector< integer > & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
Definition at line 187 of file glue_matrix_integer.cpp.
References tensor_matrix().
{ return tensor_matrix (arg_1, arg_2); }
static int mmx::GLUE_24 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
static series<rational> mmx::GLUE_24 | ( | const series< rational > & | arg_1 | ) | [static] |
Definition at line 157 of file glue_series_rational.cpp.
References derive().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_24 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const mmx_modular(integer)& | arg_2 | ||
) | [static] |
Definition at line 149 of file glue_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_24 | ( | const polynomial< generic > & | arg_1, |
const polynomial< generic > & | arg_2 | ||
) | [static] |
static polynomial<integer> mmx::GLUE_24 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 145 of file glue_polynomial_integer.cpp.
References xderive().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_24 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 172 of file glue_polynomial_p_adic_modular_integer.cpp.
References xderive().
static polynomial<rational> mmx::GLUE_24 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 149 of file glue_polynomial_rational.cpp.
References xderive().
static bool mmx::GLUE_24 | ( | const series< generic > & | arg_1, |
const series< generic > & | arg_2 | ||
) | [static] |
static series<integer> mmx::GLUE_24 | ( | const series< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
Definition at line 152 of file glue_series_integer.cpp.
static vector<integer> mmx::GLUE_24 | ( | const integer & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
static vector<int> mmx::GLUE_24 | ( | const int & | arg_1, |
const vector< int > & | arg_2 | ||
) | [static] |
static alias<complex<rational> > mmx::GLUE_24 | ( | const alias< vector< complex< rational > > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static int mmx::GLUE_24 | ( | const algebraic_real & | arg_1 | ) | [static] |
Definition at line 156 of file glue_algebraic_number.cpp.
References sign().
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static matrix<generic> mmx::GLUE_25 | ( | const matrix< generic > & | arg_1, |
const matrix< generic > & | arg_2 | ||
) | [static] |
static matrix<integer> mmx::GLUE_25 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 192 of file glue_matrix_integer.cpp.
References vandermonde().
{ return vandermonde (arg_1); }
static int mmx::GLUE_25 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_25 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
static bool mmx::GLUE_25 | ( | const polynomial< generic > & | arg_1, |
const polynomial< generic > & | arg_2 | ||
) | [static] |
static integer mmx::GLUE_25 | ( | const polynomial< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
Definition at line 150 of file glue_polynomial_integer.cpp.
References evaluate().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_25 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
Definition at line 177 of file glue_polynomial_p_adic_modular_integer.cpp.
References evaluate().
static rational mmx::GLUE_25 | ( | const polynomial< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 154 of file glue_polynomial_rational.cpp.
References evaluate().
static series<integer> mmx::GLUE_25 | ( | const series< integer > & | arg_1 | ) | [static] |
Definition at line 157 of file glue_series_integer.cpp.
References derive().
static series<generic> mmx::GLUE_25 | ( | const series< generic > & | arg_1, |
const series< generic > & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_25 | ( | const series< rational > & | arg_1 | ) | [static] |
Definition at line 162 of file glue_series_rational.cpp.
References xderive().
static vector<int> mmx::GLUE_25 | ( | const vector< int > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static vector<integer> mmx::GLUE_25 | ( | const vector< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
static vector<complex<rational> > mmx::GLUE_25 | ( | const vector< complex< rational > > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
static bool mmx::GLUE_25 | ( | const algebraic_real & | arg_1, |
const algebraic_real & | arg_2 | ||
) | [static] |
Definition at line 161 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static matrix<generic> mmx::GLUE_26 | ( | const matrix< generic > & | arg_1, |
const matrix< generic > & | arg_2 | ||
) | [static] |
static matrix<integer> mmx::GLUE_26 | ( | const matrix< integer > & | arg_1 | ) | [static] |
static complex<rational> mmx::GLUE_26 | ( | const matrix< complex< rational > > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
Definition at line 199 of file glue_matrix_rational.cpp.
References arg_1.
static vector<integer> mmx::GLUE_26 | ( | const integer & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_26 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_26 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
Definition at line 182 of file glue_polynomial_p_adic_modular_integer.cpp.
References evaluate().
static series<integer> mmx::GLUE_26 | ( | const series< integer > & | arg_1 | ) | [static] |
Definition at line 162 of file glue_series_integer.cpp.
References xderive().
static polynomial<generic> mmx::GLUE_26 | ( | const polynomial< generic > & | arg_1, |
const polynomial< generic > & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
Definition at line 153 of file glue_polynomial_generic.cpp.
References subresultant().
{ return subresultant (arg_1, arg_2, arg_3); }
static vector<integer> mmx::GLUE_26 | ( | const polynomial< integer > & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
Definition at line 155 of file glue_polynomial_integer.cpp.
References evaluate().
static vector<rational> mmx::GLUE_26 | ( | const polynomial< rational > & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 159 of file glue_polynomial_rational.cpp.
References evaluate().
static vector<complex<rational> > mmx::GLUE_26 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
static series<generic> mmx::GLUE_26 | ( | const series< generic > & | arg_1, |
const series< generic > & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_26 | ( | const series< rational > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static vector<int> mmx::GLUE_26 | ( | const int & | arg_1, |
const vector< int > & | arg_2 | ||
) | [static] |
static bool mmx::GLUE_26 | ( | const algebraic_real & | arg_1, |
const algebraic_real & | arg_2 | ||
) | [static] |
Definition at line 166 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static matrix<generic> mmx::GLUE_27 | ( | const matrix< generic > & | arg_1, |
const matrix< generic > & | arg_2 | ||
) | [static] |
static matrix<integer> mmx::GLUE_27 | ( | const matrix< integer > & | arg_1 | ) | [static] |
Definition at line 202 of file glue_matrix_integer.cpp.
References square().
static series<generic> mmx::GLUE_27 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 167 of file glue_series_generic.cpp.
References integrate().
static alias<complex<rational> > mmx::GLUE_27 | ( | const alias< matrix< complex< rational > > > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
static vector<int> mmx::GLUE_27 | ( | const vector< int > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_27 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 164 of file glue_p_adic_modular_integer.cpp.
References separable_root().
{ return separable_root (arg_1, arg_2); }
static vector<generic> mmx::GLUE_27 | ( | const polynomial< generic > & | arg_1, |
const polynomial< generic > & | arg_2 | ||
) | [static] |
Definition at line 158 of file glue_polynomial_generic.cpp.
References wrap_subresultants().
{ return wrap_subresultants (arg_1, arg_2); }
static integer mmx::GLUE_27 | ( | const polynomial< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
Definition at line 160 of file glue_polynomial_integer.cpp.
References evaluate().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_27 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
Definition at line 187 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static rational mmx::GLUE_27 | ( | const polynomial< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 164 of file glue_polynomial_rational.cpp.
References evaluate().
static series<integer> mmx::GLUE_27 | ( | const series< integer > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_27 | ( | const series< rational > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static vector<integer> mmx::GLUE_27 | ( | const vector< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
static vector<complex<rational> > mmx::GLUE_27 | ( | const vector< complex< rational > > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
static bool mmx::GLUE_27 | ( | const algebraic_real & | arg_1, |
const algebraic_real & | arg_2 | ||
) | [static] |
Definition at line 171 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<integer> mmx::GLUE_28 | ( | const polynomial< integer > & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
Definition at line 165 of file glue_polynomial_integer.cpp.
References evaluate().
static series<rational> mmx::GLUE_28 | ( | const series< rational > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static vector<generic> mmx::GLUE_28 | ( | const matrix< generic > & | arg_1, |
const vector< generic > & | arg_2 | ||
) | [static] |
static matrix<integer> mmx::GLUE_28 | ( | const matrix< integer > & | arg_1, |
const matrix< integer > & | arg_2 | ||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_28 | ( | const matrix< complex< rational > > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3, | ||
const int & | arg_4, | ||
const int & | arg_5 | ||
) | [static] |
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_28 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1 | ) | [static] |
Definition at line 169 of file glue_p_adic_modular_integer.cpp.
References pth_root().
static generic mmx::GLUE_28 | ( | const polynomial< generic > & | arg_1, |
const polynomial< generic > & | arg_2 | ||
) | [static] |
Definition at line 163 of file glue_polynomial_generic.cpp.
References resultant().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_28 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | ||
) | [static] |
Definition at line 192 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static vector<rational> mmx::GLUE_28 | ( | const polynomial< rational > & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 169 of file glue_polynomial_rational.cpp.
References evaluate().
static series<generic> mmx::GLUE_28 | ( | const series< generic > & | arg_1, |
const series< generic > & | arg_2 | ||
) | [static] |
static series<integer> mmx::GLUE_28 | ( | const series< integer > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static vector<int> mmx::GLUE_28 | ( | const int & | arg_1, |
const vector< int > & | arg_2 | ||
) | [static] |
static alias<vector<complex<rational> > > mmx::GLUE_28 | ( | const alias< vector< complex< rational > > > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
static vector<integer> mmx::GLUE_28 | ( | const integer & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
static bool mmx::GLUE_28 | ( | const algebraic_real & | arg_1, |
const algebraic_real & | arg_2 | ||
) | [static] |
Definition at line 176 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<generic> mmx::GLUE_29 | ( | const vector< generic > & | arg_1, |
const matrix< generic > & | arg_2 | ||
) | [static] |
static matrix<integer> mmx::GLUE_29 | ( | const matrix< integer > & | arg_1, |
const matrix< integer > & | arg_2 | ||
) | [static] |
static vector<complex<rational> > mmx::GLUE_29 | ( | const matrix< complex< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static vector<int> mmx::GLUE_29 | ( | const vector< int > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static generic mmx::GLUE_29 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 168 of file glue_polynomial_generic.cpp.
References discriminant().
{ return discriminant (arg_1); }
static polynomial<generic> mmx::GLUE_29 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 170 of file glue_polynomial_integer.cpp.
References arg_1.
{ return as<polynomial<generic> > (arg_1); }
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_29 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | ||
) | [static] |
static polynomial<rational> mmx::GLUE_29 | ( | const polynomial< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 174 of file glue_polynomial_rational.cpp.
References arg_2.
static series<generic> mmx::GLUE_29 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 177 of file glue_series_generic.cpp.
References reverse().
static series<integer> mmx::GLUE_29 | ( | const series< integer > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_29 | ( | const series< rational > & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
Definition at line 182 of file glue_series_rational.cpp.
References arg_2.
static vector<integer> mmx::GLUE_29 | ( | const vector< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
static vector<complex<rational> > mmx::GLUE_29 | ( | const complex< rational > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 152 of file glue_vector_rational.cpp.
References arg_2.
static algebraic_number mmx::GLUE_29 | ( | const polynomial< rational > & | arg_1, |
const mmx_ball(mmx_floating, complex< mmx_floating >)& | arg_2 | ||
) | [static] |
Definition at line 181 of file glue_algebraic_number.cpp.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
{ return algebraic_number (arg_1, arg_2); }
static generic mmx::GLUE_3 | ( | const integer & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
Definition at line 82 of file glue_matrix_integer.cpp.
static matrix<mmx_modular(integer) > mmx::GLUE_3 | ( | const tuple< row_tuple< mmx_modular(integer) > > & | arg_1 | ) | [static] |
Definition at line 86 of file glue_matrix_modular_integer.cpp.
References arg_1, as_vector(), and matrix_new().
{ return matrix_new (as_vector (arg_1)); }
static matrix<rational> mmx::GLUE_3 | ( | const int & | arg_1 | ) | [static] |
Definition at line 84 of file glue_matrix_rational.cpp.
References hilbert_matrix_rational.
{ return hilbert_matrix_rational (arg_1); }
static void mmx::GLUE_3 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 44 of file glue_p_adic_modular_integer.cpp.
References set_cancel_order().
{ set_cancel_order (arg_1, arg_2); }
static iterator<generic> mmx::GLUE_3 | ( | const polynomial< mmx_modular(integer), polynomial_carry_variant_helper< mmx_modular(integer) >::PV > & | arg_1 | ) | [static] |
Definition at line 40 of file glue_p_expansion_modular_integer.cpp.
References iterate().
static permutation mmx::GLUE_3 | ( | const int & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
Definition at line 24 of file glue_permutation.cpp.
References transposition().
{ return transposition (arg_1, arg_2, arg_3); }
static void mmx::GLUE_3 | ( | const polynomial< generic > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 38 of file glue_polynomial_generic.cpp.
References arg_2, and set_variable_name().
{ set_variable_name (arg_1, arg_2); }
static void mmx::GLUE_3 | ( | const polynomial< integer > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 40 of file glue_polynomial_integer.cpp.
References arg_2, and set_variable_name().
{ set_variable_name (arg_1, arg_2); }
static void mmx::GLUE_3 | ( | const polynomial< mmx_modular(integer) > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 49 of file glue_polynomial_modular_integer.cpp.
References arg_1, arg_2, and set_variable_name().
{ set_variable_name (arg_1, arg_2); }
static void mmx::GLUE_3 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 67 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_1, arg_2, and set_variable_name().
{ set_variable_name (arg_1, arg_2); }
static void mmx::GLUE_3 | ( | const polynomial< rational > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 44 of file glue_polynomial_rational.cpp.
References arg_2, and set_variable_name().
{ set_variable_name (arg_1, arg_2); }
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_3 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
Definition at line 45 of file glue_quotient_polynomial_rational.cpp.
References simple_quotient.
{ return (simple_quotient(polynomial<rational> ) (arg_1, arg_2)); }
static void mmx::GLUE_3 | ( | const series< generic > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 47 of file glue_series_generic.cpp.
References set_output_order().
{ set_output_order (arg_1, arg_2); }
static void mmx::GLUE_3 | ( | const series< integer > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 47 of file glue_series_integer.cpp.
References set_output_order().
{ set_output_order (arg_1, arg_2); }
static void mmx::GLUE_3 | ( | const series< mmx_modular(integer) > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 58 of file glue_series_modular_integer.cpp.
References set_variable_name().
{ set_variable_name (arg_1, arg_2); }
static void mmx::GLUE_3 | ( | const series< rational > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 52 of file glue_series_rational.cpp.
References set_cancel_order().
{ set_cancel_order (arg_1, arg_2); }
static iterator<generic> mmx::GLUE_3 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 20 of file glue_vector_integer.cpp.
References iterate().
static iterator<generic> mmx::GLUE_3 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 22 of file glue_vector_rational.cpp.
References iterate().
static iterator<generic> mmx::GLUE_3 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 24 of file glue_vector_int.cpp.
References iterate().
static polynomial<generic> mmx::GLUE_3 | ( | const algebraic< generic > & | arg_1 | ) | [static] |
Definition at line 38 of file glue_algebraic_generic.cpp.
References annihilator().
Referenced by glue_algebraic_generic(), glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
{ return annihilator (arg_1); }
static algebraic_real mmx::GLUE_3 | ( | const rational & | arg_1 | ) | [static] |
Definition at line 51 of file glue_algebraic_number.cpp.
{ return algebraic_real (arg_1); }
static matrix<generic> mmx::GLUE_3 | ( | const tuple< generic > & | arg_1 | ) | [static] |
Definition at line 82 of file glue_matrix_generic.cpp.
References as_vector(), and matrix_new().
{ return matrix_new (as_vector (arg_1)); }
static matrix<generic> mmx::GLUE_30 | ( | const matrix< generic > & | arg_1, |
const matrix< generic > & | arg_2 | ||
) | [static] |
static matrix<integer> mmx::GLUE_30 | ( | const matrix< integer > & | arg_1, |
const matrix< integer > & | arg_2 | ||
) | [static] |
static vector<complex<rational> > mmx::GLUE_30 | ( | const matrix< complex< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static complex<rational> mmx::GLUE_30 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
static polynomial<generic> mmx::GLUE_30 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 173 of file glue_polynomial_generic.cpp.
References integrate().
static polynomial<rational> mmx::GLUE_30 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
Definition at line 179 of file glue_polynomial_rational.cpp.
References arg_2.
static series<generic> mmx::GLUE_30 | ( | const series< generic > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 182 of file glue_series_generic.cpp.
References arg_2, and q_difference().
{ return q_difference (arg_1, arg_2); }
static series<rational> mmx::GLUE_30 | ( | const rational & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
Definition at line 187 of file glue_series_rational.cpp.
References arg_2.
static int mmx::GLUE_30 | ( | const vector< int > & | arg_1, |
const vector< int > & | arg_2 | ||
) | [static] |
Definition at line 159 of file glue_vector_int.cpp.
static series<generic> mmx::GLUE_30 | ( | const series< generic > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
Definition at line 182 of file glue_series_integer.cpp.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_30 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | ||
) | [static] |
static algebraic_number mmx::GLUE_30 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2, | ||
const mmx_ball(mmx_floating, complex< mmx_floating >)& | arg_3 | ||
) | [static] |
Definition at line 186 of file glue_algebraic_number.cpp.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
{ return algebraic_number (arg_1, arg_2, arg_3); }
static integer mmx::GLUE_30 | ( | const vector< integer > & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
Definition at line 155 of file glue_vector_integer.cpp.
static generic mmx::GLUE_31 | ( | const matrix< generic > & | arg_1 | ) | [static] |
static polynomial<rational> mmx::GLUE_31 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
static matrix<integer> mmx::GLUE_31 | ( | const integer & | arg_1, |
const matrix< integer > & | arg_2 | ||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_31 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 224 of file glue_matrix_rational.cpp.
References arg_1, and transpose().
static polynomial<generic> mmx::GLUE_31 | ( | const polynomial< generic > & | arg_1, |
const polynomial< generic > & | arg_2 | ||
) | [static] |
static bool mmx::GLUE_31 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | ||
) | [static] |
static series<generic> mmx::GLUE_31 | ( | const series< generic > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 187 of file glue_series_generic.cpp.
References arg_2, and series_shift_default.
{ return series_shift_default (arg_1, arg_2); }
static bool mmx::GLUE_31 | ( | const series< integer > & | arg_1, |
const series< integer > & | arg_2 | ||
) | [static] |
Definition at line 187 of file glue_series_integer.cpp.
References arg_2.
static series<rational> mmx::GLUE_31 | ( | const series< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 192 of file glue_series_rational.cpp.
References arg_2.
static int mmx::GLUE_31 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 164 of file glue_vector_int.cpp.
References big_mul().
static vector<complex<rational> > mmx::GLUE_31 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
static algebraic_number mmx::GLUE_31 | ( | const rational & | arg_1 | ) | [static] |
Definition at line 191 of file glue_algebraic_number.cpp.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
{ return algebraic_number (arg_1); }
static integer mmx::GLUE_31 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 160 of file glue_vector_integer.cpp.
References big_mul().
static matrix<generic> mmx::GLUE_32 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 227 of file glue_matrix_generic.cpp.
References row_echelon().
{ return row_echelon (arg_1); }
static matrix<integer> mmx::GLUE_32 | ( | const matrix< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_32 | ( | const series< rational > & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
Definition at line 197 of file glue_series_rational.cpp.
References arg_2.
static matrix<complex<rational> > mmx::GLUE_32 | ( | const matrix< complex< rational > > & | arg_1, |
const matrix< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 229 of file glue_matrix_rational.cpp.
References arg_1, arg_2, and horizontal_join().
{ return horizontal_join (arg_1, arg_2); }
static polynomial<generic> mmx::GLUE_32 | ( | const polynomial< generic > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 183 of file glue_polynomial_generic.cpp.
References arg_2, and q_difference().
{ return q_difference (arg_1, arg_2); }
static integer mmx::GLUE_32 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 165 of file glue_vector_integer.cpp.
References big_add().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_32 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
Definition at line 212 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2, and subresultant().
{ return subresultant (arg_1, arg_2, arg_3); }
static polynomial<rational> mmx::GLUE_32 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
static series<generic> mmx::GLUE_32 | ( | const series< generic > & | arg_1, |
const generic & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
static bool mmx::GLUE_32 | ( | const series< integer > & | arg_1, |
const series< integer > & | arg_2 | ||
) | [static] |
Definition at line 192 of file glue_series_integer.cpp.
References arg_2.
static int mmx::GLUE_32 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 169 of file glue_vector_int.cpp.
References big_add().
static bool mmx::GLUE_32 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 167 of file glue_vector_rational.cpp.
References arg_1.
{ return is_nil (arg_1); }
static algebraic_number mmx::GLUE_32 | ( | const algebraic_real & | arg_1 | ) | [static] |
Definition at line 196 of file glue_algebraic_number.cpp.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
{ return algebraic_number (arg_1); }
static matrix<generic> mmx::GLUE_33 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 232 of file glue_matrix_generic.cpp.
References column_echelon().
{ return column_echelon (arg_1); }
static matrix<integer> mmx::GLUE_33 | ( | const integer & | arg_1, |
const matrix< integer > & | arg_2 | ||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_33 | ( | const matrix< complex< rational > > & | arg_1, |
const matrix< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 234 of file glue_matrix_rational.cpp.
References arg_1, arg_2, and vertical_join().
{ return vertical_join (arg_1, arg_2); }
static bool mmx::GLUE_33 | ( | const vector< int > & | arg_1, |
const vector< int > & | arg_2 | ||
) | [static] |
static polynomial<generic> mmx::GLUE_33 | ( | const polynomial< generic > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static vector<generic> mmx::GLUE_33 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | ||
) | [static] |
Definition at line 217 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2, and wrap_subresultants().
{ return wrap_subresultants (arg_1, arg_2); }
static bool mmx::GLUE_33 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
static series<generic> mmx::GLUE_33 | ( | const series< generic > & | arg_1, |
const series< generic > & | arg_2 | ||
) | [static] |
static bool mmx::GLUE_33 | ( | const series< integer > & | arg_1, |
const series< integer > & | arg_2 | ||
) | [static] |
static bool mmx::GLUE_33 | ( | const series< rational > & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
static bool mmx::GLUE_33 | ( | const vector< integer > & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
Definition at line 170 of file glue_vector_integer.cpp.
References arg_2.
static bool mmx::GLUE_33 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 172 of file glue_vector_rational.cpp.
References arg_1.
{ return is_atom (arg_1); }
static complex<mmx_floating> mmx::GLUE_33 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 201 of file glue_algebraic_number.cpp.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
{ return as_floating (arg_1); }
static matrix<generic> mmx::GLUE_34 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 237 of file glue_matrix_generic.cpp.
References row_reduced_echelon().
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
{ return row_reduced_echelon (arg_1); }
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_34 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | ||
) | [static] |
Definition at line 222 of file glue_polynomial_p_adic_modular_integer.cpp.
References resultant().
static matrix<integer> mmx::GLUE_34 | ( | const matrix< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
static bool mmx::GLUE_34 | ( | const series< integer > & | arg_1, |
const series< integer > & | arg_2 | ||
) | [static] |
static matrix<rational> mmx::GLUE_34 | ( | const rational & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
Definition at line 239 of file glue_matrix_rational.cpp.
References fill_matrix().
{ return fill_matrix (arg_1, arg_2, arg_3); }
static polynomial<generic> mmx::GLUE_34 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 193 of file glue_polynomial_generic.cpp.
References annulator().
static polynomial<rational> mmx::GLUE_34 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
Definition at line 199 of file glue_polynomial_rational.cpp.
References subresultant().
{ return subresultant (arg_1, arg_2, arg_3); }
static vector<complex<rational> > mmx::GLUE_34 | ( | const vector< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
Definition at line 177 of file glue_vector_rational.cpp.
References arg_1.
static series<generic> mmx::GLUE_34 | ( | const series< generic > & | arg_1 | ) | [static] |
static series<rational> mmx::GLUE_34 | ( | const series< rational > & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
static bool mmx::GLUE_34 | ( | const vector< int > & | arg_1, |
const vector< int > & | arg_2 | ||
) | [static] |
static bool mmx::GLUE_34 | ( | const vector< integer > & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
Definition at line 175 of file glue_vector_integer.cpp.
References arg_2.
static matrix<generic> mmx::GLUE_35 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 242 of file glue_matrix_generic.cpp.
References column_reduced_echelon().
{ return column_reduced_echelon (arg_1); }
static matrix<integer> mmx::GLUE_35 | ( | const integer & | arg_1, |
const matrix< integer > & | arg_2 | ||
) | [static] |
static bool mmx::GLUE_35 | ( | const vector< int > & | arg_1, |
const vector< int > & | arg_2 | ||
) | [static] |
static matrix<rational> mmx::GLUE_35 | ( | const rational & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 244 of file glue_matrix_rational.cpp.
References jordan_matrix().
{ return jordan_matrix (arg_1, arg_2); }
static polynomial<generic> mmx::GLUE_35 | ( | const vector< generic > & | arg_1, |
const vector< generic > & | arg_2 | ||
) | [static] |
Definition at line 198 of file glue_polynomial_generic.cpp.
References interpolate().
{ return interpolate (arg_1, arg_2); }
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_35 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 227 of file glue_polynomial_p_adic_modular_integer.cpp.
References discriminant().
{ return discriminant (arg_1); }
static series<generic> mmx::GLUE_35 | ( | const series< generic > & | arg_1 | ) | [static] |
static vector<generic> mmx::GLUE_35 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
Definition at line 204 of file glue_polynomial_rational.cpp.
References wrap_subresultants().
{ return wrap_subresultants (arg_1, arg_2); }
static series<generic> mmx::GLUE_35 | ( | const series< integer > & | arg_1 | ) | [static] |
Definition at line 207 of file glue_series_integer.cpp.
References arg_1.
{ return as<series<generic> > (arg_1); }
static series<rational> mmx::GLUE_35 | ( | const series< rational > & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
static bool mmx::GLUE_35 | ( | const vector< integer > & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
static int mmx::GLUE_35 | ( | const vector< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
Definition at line 182 of file glue_vector_rational.cpp.
References arg_1.
static polynomial<rational> mmx::GLUE_35 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 211 of file glue_algebraic_number.cpp.
References annihilator().
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
{ return annihilator (arg_1); }
static vector<generic> mmx::GLUE_36 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 247 of file glue_matrix_generic.cpp.
References wrap_row_reduced_echelon_with_transform().
{ return wrap_row_reduced_echelon_with_transform (arg_1); }
static matrix<integer> mmx::GLUE_36 | ( | const matrix< integer > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
static matrix<rational> mmx::GLUE_36 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 249 of file glue_matrix_rational.cpp.
References toeplitz_matrix().
{ return toeplitz_matrix (arg_1); }
static series<rational> mmx::GLUE_36 | ( | const series< rational > & | arg_1 | ) | [static] |
Definition at line 217 of file glue_series_rational.cpp.
References integrate().
static polynomial<generic> mmx::GLUE_36 | ( | const polynomial< generic > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_36 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 232 of file glue_polynomial_p_adic_modular_integer.cpp.
References integrate().
static rational mmx::GLUE_36 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
Definition at line 209 of file glue_polynomial_rational.cpp.
References resultant().
static series<generic> mmx::GLUE_36 | ( | const series< generic > & | arg_1 | ) | [static] |
static bool mmx::GLUE_36 | ( | const vector< int > & | arg_1, |
const vector< int > & | arg_2 | ||
) | [static] |
static bool mmx::GLUE_36 | ( | const vector< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
Definition at line 187 of file glue_vector_rational.cpp.
References arg_1.
static algebraic_number mmx::GLUE_36 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 216 of file glue_algebraic_number.cpp.
References normalize().
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static bool mmx::GLUE_36 | ( | const vector< integer > & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
static vector<generic> mmx::GLUE_37 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 252 of file glue_matrix_generic.cpp.
References wrap_column_reduced_echelon_with_transform().
{ return wrap_column_reduced_echelon_with_transform (arg_1); }
static vector<integer> mmx::GLUE_37 | ( | const matrix< integer > & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
static matrix<rational> mmx::GLUE_37 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 254 of file glue_matrix_rational.cpp.
References hankel_matrix().
{ return hankel_matrix (arg_1); }
static polynomial<generic> mmx::GLUE_37 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 208 of file glue_polynomial_generic.cpp.
References graeffe().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_37 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | ||
) | [static] |
static rational mmx::GLUE_37 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 214 of file glue_polynomial_rational.cpp.
References discriminant().
{ return discriminant (arg_1); }
static series<rational> mmx::GLUE_37 | ( | const series< rational > & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
static series<generic> mmx::GLUE_37 | ( | const series< generic > & | arg_1 | ) | [static] |
static vector<generic> mmx::GLUE_37 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 194 of file glue_vector_int.cpp.
References arg_1.
{ return as<vector<generic> > (arg_1); }
static vector<generic> mmx::GLUE_37 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 190 of file glue_vector_integer.cpp.
References arg_1.
{ return as<vector<generic> > (arg_1); }
static algebraic_number mmx::GLUE_37 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 221 of file glue_algebraic_number.cpp.
References arg_1.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
{ return -arg_1; }
static vector<generic> mmx::GLUE_38 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 257 of file glue_matrix_generic.cpp.
References wrap_column_reduced_echelon_with_permutation().
{ return wrap_column_reduced_echelon_with_permutation (arg_1); }
static vector<integer> mmx::GLUE_38 | ( | const vector< integer > & | arg_1, |
const matrix< integer > & | arg_2 | ||
) | [static] |
static matrix<rational> mmx::GLUE_38 | ( | const vector< rational > & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 259 of file glue_matrix_rational.cpp.
References tensor_matrix().
{ return tensor_matrix (arg_1, arg_2); }
static generic mmx::GLUE_38 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 213 of file glue_polynomial_generic.cpp.
References contents().
static polynomial<rational> mmx::GLUE_38 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 219 of file glue_polynomial_rational.cpp.
References integrate().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_38 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
Definition at line 242 of file glue_polynomial_p_adic_modular_integer.cpp.
References q_difference().
{ return q_difference (arg_1, arg_2); }
static series<generic> mmx::GLUE_38 | ( | const series< generic > & | arg_1 | ) | [static] |
static series<rational> mmx::GLUE_38 | ( | const series< rational > & | arg_1 | ) | [static] |
Definition at line 227 of file glue_series_rational.cpp.
References reverse().
static vector<rational> mmx::GLUE_38 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 197 of file glue_vector_rational.cpp.
References square().
static algebraic_number mmx::GLUE_38 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 226 of file glue_algebraic_number.cpp.
References square().
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static matrix<generic> mmx::GLUE_39 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 262 of file glue_matrix_generic.cpp.
References kernel().
static row_tuple<generic> mmx::GLUE_39 | ( | const row_tuple< integer > & | arg_1 | ) | [static] |
Definition at line 262 of file glue_matrix_integer.cpp.
References arg_1.
{ return as<row_tuple<generic> > (arg_1); }
static matrix<rational> mmx::GLUE_39 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 264 of file glue_matrix_rational.cpp.
References vandermonde().
{ return vandermonde (arg_1); }
static vector<rational> mmx::GLUE_39 | ( | const vector< rational > & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 202 of file glue_vector_rational.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_39 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 218 of file glue_polynomial_generic.cpp.
References primitive_part().
{ return primitive_part (arg_1); }
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_39 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static polynomial<rational> mmx::GLUE_39 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
static series<generic> mmx::GLUE_39 | ( | const series< generic > & | arg_1 | ) | [static] |
static series<rational> mmx::GLUE_39 | ( | const series< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 232 of file glue_series_rational.cpp.
References q_difference().
{ return q_difference (arg_1, arg_2); }
static algebraic_number mmx::GLUE_39 | ( | const algebraic_number & | arg_1, |
const algebraic_number & | arg_2 | ||
) | [static] |
Definition at line 231 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static matrix<integer> mmx::GLUE_4 | ( | const int & | arg_1 | ) | [static] |
Definition at line 87 of file glue_matrix_integer.cpp.
References identity_matrix_integer.
{ return identity_matrix_integer (arg_1); }
static matrix<mmx_modular(integer) > mmx::GLUE_4 | ( | const tuple< row_tuple< mmx_modular(integer) > > & | arg_1 | ) | [static] |
Definition at line 91 of file glue_matrix_modular_integer.cpp.
References arg_1, as_vector(), and matrix_new().
{ return matrix_new (as_vector (arg_1)); }
static row_tuple<rational> mmx::GLUE_4 | ( | const tuple< rational > & | arg_1 | ) | [static] |
Definition at line 89 of file glue_matrix_rational.cpp.
References as_vector().
static void mmx::GLUE_4 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const bool & | arg_2 | ||
) | [static] |
Definition at line 49 of file glue_p_adic_modular_integer.cpp.
References set_formula_output().
{ set_formula_output (arg_1, arg_2); }
static int mmx::GLUE_4 | ( | const polynomial< mmx_modular(integer), polynomial_carry_variant_helper< mmx_modular(integer) >::PV > & | arg_1 | ) | [static] |
Definition at line 45 of file glue_p_expansion_modular_integer.cpp.
References N().
static permutation mmx::GLUE_4 | ( | const int & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static iterator<generic> mmx::GLUE_4 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 43 of file glue_polynomial_generic.cpp.
References iterate().
static polynomial<integer> mmx::GLUE_4 | ( | const integer & | arg_1 | ) | [static] |
Definition at line 45 of file glue_polynomial_integer.cpp.
References arg_1.
{ return polynomial<integer > (arg_1); }
static polynomial<mmx_modular(integer) > mmx::GLUE_4 | ( | const mmx_modular(integer)& | arg_1 | ) | [static] |
Definition at line 54 of file glue_polynomial_modular_integer.cpp.
References arg_1.
{ return polynomial<mmx_modular(integer) > (arg_1); }
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_4 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1 | ) | [static] |
Definition at line 72 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_1.
{ return polynomial<simple_p_adic(mmx_modular(integer) ) > (arg_1); }
static int mmx::GLUE_4 | ( | const vector< integer > & | arg_1 | ) | [static] |
static polynomial<rational> mmx::GLUE_4 | ( | const rational & | arg_1 | ) | [static] |
Definition at line 49 of file glue_polynomial_rational.cpp.
References arg_1.
{ return polynomial<rational > (arg_1); }
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_4 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 50 of file glue_quotient_polynomial_rational.cpp.
References simple_quotient.
{ return (simple_quotient(polynomial<rational> ) (arg_1)); }
static void mmx::GLUE_4 | ( | const series< generic > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 52 of file glue_series_generic.cpp.
References set_cancel_order().
{ set_cancel_order (arg_1, arg_2); }
static void mmx::GLUE_4 | ( | const series< integer > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 52 of file glue_series_integer.cpp.
References set_cancel_order().
{ set_cancel_order (arg_1, arg_2); }
static void mmx::GLUE_4 | ( | const series< mmx_modular(integer) > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 63 of file glue_series_modular_integer.cpp.
References set_output_order().
{ set_output_order (arg_1, arg_2); }
static void mmx::GLUE_4 | ( | const series< rational > & | arg_1, |
const bool & | arg_2 | ||
) | [static] |
Definition at line 57 of file glue_series_rational.cpp.
References set_formula_output().
{ set_formula_output (arg_1, arg_2); }
static int mmx::GLUE_4 | ( | const vector< rational > & | arg_1 | ) | [static] |
static int mmx::GLUE_4 | ( | const vector< int > & | arg_1 | ) | [static] |
static algebraic<generic> mmx::GLUE_4 | ( | const algebraic< generic > & | arg_1 | ) | [static] |
Definition at line 43 of file glue_algebraic_generic.cpp.
References normalize().
Referenced by glue_algebraic_generic(), glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static mmx_floating mmx::GLUE_4 | ( | const algebraic_real & | arg_1 | ) | [static] |
Definition at line 56 of file glue_algebraic_number.cpp.
{ return as_floating (arg_1); }
static matrix<generic> mmx::GLUE_4 | ( | const tuple< row_tuple< generic > > & | arg_1 | ) | [static] |
Definition at line 87 of file glue_matrix_generic.cpp.
References arg_1, as_vector(), and matrix_new().
{ return matrix_new (as_vector (arg_1)); }
static matrix<generic> mmx::GLUE_40 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 267 of file glue_matrix_generic.cpp.
References image().
static matrix<generic> mmx::GLUE_40 | ( | const matrix< integer > & | arg_1 | ) | [static] |
Definition at line 267 of file glue_matrix_integer.cpp.
References arg_1.
{ return as<matrix<generic> > (arg_1); }
static matrix<rational> mmx::GLUE_40 | ( | const matrix< rational > & | arg_1 | ) | [static] |
static polynomial<generic> mmx::GLUE_40 | ( | const polynomial< generic > & | arg_1, |
const polynomial< generic > & | arg_2 | ||
) | [static] |
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_40 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_40 | ( | const series< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 237 of file glue_series_rational.cpp.
References series_shift_default.
{ return series_shift_default (arg_1, arg_2); }
static polynomial<rational> mmx::GLUE_40 | ( | const polynomial< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 229 of file glue_polynomial_rational.cpp.
References q_difference().
{ return q_difference (arg_1, arg_2); }
static series<generic> mmx::GLUE_40 | ( | const series< generic > & | arg_1 | ) | [static] |
static vector<rational> mmx::GLUE_40 | ( | const vector< rational > & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 207 of file glue_vector_rational.cpp.
References arg_2.
static algebraic_number mmx::GLUE_40 | ( | const algebraic_number & | arg_1, |
const algebraic_number & | arg_2 | ||
) | [static] |
Definition at line 236 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static int mmx::GLUE_41 | ( | const matrix< generic > & | arg_1 | ) | [static] |
static matrix<rational> mmx::GLUE_41 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 274 of file glue_matrix_rational.cpp.
References square().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_41 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 257 of file glue_polynomial_p_adic_modular_integer.cpp.
References graeffe().
static polynomial<rational> mmx::GLUE_41 | ( | const polynomial< rational > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static vector<rational> mmx::GLUE_41 | ( | const vector< rational > & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 212 of file glue_vector_rational.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_41 | ( | const polynomial< generic > & | arg_1, |
const polynomial< generic > & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_41 | ( | const series< rational > & | arg_1, |
const rational & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
static series<generic> mmx::GLUE_41 | ( | const series< generic > & | arg_1 | ) | [static] |
static algebraic_number mmx::GLUE_41 | ( | const algebraic_number & | arg_1, |
const algebraic_number & | arg_2 | ||
) | [static] |
Definition at line 241 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static matrix<generic> mmx::GLUE_42 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 277 of file glue_matrix_generic.cpp.
References invert().
static matrix<rational> mmx::GLUE_42 | ( | const matrix< rational > & | arg_1, |
const matrix< rational > & | arg_2 | ||
) | [static] |
Definition at line 279 of file glue_matrix_rational.cpp.
References arg_2.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_42 | ( | const polynomial< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 262 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_1.
{ return as<polynomial<simple_p_adic(mmx_modular(integer) ) > > (arg_1); }
static polynomial<rational> mmx::GLUE_42 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 239 of file glue_polynomial_rational.cpp.
References annulator().
static series<generic> mmx::GLUE_42 | ( | const series< generic > & | arg_1 | ) | [static] |
static bool mmx::GLUE_42 | ( | const series< rational > & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
Definition at line 247 of file glue_series_rational.cpp.
References arg_2.
static vector<rational> mmx::GLUE_42 | ( | const rational & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 217 of file glue_vector_rational.cpp.
References arg_2.
static algebraic_number mmx::GLUE_42 | ( | const algebraic_number & | arg_1, |
const algebraic_number & | arg_2 | ||
) | [static] |
Definition at line 246 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static matrix<generic> mmx::GLUE_43 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 282 of file glue_matrix_generic.cpp.
References derive().
static matrix<rational> mmx::GLUE_43 | ( | const matrix< rational > & | arg_1, |
const matrix< rational > & | arg_2 | ||
) | [static] |
Definition at line 284 of file glue_matrix_rational.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_43 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 267 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_1.
{ return as<polynomial<generic> > (arg_1); }
static bool mmx::GLUE_43 | ( | const series< generic > & | arg_1, |
const series< generic > & | arg_2 | ||
) | [static] |
Definition at line 247 of file glue_series_generic.cpp.
References arg_2.
static bool mmx::GLUE_43 | ( | const series< rational > & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
Definition at line 252 of file glue_series_rational.cpp.
References arg_2.
static vector<rational> mmx::GLUE_43 | ( | const vector< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 222 of file glue_vector_rational.cpp.
References arg_2.
static polynomial<rational> mmx::GLUE_43 | ( | const vector< rational > & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 244 of file glue_polynomial_rational.cpp.
References interpolate().
{ return interpolate (arg_1, arg_2); }
static algebraic_number mmx::GLUE_43 | ( | const rational & | arg_1, |
const algebraic_number & | arg_2 | ||
) | [static] |
Definition at line 251 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static matrix<generic> mmx::GLUE_44 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 287 of file glue_matrix_generic.cpp.
References integrate().
static polynomial<rational> mmx::GLUE_44 | ( | const polynomial< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
static bool mmx::GLUE_44 | ( | const series< generic > & | arg_1, |
const series< generic > & | arg_2 | ||
) | [static] |
Definition at line 252 of file glue_series_generic.cpp.
References arg_2.
static bool mmx::GLUE_44 | ( | const series< rational > & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
Definition at line 257 of file glue_series_rational.cpp.
References arg_2.
static vector<rational> mmx::GLUE_44 | ( | const rational & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 227 of file glue_vector_rational.cpp.
References arg_2.
static matrix<rational> mmx::GLUE_44 | ( | const matrix< rational > & | arg_1, |
const matrix< rational > & | arg_2 | ||
) | [static] |
Definition at line 289 of file glue_matrix_rational.cpp.
References arg_2.
static algebraic_number mmx::GLUE_44 | ( | const algebraic_number & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 256 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static matrix<rational> mmx::GLUE_45 | ( | const rational & | arg_1, |
const matrix< rational > & | arg_2 | ||
) | [static] |
Definition at line 294 of file glue_matrix_rational.cpp.
References arg_2.
static polynomial<rational> mmx::GLUE_45 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 254 of file glue_polynomial_rational.cpp.
References graeffe().
static bool mmx::GLUE_45 | ( | const series< rational > & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
Definition at line 262 of file glue_series_rational.cpp.
References arg_2.
static vector<rational> mmx::GLUE_45 | ( | const vector< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 232 of file glue_vector_rational.cpp.
References arg_2.
static bool mmx::GLUE_45 | ( | const series< generic > & | arg_1, |
const series< generic > & | arg_2 | ||
) | [static] |
static algebraic_number mmx::GLUE_45 | ( | const rational & | arg_1, |
const algebraic_number & | arg_2 | ||
) | [static] |
Definition at line 261 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_rational(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static matrix<rational> mmx::GLUE_46 | ( | const matrix< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 299 of file glue_matrix_rational.cpp.
References arg_2.
static vector<rational> mmx::GLUE_46 | ( | const rational & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 237 of file glue_vector_rational.cpp.
References arg_2.
static rational mmx::GLUE_46 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 259 of file glue_polynomial_rational.cpp.
References contents().
static bool mmx::GLUE_46 | ( | const series< generic > & | arg_1, |
const series< generic > & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_46 | ( | const series< integer > & | arg_1 | ) | [static] |
Definition at line 267 of file glue_series_rational.cpp.
References arg_1.
{ return as<series<rational> > (arg_1); }
static algebraic_number mmx::GLUE_46 | ( | const algebraic_number & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 266 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_rational(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static matrix<rational> mmx::GLUE_47 | ( | const rational & | arg_1, |
const matrix< rational > & | arg_2 | ||
) | [static] |
Definition at line 304 of file glue_matrix_rational.cpp.
References arg_2.
static series<generic> mmx::GLUE_47 | ( | const routine & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 267 of file glue_series_generic.cpp.
References arg_2, and fixed_point_series().
{ return fixed_point_series (arg_1, arg_2); }
static series<generic> mmx::GLUE_47 | ( | const series< rational > & | arg_1 | ) | [static] |
Definition at line 272 of file glue_series_rational.cpp.
References arg_1.
{ return as<series<generic> > (arg_1); }
static vector<rational> mmx::GLUE_47 | ( | const vector< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 242 of file glue_vector_rational.cpp.
References arg_2.
static algebraic_number mmx::GLUE_47 | ( | const rational & | arg_1, |
const algebraic_number & | arg_2 | ||
) | [static] |
Definition at line 271 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_rational(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static polynomial<rational> mmx::GLUE_47 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 264 of file glue_polynomial_rational.cpp.
References primitive_part().
{ return primitive_part (arg_1); }
static series<rational> mmx::GLUE_48 | ( | const series< rational > & | arg_1, |
const series< rational > & | arg_2 | ||
) | [static] |
static polynomial<rational> mmx::GLUE_48 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
static vector<generic> mmx::GLUE_48 | ( | const routine & | arg_1, |
const vector< generic > & | arg_2 | ||
) | [static] |
Definition at line 272 of file glue_series_generic.cpp.
References gen_fixed_point_vector_series().
{ return gen_fixed_point_vector_series (arg_1, arg_2); }
static matrix<rational> mmx::GLUE_48 | ( | const matrix< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 309 of file glue_matrix_rational.cpp.
References arg_2.
static rational mmx::GLUE_48 | ( | const vector< rational > & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 247 of file glue_vector_rational.cpp.
static algebraic_number mmx::GLUE_48 | ( | const algebraic_number & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 276 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_rational(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static matrix<rational> mmx::GLUE_49 | ( | const rational & | arg_1, |
const matrix< rational > & | arg_2 | ||
) | [static] |
Definition at line 314 of file glue_matrix_rational.cpp.
References arg_2.
static polynomial<rational> mmx::GLUE_49 | ( | const polynomial< rational > & | arg_1, |
const polynomial< rational > & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_49 | ( | const series< rational > & | arg_1 | ) | [static] |
Definition at line 282 of file glue_series_rational.cpp.
References sqrt().
static rational mmx::GLUE_49 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 252 of file glue_vector_rational.cpp.
References big_mul().
static series<generic> mmx::GLUE_49 | ( | const routine & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 277 of file glue_series_generic.cpp.
References arg_2, and integrate_series().
{ return integrate_series (arg_1, arg_2); }
static algebraic_number mmx::GLUE_49 | ( | const rational & | arg_1, |
const algebraic_number & | arg_2 | ||
) | [static] |
Definition at line 281 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_rational(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static row_tuple<integer> mmx::GLUE_5 | ( | const tuple< integer > & | arg_1 | ) | [static] |
Definition at line 92 of file glue_matrix_integer.cpp.
References as_vector().
static int mmx::GLUE_5 | ( | const matrix< mmx_modular(integer) > & | arg_1 | ) | [static] |
static matrix<rational> mmx::GLUE_5 | ( | const tuple< rational > & | arg_1 | ) | [static] |
Definition at line 94 of file glue_matrix_rational.cpp.
References as_vector(), and matrix_new().
{ return matrix_new (as_vector (arg_1)); }
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_5 | ( | const tuple< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 54 of file glue_p_adic_modular_integer.cpp.
References as_vector(), mmx_modular(), and simple_p_adic.
{ return (simple_p_adic(mmx_modular(integer) ) (as_vector (arg_1))); }
static int mmx::GLUE_5 | ( | const polynomial< mmx_modular(integer), polynomial_carry_variant_helper< mmx_modular(integer) >::PV > & | arg_1 | ) | [static] |
Definition at line 50 of file glue_p_expansion_modular_integer.cpp.
References deg().
static vector<int> mmx::GLUE_5 | ( | const permutation & | arg_1 | ) | [static] |
Definition at line 34 of file glue_permutation.cpp.
{ return as_vector_int (arg_1); }
static void mmx::GLUE_5 | ( | const series< generic > & | arg_1, |
const bool & | arg_2 | ||
) | [static] |
Definition at line 57 of file glue_series_generic.cpp.
References set_formula_output().
{ set_formula_output (arg_1, arg_2); }
static iterator<generic> mmx::GLUE_5 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 50 of file glue_polynomial_integer.cpp.
References iterate().
static iterator<generic> mmx::GLUE_5 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
static int mmx::GLUE_5 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
static iterator<generic> mmx::GLUE_5 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 54 of file glue_polynomial_rational.cpp.
References iterate().
static polynomial<rational> mmx::GLUE_5 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1 | ) | [static] |
Definition at line 55 of file glue_quotient_polynomial_rational.cpp.
References numerator().
static void mmx::GLUE_5 | ( | const series< integer > & | arg_1, |
const bool & | arg_2 | ||
) | [static] |
Definition at line 57 of file glue_series_integer.cpp.
References set_formula_output().
{ set_formula_output (arg_1, arg_2); }
static algebraic<generic> mmx::GLUE_5 | ( | const algebraic< generic > & | arg_1 | ) | [static] |
Definition at line 48 of file glue_algebraic_generic.cpp.
References arg_1.
Referenced by glue_algebraic_generic(), glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
{ return -arg_1; }
static iterator<generic> mmx::GLUE_5 | ( | const polynomial< mmx_modular(integer) > & | arg_1 | ) | [static] |
static void mmx::GLUE_5 | ( | const series< mmx_modular(integer) > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 68 of file glue_series_modular_integer.cpp.
References set_cancel_order().
{ set_cancel_order (arg_1, arg_2); }
static int mmx::GLUE_5 | ( | const vector< int > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static integer mmx::GLUE_5 | ( | const vector< integer > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static rational mmx::GLUE_5 | ( | const vector< rational > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static matrix<generic> mmx::GLUE_5 | ( | const tuple< row_tuple< generic > > & | arg_1 | ) | [static] |
Definition at line 92 of file glue_matrix_generic.cpp.
References arg_1, as_vector(), and matrix_new().
{ return matrix_new (as_vector (arg_1)); }
static matrix<rational> mmx::GLUE_50 | ( | const matrix< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 319 of file glue_matrix_rational.cpp.
References arg_2.
static polynomial<rational> mmx::GLUE_50 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 279 of file glue_polynomial_rational.cpp.
References arg_1.
{ return as<polynomial<rational> > (arg_1); }
static vector<generic> mmx::GLUE_50 | ( | const routine & | arg_1, |
const vector< generic > & | arg_2 | ||
) | [static] |
Definition at line 282 of file glue_series_generic.cpp.
References gen_integrate_vector_series().
{ return gen_integrate_vector_series (arg_1, arg_2); }
static series<rational> mmx::GLUE_50 | ( | const series< rational > & | arg_1 | ) | [static] |
static rational mmx::GLUE_50 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 257 of file glue_vector_rational.cpp.
References big_add().
static algebraic_number mmx::GLUE_50 | ( | const algebraic_number & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 286 of file glue_algebraic_number.cpp.
References arg_2.
Referenced by glue_algebraic_number(), glue_matrix_rational(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static vector<rational> mmx::GLUE_51 | ( | const matrix< rational > & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 324 of file glue_matrix_rational.cpp.
References arg_2.
static series<generic> mmx::GLUE_51 | ( | const routine & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 287 of file glue_series_generic.cpp.
References arg_2, and implicit_series().
{ return implicit_series (arg_1, arg_2); }
static series<rational> mmx::GLUE_51 | ( | const series< rational > & | arg_1 | ) | [static] |
static vector<rational> mmx::GLUE_51 | ( | const vector< rational > & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 262 of file glue_vector_rational.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_51 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 284 of file glue_polynomial_rational.cpp.
References arg_1.
{ return as<polynomial<generic> > (arg_1); }
static algebraic_number mmx::GLUE_51 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 291 of file glue_algebraic_number.cpp.
References sqrt().
Referenced by glue_algebraic_number(), glue_matrix_rational(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static polynomial<complex<rational> > mmx::GLUE_52 | ( | const tuple< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 289 of file glue_polynomial_rational.cpp.
References arg_1, as_vector(), and polynomial_reverse().
{ return polynomial_reverse (as_vector (arg_1)); }
static vector<rational> mmx::GLUE_52 | ( | const vector< rational > & | arg_1, |
const matrix< rational > & | arg_2 | ||
) | [static] |
Definition at line 329 of file glue_matrix_rational.cpp.
References arg_2.
static vector<generic> mmx::GLUE_52 | ( | const routine & | arg_1, |
const vector< generic > & | arg_2 | ||
) | [static] |
Definition at line 292 of file glue_series_generic.cpp.
References gen_implicit_vector_series().
{ return gen_implicit_vector_series (arg_1, arg_2); }
static vector<rational> mmx::GLUE_52 | ( | const rational & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 267 of file glue_vector_rational.cpp.
References arg_2.
static series<rational> mmx::GLUE_52 | ( | const series< rational > & | arg_1 | ) | [static] |
static algebraic_number mmx::GLUE_52 | ( | const algebraic_number & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 296 of file glue_algebraic_number.cpp.
References root().
Referenced by glue_algebraic_number(), glue_matrix_rational(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static matrix<rational> mmx::GLUE_53 | ( | const rational & | arg_1, |
const matrix< rational > & | arg_2 | ||
) | [static] |
Definition at line 334 of file glue_matrix_rational.cpp.
References arg_2.
static polynomial<complex<rational> > mmx::GLUE_53 | ( | const tuple< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 294 of file glue_polynomial_rational.cpp.
References arg_1, and as_vector().
static series<rational> mmx::GLUE_53 | ( | const series< rational > & | arg_1 | ) | [static] |
static vector<rational> mmx::GLUE_53 | ( | const vector< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 272 of file glue_vector_rational.cpp.
References arg_2.
static algebraic_number mmx::GLUE_53 | ( | const algebraic_real & | arg_1, |
const algebraic_real & | arg_2 | ||
) | [static] |
Definition at line 301 of file glue_algebraic_number.cpp.
References gaussian().
Referenced by glue_algebraic_number(), glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static matrix<rational> mmx::GLUE_54 | ( | const matrix< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 339 of file glue_matrix_rational.cpp.
References arg_2.
static void mmx::GLUE_54 | ( | const polynomial< complex< rational > > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 299 of file glue_polynomial_rational.cpp.
References arg_1, arg_2, and set_variable_name().
{ set_variable_name (arg_1, arg_2); }
static series<rational> mmx::GLUE_54 | ( | const series< rational > & | arg_1 | ) | [static] |
static bool mmx::GLUE_54 | ( | const vector< rational > & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 277 of file glue_vector_rational.cpp.
References arg_2.
static algebraic_real mmx::GLUE_54 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 306 of file glue_algebraic_number.cpp.
References abs().
Referenced by glue_algebraic_number(), glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static matrix<rational> mmx::GLUE_55 | ( | const matrix< rational > & | arg_1, |
const matrix< rational > & | arg_2 | ||
) | [static] |
static polynomial<complex<rational> > mmx::GLUE_55 | ( | const complex< rational > & | arg_1 | ) | [static] |
Definition at line 304 of file glue_polynomial_rational.cpp.
References arg_1.
{ return polynomial<complex<rational> > (arg_1); }
static algebraic_real mmx::GLUE_55 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 311 of file glue_algebraic_number.cpp.
References Re().
Referenced by glue_algebraic_number(), glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static bool mmx::GLUE_55 | ( | const vector< rational > & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 282 of file glue_vector_rational.cpp.
References arg_2.
static series<rational> mmx::GLUE_55 | ( | const series< rational > & | arg_1 | ) | [static] |
Definition at line 312 of file glue_series_rational.cpp.
References acos().
static series<rational> mmx::GLUE_56 | ( | const series< rational > & | arg_1 | ) | [static] |
Definition at line 317 of file glue_series_rational.cpp.
References asin().
static rational mmx::GLUE_56 | ( | const matrix< rational > & | arg_1 | ) | [static] |
static iterator<generic> mmx::GLUE_56 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
static bool mmx::GLUE_56 | ( | const vector< rational > & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 287 of file glue_vector_rational.cpp.
References arg_2.
static algebraic_real mmx::GLUE_56 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 316 of file glue_algebraic_number.cpp.
References Im().
Referenced by glue_algebraic_number(), glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static matrix<rational> mmx::GLUE_57 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 354 of file glue_matrix_rational.cpp.
References row_echelon().
{ return row_echelon (arg_1); }
static int mmx::GLUE_57 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
static series<rational> mmx::GLUE_57 | ( | const series< rational > & | arg_1 | ) | [static] |
Definition at line 322 of file glue_series_rational.cpp.
References atan().
static bool mmx::GLUE_57 | ( | const vector< rational > & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 292 of file glue_vector_rational.cpp.
References arg_2.
static algebraic_number mmx::GLUE_57 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 321 of file glue_algebraic_number.cpp.
References conj().
Referenced by glue_algebraic_number(), glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static matrix<rational> mmx::GLUE_58 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 359 of file glue_matrix_rational.cpp.
References column_echelon().
{ return column_echelon (arg_1); }
static int mmx::GLUE_58 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
static unknown<rational> mmx::GLUE_58 | ( | const rational & | arg_1 | ) | [static] |
Definition at line 327 of file glue_series_rational.cpp.
References arg_1.
{ return unknown<rational > (arg_1); }
static vector<rational> mmx::GLUE_58 | ( | const vector< rational > & | arg_1 | ) | [static] |
static algebraic_number mmx::GLUE_58 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 326 of file glue_algebraic_number.cpp.
References times_i().
Referenced by glue_algebraic_number(), glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static matrix<rational> mmx::GLUE_59 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 364 of file glue_matrix_rational.cpp.
References row_reduced_echelon().
{ return row_reduced_echelon (arg_1); }
static complex<rational> mmx::GLUE_59 | ( | const polynomial< complex< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static unknown<rational> mmx::GLUE_59 | ( | const unknown< rational > & | arg_1 | ) | [static] |
static algebraic_number mmx::GLUE_59 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 331 of file glue_algebraic_number.cpp.
References over_i().
Referenced by glue_algebraic_number(), glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static vector<rational> mmx::GLUE_59 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 302 of file glue_vector_rational.cpp.
References arg_1.
{ return as<vector<rational> > (arg_1); }
static matrix<integer> mmx::GLUE_6 | ( | const tuple< integer > & | arg_1 | ) | [static] |
Definition at line 97 of file glue_matrix_integer.cpp.
References as_vector(), and matrix_new().
{ return matrix_new (as_vector (arg_1)); }
static int mmx::GLUE_6 | ( | const matrix< mmx_modular(integer) > & | arg_1 | ) | [static] |
static matrix<rational> mmx::GLUE_6 | ( | const tuple< row_tuple< rational > > & | arg_1 | ) | [static] |
Definition at line 99 of file glue_matrix_rational.cpp.
References arg_1, as_vector(), and matrix_new().
{ return matrix_new (as_vector (arg_1)); }
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_6 | ( | const mmx_modular(integer)& | arg_1 | ) | [static] |
Definition at line 59 of file glue_p_adic_modular_integer.cpp.
References mmx_modular(), and simple_p_adic.
{ return (simple_p_adic(mmx_modular(integer) ) (arg_1)); }
static polynomial<rational> mmx::GLUE_6 | ( | const algebraic_real & | arg_1 | ) | [static] |
Definition at line 66 of file glue_algebraic_number.cpp.
References annihilator().
{ return annihilator (arg_1); }
static iterator<generic> mmx::GLUE_6 | ( | const permutation & | arg_1 | ) | [static] |
Definition at line 39 of file glue_permutation.cpp.
References iterate_int().
{ return as<iterator<generic> > (iterate_int (arg_1)); }
static int mmx::GLUE_6 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 53 of file glue_polynomial_generic.cpp.
References deg().
static int mmx::GLUE_6 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
static int mmx::GLUE_6 | ( | const polynomial< mmx_modular(integer) > & | arg_1 | ) | [static] |
static int mmx::GLUE_6 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
static int mmx::GLUE_6 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
static algebraic<generic> mmx::GLUE_6 | ( | const algebraic< generic > & | arg_1 | ) | [static] |
Definition at line 53 of file glue_algebraic_generic.cpp.
References square().
Referenced by glue_algebraic_generic(), glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static polynomial<rational> mmx::GLUE_6 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1 | ) | [static] |
Definition at line 60 of file glue_quotient_polynomial_rational.cpp.
References denominator().
{ return denominator (arg_1); }
static series<generic> mmx::GLUE_6 | ( | const tuple< generic > & | arg_1 | ) | [static] |
Definition at line 62 of file glue_series_generic.cpp.
References as_vector().
static void mmx::GLUE_6 | ( | const series< mmx_modular(integer) > & | arg_1, |
const bool & | arg_2 | ||
) | [static] |
Definition at line 73 of file glue_series_modular_integer.cpp.
References set_formula_output().
{ set_formula_output (arg_1, arg_2); }
static series<rational> mmx::GLUE_6 | ( | const rational & | arg_1 | ) | [static] |
Definition at line 67 of file glue_series_rational.cpp.
References arg_1.
{ return series<rational > (arg_1); }
static alias<int> mmx::GLUE_6 | ( | const alias< vector< int > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static alias<integer> mmx::GLUE_6 | ( | const alias< vector< integer > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static alias<rational> mmx::GLUE_6 | ( | const alias< vector< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static int mmx::GLUE_6 | ( | const matrix< generic > & | arg_1 | ) | [static] |
static matrix<rational> mmx::GLUE_60 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 369 of file glue_matrix_rational.cpp.
References column_reduced_echelon().
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
{ return column_reduced_echelon (arg_1); }
static polynomial<complex<rational> > mmx::GLUE_60 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
static unknown<rational> mmx::GLUE_60 | ( | const unknown< rational > & | arg_1 | ) | [static] |
Definition at line 337 of file glue_series_rational.cpp.
References square().
static vector<complex<rational> > mmx::GLUE_60 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 307 of file glue_vector_rational.cpp.
References arg_1.
{ return as<vector<complex<rational> > > (arg_1); }
static vector<generic> mmx::GLUE_61 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 374 of file glue_matrix_rational.cpp.
References wrap_row_reduced_echelon_with_transform().
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
{ return wrap_row_reduced_echelon_with_transform (arg_1); }
static vector<generic> mmx::GLUE_61 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 312 of file glue_vector_rational.cpp.
References arg_1.
{ return as<vector<generic> > (arg_1); }
static polynomial<complex<rational> > mmx::GLUE_61 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
static unknown<rational> mmx::GLUE_61 | ( | const unknown< rational > & | arg_1, |
const unknown< rational > & | arg_2 | ||
) | [static] |
Definition at line 342 of file glue_series_rational.cpp.
References arg_2.
static vector<generic> mmx::GLUE_62 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 379 of file glue_matrix_rational.cpp.
References wrap_column_reduced_echelon_with_transform().
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
{ return wrap_column_reduced_echelon_with_transform (arg_1); }
static polynomial<complex<rational> > mmx::GLUE_62 | ( | const polynomial< complex< rational > > & | arg_1, |
const polynomial< complex< rational > > & | arg_2 | ||
) | [static] |
static vector<complex<rational> > mmx::GLUE_62 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 317 of file glue_vector_rational.cpp.
References arg_1.
{ return as<vector<complex<rational> > > (arg_1); }
static unknown<rational> mmx::GLUE_62 | ( | const unknown< rational > & | arg_1, |
const unknown< rational > & | arg_2 | ||
) | [static] |
Definition at line 347 of file glue_series_rational.cpp.
References arg_2.
static vector<generic> mmx::GLUE_63 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 322 of file glue_vector_rational.cpp.
References arg_1.
{ return as<vector<generic> > (arg_1); }
static vector<generic> mmx::GLUE_63 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 384 of file glue_matrix_rational.cpp.
References wrap_column_reduced_echelon_with_permutation().
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
{ return wrap_column_reduced_echelon_with_permutation (arg_1); }
static polynomial<complex<rational> > mmx::GLUE_63 | ( | const polynomial< complex< rational > > & | arg_1, |
const polynomial< complex< rational > > & | arg_2 | ||
) | [static] |
static unknown<rational> mmx::GLUE_63 | ( | const rational & | arg_1, |
const unknown< rational > & | arg_2 | ||
) | [static] |
Definition at line 352 of file glue_series_rational.cpp.
References arg_2.
static polynomial<complex<rational> > mmx::GLUE_64 | ( | const polynomial< complex< rational > > & | arg_1, |
const polynomial< complex< rational > > & | arg_2 | ||
) | [static] |
static unknown<rational> mmx::GLUE_64 | ( | const unknown< rational > & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 357 of file glue_series_rational.cpp.
References arg_2.
static matrix<rational> mmx::GLUE_64 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 389 of file glue_matrix_rational.cpp.
References kernel().
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static vector<complex<rational> > mmx::GLUE_64 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
static matrix<rational> mmx::GLUE_65 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 394 of file glue_matrix_rational.cpp.
References image().
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static polynomial<complex<rational> > mmx::GLUE_65 | ( | const complex< rational > & | arg_1, |
const polynomial< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 354 of file glue_polynomial_rational.cpp.
References arg_2.
static vector<complex<rational> > mmx::GLUE_65 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
static unknown<rational> mmx::GLUE_65 | ( | const unknown< rational > & | arg_1, |
const unknown< rational > & | arg_2 | ||
) | [static] |
Definition at line 362 of file glue_series_rational.cpp.
References arg_2.
static int mmx::GLUE_66 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 399 of file glue_matrix_rational.cpp.
References rank().
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static series<rational> mmx::GLUE_66 | ( | const routine & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 367 of file glue_series_rational.cpp.
References fixed_point_series().
{ return fixed_point_series (arg_1, arg_2); }
static polynomial<complex<rational> > mmx::GLUE_66 | ( | const polynomial< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
static vector<complex<rational> > mmx::GLUE_66 | ( | const vector< complex< rational > > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
static matrix<rational> mmx::GLUE_67 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 404 of file glue_matrix_rational.cpp.
References invert().
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static vector<complex<rational> > mmx::GLUE_67 | ( | const vector< complex< rational > > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
static vector<generic> mmx::GLUE_67 | ( | const routine & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 372 of file glue_series_rational.cpp.
References gen_fixed_point_vector_series().
{ return gen_fixed_point_vector_series (arg_1, arg_2); }
static polynomial<complex<rational> > mmx::GLUE_67 | ( | const complex< rational > & | arg_1, |
const polynomial< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 364 of file glue_polynomial_rational.cpp.
References arg_2.
static matrix<rational> mmx::GLUE_68 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 409 of file glue_matrix_rational.cpp.
References abs().
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static polynomial<complex<rational> > mmx::GLUE_68 | ( | const polynomial< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_68 | ( | const routine & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 377 of file glue_series_rational.cpp.
References integrate_series().
{ return integrate_series (arg_1, arg_2); }
static vector<complex<rational> > mmx::GLUE_68 | ( | const vector< complex< rational > > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
static row_tuple<rational> mmx::GLUE_69 | ( | const row_tuple< integer > & | arg_1 | ) | [static] |
Definition at line 414 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
{ return as<row_tuple<rational> > (arg_1); }
static vector<complex<rational> > mmx::GLUE_69 | ( | const complex< rational > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 352 of file glue_vector_rational.cpp.
References arg_2.
static polynomial<complex<rational> > mmx::GLUE_69 | ( | const complex< rational > & | arg_1, |
const polynomial< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 374 of file glue_polynomial_rational.cpp.
References arg_2.
static vector<generic> mmx::GLUE_69 | ( | const routine & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 382 of file glue_series_rational.cpp.
References gen_integrate_vector_series().
{ return gen_integrate_vector_series (arg_1, arg_2); }
static algebraic<generic> mmx::GLUE_7 | ( | const algebraic< generic > & | arg_1, |
const algebraic< generic > & | arg_2 | ||
) | [static] |
Definition at line 58 of file glue_algebraic_generic.cpp.
References arg_2.
Referenced by glue_algebraic_generic(), glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static int mmx::GLUE_7 | ( | const matrix< mmx_modular(integer) > & | arg_1 | ) | [static] |
static matrix<integer> mmx::GLUE_7 | ( | const tuple< row_tuple< integer > > & | arg_1 | ) | [static] |
Definition at line 102 of file glue_matrix_integer.cpp.
References arg_1, as_vector(), and matrix_new().
{ return matrix_new (as_vector (arg_1)); }
static algebraic_real mmx::GLUE_7 | ( | const algebraic_real & | arg_1 | ) | [static] |
Definition at line 71 of file glue_algebraic_number.cpp.
References normalize().
static iterator<generic> mmx::GLUE_7 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1 | ) | [static] |
Definition at line 64 of file glue_p_adic_modular_integer.cpp.
References iterate().
static matrix<rational> mmx::GLUE_7 | ( | const tuple< row_tuple< rational > > & | arg_1 | ) | [static] |
Definition at line 104 of file glue_matrix_rational.cpp.
References arg_1, as_vector(), and matrix_new().
{ return matrix_new (as_vector (arg_1)); }
static int mmx::GLUE_7 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 64 of file glue_polynomial_rational.cpp.
References deg().
static generic mmx::GLUE_7 | ( | const polynomial< generic > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 58 of file glue_polynomial_generic.cpp.
References arg_2.
static int mmx::GLUE_7 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 60 of file glue_polynomial_integer.cpp.
References deg().
static int mmx::GLUE_7 | ( | const polynomial< mmx_modular(integer) > & | arg_1 | ) | [static] |
static int mmx::GLUE_7 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_7 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1 | ) | [static] |
Definition at line 65 of file glue_quotient_polynomial_rational.cpp.
References arg_1.
{ return -arg_1; }
static series<generic> mmx::GLUE_7 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 67 of file glue_series_generic.cpp.
References arg_1.
{ return series<generic > (arg_1); }
static series<integer> mmx::GLUE_7 | ( | const integer & | arg_1 | ) | [static] |
Definition at line 67 of file glue_series_integer.cpp.
References arg_1.
{ return series<integer > (arg_1); }
static series<mmx_modular(integer) > mmx::GLUE_7 | ( | const tuple< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 78 of file glue_series_modular_integer.cpp.
References as_vector().
static vector<integer> mmx::GLUE_7 | ( | const vector< integer > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
static vector<rational> mmx::GLUE_7 | ( | const vector< rational > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
static vector<int> mmx::GLUE_7 | ( | const vector< int > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
static int mmx::GLUE_7 | ( | const permutation & | arg_1 | ) | [static] |
static int mmx::GLUE_7 | ( | const matrix< generic > & | arg_1 | ) | [static] |
static vector<complex<rational> > mmx::GLUE_70 | ( | const vector< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
static matrix<rational> mmx::GLUE_70 | ( | const matrix< integer > & | arg_1 | ) | [static] |
Definition at line 419 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
{ return as<matrix<rational> > (arg_1); }
static polynomial<complex<rational> > mmx::GLUE_70 | ( | const polynomial< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
static series<rational> mmx::GLUE_70 | ( | const routine & | arg_1, |
const rational & | arg_2 | ||
) | [static] |
Definition at line 387 of file glue_series_rational.cpp.
References implicit_series().
{ return implicit_series (arg_1, arg_2); }
static row_tuple<complex<rational> > mmx::GLUE_71 | ( | const row_tuple< integer > & | arg_1 | ) | [static] |
Definition at line 424 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
{ return as<row_tuple<complex<rational> > > (arg_1); }
static vector<complex<rational> > mmx::GLUE_71 | ( | const complex< rational > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 362 of file glue_vector_rational.cpp.
References arg_2.
static vector<generic> mmx::GLUE_71 | ( | const routine & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 392 of file glue_series_rational.cpp.
References gen_implicit_vector_series().
{ return gen_implicit_vector_series (arg_1, arg_2); }
static polynomial<complex<rational> > mmx::GLUE_71 | ( | const polynomial< complex< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 384 of file glue_polynomial_rational.cpp.
References arg_1.
static matrix<complex<rational> > mmx::GLUE_72 | ( | const matrix< integer > & | arg_1 | ) | [static] |
Definition at line 429 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
{ return as<matrix<complex<rational> > > (arg_1); }
static void mmx::GLUE_72 | ( | const series< complex< rational > > & | arg_1, |
const generic & | arg_2 | ||
) | [static] |
Definition at line 397 of file glue_series_rational.cpp.
References arg_1, arg_2, and set_variable_name().
{ set_variable_name (arg_1, arg_2); }
static polynomial<complex<rational> > mmx::GLUE_72 | ( | const polynomial< complex< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static vector<complex<rational> > mmx::GLUE_72 | ( | const vector< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
static row_tuple<generic> mmx::GLUE_73 | ( | const row_tuple< rational > & | arg_1 | ) | [static] |
Definition at line 434 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
{ return as<row_tuple<generic> > (arg_1); }
static polynomial<complex<rational> > mmx::GLUE_73 | ( | const polynomial< complex< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static void mmx::GLUE_73 | ( | const series< complex< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 402 of file glue_series_rational.cpp.
References arg_1, and set_output_order().
{ set_output_order (arg_1, arg_2); }
static vector<complex<rational> > mmx::GLUE_73 | ( | const complex< rational > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 372 of file glue_vector_rational.cpp.
References arg_2.
static matrix<generic> mmx::GLUE_74 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 439 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
{ return as<matrix<generic> > (arg_1); }
static polynomial<complex<rational> > mmx::GLUE_74 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
static vector<complex<rational> > mmx::GLUE_74 | ( | const vector< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
static void mmx::GLUE_74 | ( | const series< complex< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 407 of file glue_series_rational.cpp.
References arg_1, and set_cancel_order().
{ set_cancel_order (arg_1, arg_2); }
static row_tuple<complex<rational> > mmx::GLUE_75 | ( | const row_tuple< rational > & | arg_1 | ) | [static] |
Definition at line 444 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
{ return as<row_tuple<complex<rational> > > (arg_1); }
static complex<rational> mmx::GLUE_75 | ( | const vector< complex< rational > > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
static polynomial<complex<rational> > mmx::GLUE_75 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
static void mmx::GLUE_75 | ( | const series< complex< rational > > & | arg_1, |
const bool & | arg_2 | ||
) | [static] |
Definition at line 412 of file glue_series_rational.cpp.
References arg_1, and set_formula_output().
{ set_formula_output (arg_1, arg_2); }
static series<complex<rational> > mmx::GLUE_76 | ( | const tuple< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 417 of file glue_series_rational.cpp.
References arg_1, and as_vector().
static complex<rational> mmx::GLUE_76 | ( | const polynomial< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
Definition at line 409 of file glue_polynomial_rational.cpp.
References arg_1, and evaluate().
static matrix<complex<rational> > mmx::GLUE_76 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 449 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
{ return as<matrix<complex<rational> > > (arg_1); }
static complex<rational> mmx::GLUE_76 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
static complex<rational> mmx::GLUE_77 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
static row_tuple<generic> mmx::GLUE_77 | ( | const row_tuple< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 454 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
{ return as<row_tuple<generic> > (arg_1); }
static vector<complex<rational> > mmx::GLUE_77 | ( | const polynomial< complex< rational > > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 414 of file glue_polynomial_rational.cpp.
References arg_1, arg_2, and evaluate().
static series<complex<rational> > mmx::GLUE_77 | ( | const complex< rational > & | arg_1 | ) | [static] |
Definition at line 422 of file glue_series_rational.cpp.
References arg_1.
{ return series<complex<rational> > (arg_1); }
static series<complex<rational> > mmx::GLUE_78 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 427 of file glue_series_rational.cpp.
References arg_1.
{ return series<complex<rational> > (arg_1); }
static matrix<generic> mmx::GLUE_78 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 459 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
{ return as<matrix<generic> > (arg_1); }
static complex<rational> mmx::GLUE_78 | ( | const polynomial< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
Definition at line 419 of file glue_polynomial_rational.cpp.
References arg_1, and evaluate().
static vector<complex<rational> > mmx::GLUE_78 | ( | const vector< complex< rational > > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
static vector<complex<rational> > mmx::GLUE_79 | ( | const complex< rational > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 402 of file glue_vector_rational.cpp.
References arg_2.
static matrix<complex<rational> > mmx::GLUE_79 | ( | const complex< rational > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
Definition at line 464 of file glue_matrix_rational.cpp.
References fill_matrix().
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
{ return fill_matrix (arg_1, arg_2, arg_3); }
static iterator<generic> mmx::GLUE_79 | ( | const series< complex< rational > > & | arg_1 | ) | [static] |
static vector<complex<rational> > mmx::GLUE_79 | ( | const polynomial< complex< rational > > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 424 of file glue_polynomial_rational.cpp.
References arg_1, arg_2, and evaluate().
static algebraic_real mmx::GLUE_8 | ( | const algebraic_real & | arg_1 | ) | [static] |
static matrix<integer> mmx::GLUE_8 | ( | const tuple< row_tuple< integer > > & | arg_1 | ) | [static] |
Definition at line 107 of file glue_matrix_integer.cpp.
References arg_1, as_vector(), and matrix_new().
{ return matrix_new (as_vector (arg_1)); }
static algebraic<generic> mmx::GLUE_8 | ( | const algebraic< generic > & | arg_1, |
const algebraic< generic > & | arg_2 | ||
) | [static] |
Definition at line 63 of file glue_algebraic_generic.cpp.
References arg_2.
Referenced by glue_algebraic_generic(), glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
polynomial_carry_variant_helper< mmx_modular(integer) >::PV mmx::GLUE_8 | ( | const integer & | arg_1, |
const modulus< integer > & | arg_2 | ||
) |
Definition at line 65 of file glue_p_expansion_modular_integer.cpp.
References integer_as_p_expansion().
{ return integer_as_p_expansion (arg_1, arg_2); }
static int mmx::GLUE_8 | ( | const permutation & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static polynomial<generic> mmx::GLUE_8 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
static int mmx::GLUE_8 | ( | const matrix< rational > & | arg_1 | ) | [static] |
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_8 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 92 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static rational mmx::GLUE_8 | ( | const polynomial< rational > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 69 of file glue_polynomial_rational.cpp.
References arg_2.
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_8 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1 | ) | [static] |
Definition at line 70 of file glue_quotient_polynomial_rational.cpp.
References square().
static iterator<generic> mmx::GLUE_8 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 72 of file glue_series_generic.cpp.
References iterate().
static vector<integer> mmx::GLUE_8 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 45 of file glue_vector_integer.cpp.
References reverse().
static integer mmx::GLUE_8 | ( | const polynomial< integer > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 65 of file glue_polynomial_integer.cpp.
References arg_2.
static series<integer> mmx::GLUE_8 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 72 of file glue_series_integer.cpp.
References arg_1.
{ return series<integer > (arg_1); }
static vector<int> mmx::GLUE_8 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 49 of file glue_vector_int.cpp.
References reverse().
static vector<rational> mmx::GLUE_8 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 47 of file glue_vector_rational.cpp.
References reverse().
static series<mmx_modular(integer) > mmx::GLUE_8 | ( | const mmx_modular(integer)& | arg_1 | ) | [static] |
Definition at line 83 of file glue_series_modular_integer.cpp.
References arg_1.
{ return series<mmx_modular(integer) > (arg_1); }
static iterator<generic> mmx::GLUE_8 | ( | const series< rational > & | arg_1 | ) | [static] |
Definition at line 77 of file glue_series_rational.cpp.
References iterate().
static int mmx::GLUE_8 | ( | const matrix< generic > & | arg_1 | ) | [static] |
static polynomial<complex<rational> > mmx::GLUE_80 | ( | const polynomial< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_80 | ( | const complex< rational > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 469 of file glue_matrix_rational.cpp.
References jordan_matrix().
Referenced by glue_matrix_rational(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
{ return jordan_matrix (arg_1, arg_2); }
static vector<complex<rational> > mmx::GLUE_80 | ( | const vector< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
static complex<rational> mmx::GLUE_80 | ( | const series< complex< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_81 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 474 of file glue_matrix_rational.cpp.
References arg_1, and toeplitz_matrix().
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
{ return toeplitz_matrix (arg_1); }
static polynomial<complex<rational> > mmx::GLUE_81 | ( | const polynomial< complex< rational > > & | arg_1, |
const polynomial< complex< rational > > & | arg_2 | ||
) | [static] |
static polynomial<complex<rational> > mmx::GLUE_81 | ( | const series< complex< rational > > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_82 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 479 of file glue_matrix_rational.cpp.
References arg_1, and hankel_matrix().
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
{ return hankel_matrix (arg_1); }
static polynomial<complex<rational> > mmx::GLUE_82 | ( | const polynomial< complex< rational > > & | arg_1, |
const polynomial< complex< rational > > & | arg_2 | ||
) | [static] |
static series<complex<rational> > mmx::GLUE_82 | ( | const series< complex< rational > > & | arg_1 | ) | [static] |
static matrix<complex<rational> > mmx::GLUE_83 | ( | const vector< complex< rational > > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 484 of file glue_matrix_rational.cpp.
References arg_1, arg_2, and tensor_matrix().
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
{ return tensor_matrix (arg_1, arg_2); }
static polynomial<complex<rational> > mmx::GLUE_83 | ( | const polynomial< complex< rational > > & | arg_1, |
const polynomial< complex< rational > > & | arg_2 | ||
) | [static] |
static series<complex<rational> > mmx::GLUE_83 | ( | const series< complex< rational > > & | arg_1 | ) | [static] |
static series<complex<rational> > mmx::GLUE_84 | ( | const series< complex< rational > > & | arg_1, |
const series< complex< rational > > & | arg_2 | ||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_84 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 489 of file glue_matrix_rational.cpp.
References arg_1, and vandermonde().
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
{ return vandermonde (arg_1); }
static bool mmx::GLUE_84 | ( | const polynomial< complex< rational > > & | arg_1, |
const polynomial< complex< rational > > & | arg_2 | ||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_85 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 494 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
{ return -arg_1; }
static polynomial<complex<rational> > mmx::GLUE_85 | ( | const polynomial< complex< rational > > & | arg_1, |
const polynomial< complex< rational > > & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
Definition at line 454 of file glue_polynomial_rational.cpp.
References arg_1, arg_2, and subresultant().
{ return subresultant (arg_1, arg_2, arg_3); }
static series<complex<rational> > mmx::GLUE_85 | ( | const series< complex< rational > > & | arg_1, |
const series< complex< rational > > & | arg_2 | ||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_86 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 499 of file glue_matrix_rational.cpp.
References arg_1, and square().
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
static vector<generic> mmx::GLUE_86 | ( | const polynomial< complex< rational > > & | arg_1, |
const polynomial< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 459 of file glue_polynomial_rational.cpp.
References arg_1, arg_2, and wrap_subresultants().
{ return wrap_subresultants (arg_1, arg_2); }
static series<complex<rational> > mmx::GLUE_86 | ( | const series< complex< rational > > & | arg_1, |
const series< complex< rational > > & | arg_2 | ||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_87 | ( | const matrix< complex< rational > > & | arg_1, |
const matrix< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 504 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
static complex<rational> mmx::GLUE_87 | ( | const polynomial< complex< rational > > & | arg_1, |
const polynomial< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 464 of file glue_polynomial_rational.cpp.
References arg_1, arg_2, and resultant().
static series<complex<rational> > mmx::GLUE_87 | ( | const complex< rational > & | arg_1, |
const series< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 472 of file glue_series_rational.cpp.
References arg_2.
static matrix<complex<rational> > mmx::GLUE_88 | ( | const matrix< complex< rational > > & | arg_1, |
const matrix< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 509 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
static series<complex<rational> > mmx::GLUE_88 | ( | const series< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
static complex<rational> mmx::GLUE_88 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 469 of file glue_polynomial_rational.cpp.
References arg_1, and discriminant().
{ return discriminant (arg_1); }
static matrix<complex<rational> > mmx::GLUE_89 | ( | const matrix< complex< rational > > & | arg_1, |
const matrix< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 514 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
static polynomial<complex<rational> > mmx::GLUE_89 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 474 of file glue_polynomial_rational.cpp.
References arg_1, and integrate().
static series<complex<rational> > mmx::GLUE_89 | ( | const complex< rational > & | arg_1, |
const series< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 482 of file glue_series_rational.cpp.
References arg_2.
static int mmx::GLUE_9 | ( | const matrix< integer > & | arg_1 | ) | [static] |
static int mmx::GLUE_9 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 114 of file glue_matrix_rational.cpp.
References rows().
polynomial_carry_variant_helper< mmx_modular(integer) >::PV mmx::GLUE_9 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) |
static polynomial<generic> mmx::GLUE_9 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 68 of file glue_polynomial_generic.cpp.
References square().
static polynomial<integer> mmx::GLUE_9 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
static algebraic_real mmx::GLUE_9 | ( | const algebraic_real & | arg_1 | ) | [static] |
Definition at line 81 of file glue_algebraic_number.cpp.
References square().
static polynomial<rational> mmx::GLUE_9 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_9 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 97 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_1.
{ return -arg_1; }
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_9 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | ||
) | [static] |
Definition at line 75 of file glue_quotient_polynomial_rational.cpp.
References arg_2.
static iterator<generic> mmx::GLUE_9 | ( | const series< integer > & | arg_1 | ) | [static] |
Definition at line 77 of file glue_series_integer.cpp.
References iterate().
static series<mmx_modular(integer) > mmx::GLUE_9 | ( | const polynomial< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 88 of file glue_series_modular_integer.cpp.
References arg_1.
{ return series<mmx_modular(integer) > (arg_1); }
static rational mmx::GLUE_9 | ( | const series< rational > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static int mmx::GLUE_9 | ( | const permutation & | arg_1 | ) | [static] |
Definition at line 54 of file glue_permutation.cpp.
References nr_transpositions().
{ return nr_transpositions (arg_1); }
static vector<int> mmx::GLUE_9 | ( | const vector< int > & | arg_1, |
const vector< int > & | arg_2 | ||
) | [static] |
Definition at line 54 of file glue_vector_int.cpp.
static vector<integer> mmx::GLUE_9 | ( | const vector< integer > & | arg_1, |
const vector< integer > & | arg_2 | ||
) | [static] |
Definition at line 50 of file glue_vector_integer.cpp.
static vector<rational> mmx::GLUE_9 | ( | const vector< rational > & | arg_1, |
const vector< rational > & | arg_2 | ||
) | [static] |
Definition at line 52 of file glue_vector_rational.cpp.
static generic mmx::GLUE_9 | ( | const series< generic > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static algebraic<generic> mmx::GLUE_9 | ( | const algebraic< generic > & | arg_1, |
const algebraic< generic > & | arg_2 | ||
) | [static] |
Definition at line 68 of file glue_algebraic_generic.cpp.
References arg_2.
Referenced by glue_algebraic_generic(), glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static generic mmx::GLUE_9 | ( | const matrix< generic > & | arg_1, |
const int & | arg_2, | ||
const int & | arg_3 | ||
) | [static] |
Definition at line 112 of file glue_matrix_generic.cpp.
References arg_1.
static polynomial<complex<rational> > mmx::GLUE_90 | ( | const polynomial< complex< rational > > & | arg_1, |
const polynomial< complex< rational > > & | arg_2 | ||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_90 | ( | const complex< rational > & | arg_1, |
const matrix< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 519 of file glue_matrix_rational.cpp.
References arg_2.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
static series<complex<rational> > mmx::GLUE_90 | ( | const series< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_91 | ( | const matrix< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
Definition at line 524 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
static polynomial<complex<rational> > mmx::GLUE_91 | ( | const polynomial< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
Definition at line 484 of file glue_polynomial_rational.cpp.
References arg_1, and q_difference().
{ return q_difference (arg_1, arg_2); }
static series<complex<rational> > mmx::GLUE_91 | ( | const complex< rational > & | arg_1, |
const series< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 492 of file glue_series_rational.cpp.
References arg_2.
static polynomial<complex<rational> > mmx::GLUE_92 | ( | const polynomial< complex< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static series<complex<rational> > mmx::GLUE_92 | ( | const series< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_92 | ( | const complex< rational > & | arg_1, |
const matrix< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 529 of file glue_matrix_rational.cpp.
References arg_2.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
static matrix<complex<rational> > mmx::GLUE_93 | ( | const matrix< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
Definition at line 534 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
static polynomial<complex<rational> > mmx::GLUE_93 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 494 of file glue_polynomial_rational.cpp.
References annulator(), and arg_1.
static series<complex<rational> > mmx::GLUE_93 | ( | const series< complex< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
Definition at line 502 of file glue_series_rational.cpp.
References arg_1.
static series<complex<rational> > mmx::GLUE_94 | ( | const series< complex< rational > > & | arg_1, |
const integer & | arg_2 | ||
) | [static] |
Definition at line 507 of file glue_series_rational.cpp.
References arg_1.
static matrix<complex<rational> > mmx::GLUE_94 | ( | const complex< rational > & | arg_1, |
const matrix< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 539 of file glue_matrix_rational.cpp.
References arg_2.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
static polynomial<complex<rational> > mmx::GLUE_94 | ( | const vector< complex< rational > > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 499 of file glue_polynomial_rational.cpp.
References arg_1, arg_2, and interpolate().
{ return interpolate (arg_1, arg_2); }
static matrix<complex<rational> > mmx::GLUE_95 | ( | const matrix< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
Definition at line 544 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
static series<complex<rational> > mmx::GLUE_95 | ( | const series< complex< rational > > & | arg_1 | ) | [static] |
static polynomial<complex<rational> > mmx::GLUE_95 | ( | const polynomial< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
static vector<complex<rational> > mmx::GLUE_96 | ( | const matrix< complex< rational > > & | arg_1, |
const vector< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 549 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
static series<complex<rational> > mmx::GLUE_96 | ( | const series< complex< rational > > & | arg_1 | ) | [static] |
static polynomial<complex<rational> > mmx::GLUE_96 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
static vector<complex<rational> > mmx::GLUE_97 | ( | const vector< complex< rational > > & | arg_1, |
const matrix< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 554 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
static polynomial<complex<rational> > mmx::GLUE_97 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 514 of file glue_polynomial_rational.cpp.
References arg_1.
{ return as<polynomial<complex<rational> > > (arg_1); }
static series<complex<rational> > mmx::GLUE_97 | ( | const series< complex< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static polynomial<complex<rational> > mmx::GLUE_98 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 519 of file glue_polynomial_rational.cpp.
References arg_1.
{ return as<polynomial<complex<rational> > > (arg_1); }
static matrix<complex<rational> > mmx::GLUE_98 | ( | const complex< rational > & | arg_1, |
const matrix< complex< rational > > & | arg_2 | ||
) | [static] |
Definition at line 559 of file glue_matrix_rational.cpp.
References arg_2.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
static series<complex<rational> > mmx::GLUE_98 | ( | const series< complex< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_99 | ( | const matrix< complex< rational > > & | arg_1, |
const complex< rational > & | arg_2 | ||
) | [static] |
Definition at line 564 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_rational(), and glue_series_rational().
static series<complex<rational> > mmx::GLUE_99 | ( | const series< complex< rational > > & | arg_1, |
const int & | arg_2 | ||
) | [static] |
static polynomial<generic> mmx::GLUE_99 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 524 of file glue_polynomial_rational.cpp.
References arg_1.
{ return as<polynomial<generic> > (arg_1); }
void glue_algebraic_generic | ( | ) |
Definition at line 78 of file glue_algebraic_generic.cpp.
References GLUE_1(), GLUE_10(), GLUE_2(), GLUE_3(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_polynomial_generic")); define_type<algebraic<generic> > (gen (lit ("Algebraic"), lit ("Generic"))); define ("algebraic", GLUE_1); define ("algebraic", GLUE_2); define ("annihilator", GLUE_3); define ("normalize", GLUE_4); define ("-", GLUE_5); define ("square", GLUE_6); define ("+", GLUE_7); define ("-", GLUE_8); define ("*", GLUE_9); define ("/", GLUE_10); }
void glue_algebraic_number | ( | ) |
Definition at line 336 of file glue_algebraic_number.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_56(), GLUE_57(), GLUE_58(), GLUE_59(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_ball_floating")); call_glue (string ("glue_polynomial_rational")); call_glue (string ("glue_algebraic_generic")); define_type<algebraic_real > (lit ("Algebraic_real")); define ("algebraic", GLUE_1); define ("algebraic", GLUE_2); define_converter ("upgrade", GLUE_3, PENALTY_INCLUSION); define_converter ("upgrade", GLUE_4, PENALTY_INCLUSION); define_converter ("upgrade", GLUE_5, PENALTY_INCLUSION); define ("annihilator", GLUE_6); define ("normalize", GLUE_7); define ("-", GLUE_8); define ("square", GLUE_9); define ("+", GLUE_10); define ("-", GLUE_11); define ("*", GLUE_12); define ("/", GLUE_13); define ("+", GLUE_14); define ("+", GLUE_15); define ("-", GLUE_16); define ("-", GLUE_17); define ("*", GLUE_18); define ("*", GLUE_19); define ("/", GLUE_20); define ("/", GLUE_21); define ("sqrt", GLUE_22); define ("root", GLUE_23); define ("sign", GLUE_24); define ("<", GLUE_25); define ("<=", GLUE_26); define (">", GLUE_27); define (">=", GLUE_28); define_type<algebraic_number > (lit ("Algebraic_number")); define ("algebraic", GLUE_29); define ("algebraic", GLUE_30); define_converter ("upgrade", GLUE_31, PENALTY_INCLUSION); define_converter ("upgrade", GLUE_32, PENALTY_INCLUSION); define_converter ("upgrade", GLUE_33, PENALTY_INCLUSION); define_converter ("upgrade", GLUE_34, PENALTY_INCLUSION); define ("annihilator", GLUE_35); define ("normalize", GLUE_36); define ("-", GLUE_37); define ("square", GLUE_38); define ("+", GLUE_39); define ("-", GLUE_40); define ("*", GLUE_41); define ("/", GLUE_42); define ("+", GLUE_43); define ("+", GLUE_44); define ("-", GLUE_45); define ("-", GLUE_46); define ("*", GLUE_47); define ("*", GLUE_48); define ("/", GLUE_49); define ("/", GLUE_50); define ("sqrt", GLUE_51); define ("root", GLUE_52); define ("complex", GLUE_53); define ("abs", GLUE_54); define ("Re", GLUE_55); define ("Im", GLUE_56); define ("conj", GLUE_57); define ("times_i", GLUE_58); define ("over_i", GLUE_59); }
void mmx::glue_algebramix | ( | ) |
Definition at line 32 of file glue_algebramix.cpp.
References glue_algebraic_generic(), glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_modular_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_modular_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_generic(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_modular_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), glue_vector_modular_integer(), and glue_vector_rational().
{ static bool done = false; if (done) return; done = true; register_glue (string ("glue_algebraic_generic"), (& (glue_algebraic_generic))); register_glue (string ("glue_algebraic_number"), (& (glue_algebraic_number))); register_glue (string ("glue_matrix_generic"), (& (glue_matrix_generic))); register_glue (string ("glue_matrix_integer"), (& (glue_matrix_integer))); register_glue (string ("glue_matrix_modular_integer"), (& (glue_matrix_modular_integer))); register_glue (string ("glue_matrix_rational"), (& (glue_matrix_rational))); register_glue (string ("glue_p_adic_modular_integer"), (& (glue_p_adic_modular_integer))); register_glue (string ("glue_p_expansion_modular_integer"), (& (glue_p_expansion_modular_integer))); register_glue (string ("glue_permutation"), (& (glue_permutation))); register_glue (string ("glue_polynomial_generic"), (& (glue_polynomial_generic))); register_glue (string ("glue_polynomial_integer"), (& (glue_polynomial_integer))); register_glue (string ("glue_polynomial_modular_integer"), (& (glue_polynomial_modular_integer))); register_glue (string ("glue_polynomial_p_adic_modular_integer"), (& (glue_polynomial_p_adic_modular_integer))); register_glue (string ("glue_polynomial_rational"), (& (glue_polynomial_rational))); register_glue (string ("glue_quotient_generic"), (& (glue_quotient_generic))); register_glue (string ("glue_quotient_polynomial_rational"), (& (glue_quotient_polynomial_rational))); register_glue (string ("glue_series_generic"), (& (glue_series_generic))); register_glue (string ("glue_series_integer"), (& (glue_series_integer))); register_glue (string ("glue_series_modular_integer"), (& (glue_series_modular_integer))); register_glue (string ("glue_series_rational"), (& (glue_series_rational))); register_glue (string ("glue_vector_int"), (& (glue_vector_int))); register_glue (string ("glue_vector_integer"), (& (glue_vector_integer))); register_glue (string ("glue_vector_modular_integer"), (& (glue_vector_modular_integer))); register_glue (string ("glue_vector_rational"), (& (glue_vector_rational))); register_glue (string ("glue_algebramix"), (& (glue_algebramix))); dl_link ("numerix"); glue_algebraic_generic (); glue_algebraic_number (); glue_matrix_generic (); glue_matrix_integer (); glue_matrix_modular_integer (); glue_matrix_rational (); glue_p_adic_modular_integer (); glue_p_expansion_modular_integer (); glue_permutation (); glue_polynomial_generic (); glue_polynomial_integer (); glue_polynomial_modular_integer (); glue_polynomial_p_adic_modular_integer (); glue_polynomial_rational (); glue_quotient_generic (); glue_quotient_polynomial_rational (); glue_series_generic (); glue_series_integer (); glue_series_modular_integer (); glue_series_rational (); glue_vector_int (); glue_vector_integer (); glue_vector_modular_integer (); glue_vector_rational (); }
void glue_matrix_generic | ( | ) |
Definition at line 292 of file glue_matrix_generic.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_vector_generic")); call_glue (string ("glue_vector_int")); define_constructor<int > (GLUE_1); define_type<row_tuple<generic> > (gen (lit ("Row"), lit ("Generic"))); define_type<matrix<generic> > (gen (lit ("Matrix"), lit ("Generic"))); define ("(.)", GLUE_2); define ("matrix", GLUE_3); define ("matrix", GLUE_4); define ("[]", GLUE_5); define ("#", GLUE_6); define ("rows", GLUE_7); define ("columns", GLUE_8); define (".[]", GLUE_9); define (".[]", GLUE_10); define (".[]", GLUE_11); define ("row", GLUE_12); define ("column", GLUE_13); define ("transpose", GLUE_14); define ("horizontal_join", GLUE_15); define ("vertical_join", GLUE_16); define ("fill_matrix", GLUE_17); define ("jordan_matrix", GLUE_18); define ("toeplitz_matrix", GLUE_19); define ("hankel_matrix", GLUE_20); define ("tensor_matrix", GLUE_21); define ("vandermonde", GLUE_22); define ("-", GLUE_23); define ("square", GLUE_24); define ("+", GLUE_25); define ("-", GLUE_26); define ("*", GLUE_27); define ("*", GLUE_28); define ("*", GLUE_29); define ("krylov", GLUE_30); define ("det", GLUE_31); define ("row_echelon", GLUE_32); define ("column_echelon", GLUE_33); define ("row_reduced_echelon", GLUE_34); define ("column_reduced_echelon", GLUE_35); define ("row_reduced_echelon_with_transform", GLUE_36); define ("column_reduced_echelon_with_transform", GLUE_37); define ("column_reduced_echelon_with_permutation", GLUE_38); define ("ker", GLUE_39); define ("im", GLUE_40); define ("rank", GLUE_41); define ("invert", GLUE_42); define ("derive", GLUE_43); define ("integrate", GLUE_44); }
void glue_matrix_integer | ( | ) |
Definition at line 272 of file glue_matrix_integer.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_vector_integer")); call_glue (string ("glue_matrix_generic")); define_converter (":>", GLUE_1, PENALTY_INCLUSION); define_converter (":>", GLUE_2, PENALTY_CAST); define ("^", GLUE_3); define_type<row_tuple<integer> > (gen (lit ("Row"), lit ("Integer"))); define_type<matrix<integer> > (gen (lit ("Matrix"), lit ("Integer"))); define ("identity_matrix", GLUE_4); define ("(.)", GLUE_5); define ("matrix", GLUE_6); define ("matrix", GLUE_7); define ("[]", GLUE_8); define ("#", GLUE_9); define ("rows", GLUE_10); define ("columns", GLUE_11); define (".[]", GLUE_12); define (".[]", GLUE_13); define (".[]", GLUE_14); define ("row", GLUE_15); define ("column", GLUE_16); define ("transpose", GLUE_17); define ("horizontal_join", GLUE_18); define ("vertical_join", GLUE_19); define ("fill_matrix", GLUE_20); define ("jordan_matrix", GLUE_21); define ("toeplitz_matrix", GLUE_22); define ("hankel_matrix", GLUE_23); define ("tensor_matrix", GLUE_24); define ("vandermonde", GLUE_25); define ("-", GLUE_26); define ("square", GLUE_27); define ("+", GLUE_28); define ("-", GLUE_29); define ("*", GLUE_30); define ("+", GLUE_31); define ("+", GLUE_32); define ("-", GLUE_33); define ("-", GLUE_34); define ("*", GLUE_35); define ("*", GLUE_36); define ("*", GLUE_37); define ("*", GLUE_38); define_converter (":>", GLUE_39, PENALTY_PROMOTE_GENERIC); define_converter (":>", GLUE_40, PENALTY_PROMOTE_GENERIC); }
void mmx::glue_matrix_modular_integer | ( | ) |
Referenced by glue_algebramix().
void glue_matrix_rational | ( | ) |
Definition at line 634 of file glue_matrix_rational.cpp.
References GLUE_1(), GLUE_10(), GLUE_100(), GLUE_101(), GLUE_102(), GLUE_103(), GLUE_104(), GLUE_105(), GLUE_106(), GLUE_107(), GLUE_108(), GLUE_109(), GLUE_11(), GLUE_110(), GLUE_111(), GLUE_112(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_56(), GLUE_57(), GLUE_58(), GLUE_59(), GLUE_6(), GLUE_60(), GLUE_61(), GLUE_62(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_67(), GLUE_68(), GLUE_69(), GLUE_7(), GLUE_70(), GLUE_71(), GLUE_72(), GLUE_73(), GLUE_74(), GLUE_75(), GLUE_76(), GLUE_77(), GLUE_78(), GLUE_79(), GLUE_8(), GLUE_80(), GLUE_81(), GLUE_82(), GLUE_83(), GLUE_84(), GLUE_85(), GLUE_86(), GLUE_87(), GLUE_88(), GLUE_89(), GLUE_9(), GLUE_90(), GLUE_91(), GLUE_92(), GLUE_93(), GLUE_94(), GLUE_95(), GLUE_96(), GLUE_97(), GLUE_98(), and GLUE_99().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_vector_rational")); call_glue (string ("glue_matrix_integer")); define_converter (":>", GLUE_1, PENALTY_CAST); define_converter (":>", GLUE_2, PENALTY_CAST); define_type<row_tuple<rational> > (gen (lit ("Row"), lit ("Rational"))); define_type<row_tuple<complex<rational> > > (gen (lit ("Row"), gen (lit ("Complex"), lit ("Rational")))); define_type<matrix<rational> > (gen (lit ("Matrix"), lit ("Rational"))); define_type<matrix<complex<rational> > > (gen (lit ("Matrix"), gen (lit ("Complex"), lit ("Rational")))); define ("hilbert_matrix", GLUE_3); define ("(.)", GLUE_4); define ("matrix", GLUE_5); define ("matrix", GLUE_6); define ("[]", GLUE_7); define ("#", GLUE_8); define ("rows", GLUE_9); define ("columns", GLUE_10); define (".[]", GLUE_11); define (".[]", GLUE_12); define (".[]", GLUE_13); define ("row", GLUE_14); define ("column", GLUE_15); define ("transpose", GLUE_16); define ("horizontal_join", GLUE_17); define ("vertical_join", GLUE_18); define ("(.)", GLUE_19); define ("matrix", GLUE_20); define ("matrix", GLUE_21); define ("[]", GLUE_22); define ("#", GLUE_23); define ("rows", GLUE_24); define ("columns", GLUE_25); define (".[]", GLUE_26); define (".[]", GLUE_27); define (".[]", GLUE_28); define ("row", GLUE_29); define ("column", GLUE_30); define ("transpose", GLUE_31); define ("horizontal_join", GLUE_32); define ("vertical_join", GLUE_33); define ("fill_matrix", GLUE_34); define ("jordan_matrix", GLUE_35); define ("toeplitz_matrix", GLUE_36); define ("hankel_matrix", GLUE_37); define ("tensor_matrix", GLUE_38); define ("vandermonde", GLUE_39); define ("-", GLUE_40); define ("square", GLUE_41); define ("+", GLUE_42); define ("-", GLUE_43); define ("*", GLUE_44); define ("+", GLUE_45); define ("+", GLUE_46); define ("-", GLUE_47); define ("-", GLUE_48); define ("*", GLUE_49); define ("*", GLUE_50); define ("*", GLUE_51); define ("*", GLUE_52); define ("/", GLUE_53); define ("/", GLUE_54); define ("krylov", GLUE_55); define ("det", GLUE_56); define ("row_echelon", GLUE_57); define ("column_echelon", GLUE_58); define ("row_reduced_echelon", GLUE_59); define ("column_reduced_echelon", GLUE_60); define ("row_reduced_echelon_with_transform", GLUE_61); define ("column_reduced_echelon_with_transform", GLUE_62); define ("column_reduced_echelon_with_permutation", GLUE_63); define ("ker", GLUE_64); define ("im", GLUE_65); define ("rank", GLUE_66); define ("invert", GLUE_67); define ("abs", GLUE_68); define_converter (":>", GLUE_69, PENALTY_INCLUSION); define_converter (":>", GLUE_70, PENALTY_INCLUSION); define_converter (":>", GLUE_71, PENALTY_INCLUSION); define_converter (":>", GLUE_72, PENALTY_INCLUSION); define_converter (":>", GLUE_73, PENALTY_PROMOTE_GENERIC); define_converter (":>", GLUE_74, PENALTY_PROMOTE_GENERIC); define_converter (":>", GLUE_75, PENALTY_INCLUSION); define_converter (":>", GLUE_76, PENALTY_INCLUSION); define_converter (":>", GLUE_77, PENALTY_PROMOTE_GENERIC); define_converter (":>", GLUE_78, PENALTY_PROMOTE_GENERIC); define ("fill_matrix", GLUE_79); define ("jordan_matrix", GLUE_80); define ("toeplitz_matrix", GLUE_81); define ("hankel_matrix", GLUE_82); define ("tensor_matrix", GLUE_83); define ("vandermonde", GLUE_84); define ("-", GLUE_85); define ("square", GLUE_86); define ("+", GLUE_87); define ("-", GLUE_88); define ("*", GLUE_89); define ("+", GLUE_90); define ("+", GLUE_91); define ("-", GLUE_92); define ("-", GLUE_93); define ("*", GLUE_94); define ("*", GLUE_95); define ("*", GLUE_96); define ("*", GLUE_97); define ("/", GLUE_98); define ("/", GLUE_99); define ("krylov", GLUE_100); define ("det", GLUE_101); define ("row_echelon", GLUE_102); define ("column_echelon", GLUE_103); define ("row_reduced_echelon", GLUE_104); define ("column_reduced_echelon", GLUE_105); define ("row_reduced_echelon_with_transform", GLUE_106); define ("column_reduced_echelon_with_transform", GLUE_107); define ("column_reduced_echelon_with_permutation", GLUE_108); define ("ker", GLUE_109); define ("im", GLUE_110); define ("rank", GLUE_111); define ("invert", GLUE_112); }
void glue_p_adic_modular_integer | ( | ) |
Definition at line 174 of file glue_p_adic_modular_integer.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_3(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_integer")); call_glue (string ("glue_modular_integer")); call_glue (string ("glue_p_expansion_modular_integer")); define_type<simple_p_adic(mmx_modular(integer) ) > (gen (lit ("P_adic"), gen (lit ("Modular"), lit ("Integer")))); define ("set_variable_name", GLUE_1); define ("set_output_order", GLUE_2); define ("set_cancel_order", GLUE_3); define ("set_formula_output", GLUE_4); define ("p_adic", GLUE_5); define_converter ("upgrade", GLUE_6, PENALTY_INCLUSION); define_converter (":>", GLUE_7, PENALTY_CAST); define (".[]", GLUE_8); define (".[]", GLUE_9); define ("-", GLUE_10); define ("square", GLUE_11); define ("+", GLUE_12); define ("-", GLUE_13); define ("*", GLUE_14); define ("+", GLUE_15); define ("+", GLUE_16); define ("-", GLUE_17); define ("-", GLUE_18); define ("*", GLUE_19); define ("*", GLUE_20); define ("^", GLUE_21); define ("/", GLUE_22); define ("/", GLUE_23); define ("/", GLUE_24); define ("gcd", GLUE_25); define ("lcm", GLUE_26); define ("separable_root", GLUE_27); define ("pth_root", GLUE_28); }
void glue_p_expansion_modular_integer | ( | ) |
Definition at line 70 of file glue_p_expansion_modular_integer.cpp.
References GLUE_1(), GLUE_2(), GLUE_3(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), and GLUE_8().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_vector_generic")); call_glue (string ("glue_modular_integer")); call_glue (string ("glue_vector_modular_integer")); define_type<simple_p_expansion(mmx_modular(integer) ) > (gen (lit ("P_expansion"), gen (lit ("Modular"), lit ("Integer")))); define ("p_expansion", GLUE_1); define ("set_variable_name", GLUE_2); define_converter (":>", GLUE_3, PENALTY_CAST); define ("#", GLUE_4); define ("deg", GLUE_5); define (".[]", GLUE_6); define ("integer", GLUE_7); define ("p_expansion", GLUE_8); }
void glue_permutation | ( | ) |
Definition at line 69 of file glue_permutation.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_2(), GLUE_3(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_int")); call_glue (string ("glue_vector_int")); define_type<permutation > (lit ("Permutation")); define ("permutation", GLUE_1); define ("permutation", GLUE_2); define ("transposition", GLUE_3); define ("cycle", GLUE_4); define ("as_vector", GLUE_5); define_converter (":>", GLUE_6, PENALTY_CAST); define ("#", GLUE_7); define (".()", GLUE_8); define ("nr_transpositions", GLUE_9); define ("*", GLUE_10); define ("invert", GLUE_11); }
void glue_polynomial_generic | ( | ) |
Definition at line 233 of file glue_polynomial_generic.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_vector_generic")); define_type<polynomial<generic> > (gen (lit ("Polynomial"), lit ("Generic"))); define ("poly", GLUE_1); define ("polynomial", GLUE_2); define ("set_variable_name", GLUE_3); define_converter (":>", GLUE_4, PENALTY_PROMOTE_GENERIC); define ("#", GLUE_5); define ("deg", GLUE_6); define (".[]", GLUE_7); define ("-", GLUE_8); define ("square", GLUE_9); define ("+", GLUE_10); define ("-", GLUE_11); define ("*", GLUE_12); define ("^", GLUE_13); define ("<<", GLUE_14); define (">>", GLUE_15); define ("derive", GLUE_16); define ("xderive", GLUE_17); define ("eval", GLUE_18); define ("eval", GLUE_19); define ("evaluate", GLUE_20); define ("evaluate", GLUE_21); define ("div", GLUE_22); define ("quo", GLUE_23); define ("rem", GLUE_24); define ("divides?", GLUE_25); define ("subresultant", GLUE_26); define ("subresultants", GLUE_27); define ("resultant", GLUE_28); define ("discriminant", GLUE_29); define ("integrate", GLUE_30); define ("@", GLUE_31); define ("q_difference", GLUE_32); define ("dilate", GLUE_33); define ("annulator", GLUE_34); define ("interpolate", GLUE_35); define ("shift", GLUE_36); define ("graeffe", GLUE_37); define ("contents", GLUE_38); define ("primitive_part", GLUE_39); define ("gcd", GLUE_40); define ("lcm", GLUE_41); }
void glue_polynomial_integer | ( | ) |
Definition at line 175 of file glue_polynomial_integer.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_vector_integer")); call_glue (string ("glue_polynomial_generic")); define_type<polynomial<integer> > (gen (lit ("Polynomial"), lit ("Integer"))); define ("poly", GLUE_1); define ("polynomial", GLUE_2); define ("set_variable_name", GLUE_3); define_converter ("upgrade", GLUE_4, PENALTY_INCLUSION); define_converter (":>", GLUE_5, PENALTY_CAST); define ("#", GLUE_6); define ("deg", GLUE_7); define (".[]", GLUE_8); define ("-", GLUE_9); define ("square", GLUE_10); define ("+", GLUE_11); define ("-", GLUE_12); define ("*", GLUE_13); define ("+", GLUE_14); define ("+", GLUE_15); define ("-", GLUE_16); define ("-", GLUE_17); define ("*", GLUE_18); define ("*", GLUE_19); define ("^", GLUE_20); define ("<<", GLUE_21); define (">>", GLUE_22); define ("derive", GLUE_23); define ("xderive", GLUE_24); define ("eval", GLUE_25); define ("eval", GLUE_26); define ("evaluate", GLUE_27); define ("evaluate", GLUE_28); define_converter (":>", GLUE_29, PENALTY_PROMOTE_GENERIC); }
void mmx::glue_polynomial_modular_integer | ( | ) |
Referenced by glue_algebramix().
void glue_polynomial_p_adic_modular_integer | ( | ) |
Definition at line 272 of file glue_polynomial_p_adic_modular_integer.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_vector_generic")); call_glue (string ("glue_p_adic_modular_integer")); call_glue (string ("glue_polynomial_modular_integer")); define_type<polynomial<simple_p_adic(mmx_modular(integer) ) > > (gen (lit ("Polynomial"), gen (lit ("P_adic"), gen (lit ("Modular"), lit ("Integer"))))); define ("poly", GLUE_1); define ("polynomial", GLUE_2); define ("set_variable_name", GLUE_3); define_converter ("upgrade", GLUE_4, PENALTY_INCLUSION); define_converter (":>", GLUE_5, PENALTY_CAST); define ("#", GLUE_6); define ("deg", GLUE_7); define (".[]", GLUE_8); define ("-", GLUE_9); define ("square", GLUE_10); define ("+", GLUE_11); define ("-", GLUE_12); define ("*", GLUE_13); define ("+", GLUE_14); define ("+", GLUE_15); define ("-", GLUE_16); define ("-", GLUE_17); define ("*", GLUE_18); define ("*", GLUE_19); define ("^", GLUE_20); define ("<<", GLUE_21); define (">>", GLUE_22); define ("derive", GLUE_23); define ("xderive", GLUE_24); define ("eval", GLUE_25); define ("evaluate", GLUE_26); define ("/", GLUE_27); define ("div", GLUE_28); define ("quo", GLUE_29); define ("rem", GLUE_30); define ("divides?", GLUE_31); define ("subresultant", GLUE_32); define ("subresultants", GLUE_33); define ("resultant", GLUE_34); define ("discriminant", GLUE_35); define ("integrate", GLUE_36); define ("@", GLUE_37); define ("q_difference", GLUE_38); define ("dilate", GLUE_39); define ("shift", GLUE_40); define ("graeffe", GLUE_41); define_converter (":>", GLUE_42, PENALTY_INCLUSION); define_converter (":>", GLUE_43, PENALTY_PROMOTE_GENERIC); }
void glue_polynomial_rational | ( | ) |
Definition at line 529 of file glue_polynomial_rational.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_56(), GLUE_57(), GLUE_58(), GLUE_59(), GLUE_6(), GLUE_60(), GLUE_61(), GLUE_62(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_67(), GLUE_68(), GLUE_69(), GLUE_7(), GLUE_70(), GLUE_71(), GLUE_72(), GLUE_73(), GLUE_74(), GLUE_75(), GLUE_76(), GLUE_77(), GLUE_78(), GLUE_79(), GLUE_8(), GLUE_80(), GLUE_81(), GLUE_82(), GLUE_83(), GLUE_84(), GLUE_85(), GLUE_86(), GLUE_87(), GLUE_88(), GLUE_89(), GLUE_9(), GLUE_90(), GLUE_91(), GLUE_92(), GLUE_93(), GLUE_94(), GLUE_95(), GLUE_96(), GLUE_97(), GLUE_98(), and GLUE_99().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_vector_rational")); call_glue (string ("glue_polynomial_integer")); define_type<polynomial<rational> > (gen (lit ("Polynomial"), lit ("Rational"))); define ("poly", GLUE_1); define ("polynomial", GLUE_2); define ("set_variable_name", GLUE_3); define_converter ("upgrade", GLUE_4, PENALTY_INCLUSION); define_converter (":>", GLUE_5, PENALTY_CAST); define ("#", GLUE_6); define ("deg", GLUE_7); define (".[]", GLUE_8); define ("-", GLUE_9); define ("square", GLUE_10); define ("+", GLUE_11); define ("-", GLUE_12); define ("*", GLUE_13); define ("+", GLUE_14); define ("+", GLUE_15); define ("-", GLUE_16); define ("-", GLUE_17); define ("*", GLUE_18); define ("*", GLUE_19); define ("^", GLUE_20); define ("<<", GLUE_21); define (">>", GLUE_22); define ("derive", GLUE_23); define ("xderive", GLUE_24); define ("eval", GLUE_25); define ("eval", GLUE_26); define ("evaluate", GLUE_27); define ("evaluate", GLUE_28); define ("/", GLUE_29); define ("div", GLUE_30); define ("quo", GLUE_31); define ("rem", GLUE_32); define ("divides?", GLUE_33); define ("subresultant", GLUE_34); define ("subresultants", GLUE_35); define ("resultant", GLUE_36); define ("discriminant", GLUE_37); define ("integrate", GLUE_38); define ("@", GLUE_39); define ("q_difference", GLUE_40); define ("dilate", GLUE_41); define ("annulator", GLUE_42); define ("interpolate", GLUE_43); define ("shift", GLUE_44); define ("graeffe", GLUE_45); define ("contents", GLUE_46); define ("primitive_part", GLUE_47); define ("gcd", GLUE_48); define ("lcm", GLUE_49); define_converter (":>", GLUE_50, PENALTY_INCLUSION); define_converter (":>", GLUE_51, PENALTY_PROMOTE_GENERIC); define_type<polynomial<complex<rational> > > (gen (lit ("Polynomial"), gen (lit ("Complex"), lit ("Rational")))); define ("poly", GLUE_52); define ("polynomial", GLUE_53); define ("set_variable_name", GLUE_54); define_converter ("upgrade", GLUE_55, PENALTY_INCLUSION); define_converter (":>", GLUE_56, PENALTY_CAST); define ("#", GLUE_57); define ("deg", GLUE_58); define (".[]", GLUE_59); define ("-", GLUE_60); define ("square", GLUE_61); define ("+", GLUE_62); define ("-", GLUE_63); define ("*", GLUE_64); define ("+", GLUE_65); define ("+", GLUE_66); define ("-", GLUE_67); define ("-", GLUE_68); define ("*", GLUE_69); define ("*", GLUE_70); define ("^", GLUE_71); define ("<<", GLUE_72); define (">>", GLUE_73); define ("derive", GLUE_74); define ("xderive", GLUE_75); define ("eval", GLUE_76); define ("eval", GLUE_77); define ("evaluate", GLUE_78); define ("evaluate", GLUE_79); define ("/", GLUE_80); define ("div", GLUE_81); define ("quo", GLUE_82); define ("rem", GLUE_83); define ("divides?", GLUE_84); define ("subresultant", GLUE_85); define ("subresultants", GLUE_86); define ("resultant", GLUE_87); define ("discriminant", GLUE_88); define ("integrate", GLUE_89); define ("@", GLUE_90); define ("q_difference", GLUE_91); define ("dilate", GLUE_92); define ("annulator", GLUE_93); define ("interpolate", GLUE_94); define ("shift", GLUE_95); define ("graeffe", GLUE_96); define_converter (":>", GLUE_97, PENALTY_INCLUSION); define_converter (":>", GLUE_98, PENALTY_INCLUSION); define_converter (":>", GLUE_99, PENALTY_PROMOTE_GENERIC); }
void glue_quotient_generic | ( | ) |
Definition at line 9 of file glue_quotient_generic.cpp.
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; }
void glue_quotient_polynomial_rational | ( | ) |
Definition at line 135 of file glue_quotient_polynomial_rational.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_3(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_polynomial_rational")); define_type<simple_quotient(polynomial<rational> ) > (gen (lit ("Quotient"), gen (lit ("Polynomial"), lit ("Rational")))); define ("quotient", GLUE_1); define ("quotient", GLUE_2); define ("/", GLUE_3); define_converter ("upgrade", GLUE_4, PENALTY_INCLUSION); define ("numerator", GLUE_5); define ("denominator", GLUE_6); define ("-", GLUE_7); define ("square", GLUE_8); define ("+", GLUE_9); define ("-", GLUE_10); define ("*", GLUE_11); define ("/", GLUE_12); define ("+", GLUE_13); define ("+", GLUE_14); define ("-", GLUE_15); define ("-", GLUE_16); define ("*", GLUE_17); define ("*", GLUE_18); define ("/", GLUE_19); define ("/", GLUE_20); }
void glue_series_generic | ( | ) |
Definition at line 297 of file glue_series_generic.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_polynomial_generic")); define_constructor<int > (GLUE_1); define_type<series<generic> > (gen (lit ("Series"), lit ("Generic"))); define ("set_variable_name", GLUE_2); define ("set_output_order", GLUE_3); define ("set_cancel_order", GLUE_4); define ("set_formula_output", GLUE_5); define ("series", GLUE_6); define_converter ("upgrade", GLUE_7, PENALTY_PROMOTE_GENERIC); define_converter (":>", GLUE_8, PENALTY_PROMOTE_GENERIC); define (".[]", GLUE_9); define (".[]", GLUE_10); define ("-", GLUE_11); define ("square", GLUE_12); define ("+", GLUE_13); define ("-", GLUE_14); define ("*", GLUE_15); define ("^", GLUE_16); define ("derive", GLUE_17); define ("xderive", GLUE_18); define ("dilate", GLUE_19); define ("<<", GLUE_20); define (">>", GLUE_21); define ("/", GLUE_22); define ("div", GLUE_23); define ("divides?", GLUE_24); define ("gcd", GLUE_25); define ("lcm", GLUE_26); define ("integrate", GLUE_27); define ("@", GLUE_28); define ("reverse", GLUE_29); define ("q_difference", GLUE_30); define ("shift", GLUE_31); define ("shift", GLUE_32); define ("^", GLUE_33); define ("sqrt", GLUE_34); define ("exp", GLUE_35); define ("log", GLUE_36); define ("cos", GLUE_37); define ("sin", GLUE_38); define ("tan", GLUE_39); define ("arccos", GLUE_40); define ("arcsin", GLUE_41); define ("arctan", GLUE_42); define ("<=", GLUE_43); define (">=", GLUE_44); define ("<", GLUE_45); define (">", GLUE_46); define ("fixed_point_series", GLUE_47); define ("fixed_point_series", GLUE_48); define ("integrate_series", GLUE_49); define ("integrate_series", GLUE_50); define ("implicit_series", GLUE_51); define ("implicit_series", GLUE_52); }
void glue_series_integer | ( | ) |
Definition at line 212 of file glue_series_integer.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_polynomial_integer")); call_glue (string ("glue_series_generic")); define ("^", GLUE_1); define_type<series<integer> > (gen (lit ("Series"), lit ("Integer"))); define ("set_variable_name", GLUE_2); define ("set_output_order", GLUE_3); define ("set_cancel_order", GLUE_4); define ("set_formula_output", GLUE_5); define ("series", GLUE_6); define_converter ("upgrade", GLUE_7, PENALTY_INCLUSION); define_converter ("upgrade", GLUE_8, PENALTY_INCLUSION); define_converter (":>", GLUE_9, PENALTY_CAST); define (".[]", GLUE_10); define (".[]", GLUE_11); define ("-", GLUE_12); define ("square", GLUE_13); define ("+", GLUE_14); define ("-", GLUE_15); define ("*", GLUE_16); define ("+", GLUE_17); define ("+", GLUE_18); define ("-", GLUE_19); define ("-", GLUE_20); define ("*", GLUE_21); define ("*", GLUE_22); define ("^", GLUE_23); define ("^", GLUE_24); define ("derive", GLUE_25); define ("xderive", GLUE_26); define ("dilate", GLUE_27); define ("<<", GLUE_28); define (">>", GLUE_29); define ("^", GLUE_30); define ("<=", GLUE_31); define (">=", GLUE_32); define ("<", GLUE_33); define (">", GLUE_34); define_converter (":>", GLUE_35, PENALTY_PROMOTE_GENERIC); }
void mmx::glue_series_modular_integer | ( | ) |
Referenced by glue_algebramix().
void glue_series_rational | ( | ) |
Definition at line 792 of file glue_series_rational.cpp.
References GLUE_1(), GLUE_10(), GLUE_100(), GLUE_101(), GLUE_102(), GLUE_103(), GLUE_104(), GLUE_105(), GLUE_106(), GLUE_107(), GLUE_108(), GLUE_109(), GLUE_11(), GLUE_110(), GLUE_111(), GLUE_112(), GLUE_113(), GLUE_114(), GLUE_115(), GLUE_116(), GLUE_117(), GLUE_118(), GLUE_119(), GLUE_12(), GLUE_120(), GLUE_121(), GLUE_122(), GLUE_123(), GLUE_124(), GLUE_125(), GLUE_126(), GLUE_127(), GLUE_128(), GLUE_129(), GLUE_13(), GLUE_130(), GLUE_131(), GLUE_132(), GLUE_133(), GLUE_134(), GLUE_135(), GLUE_136(), GLUE_137(), GLUE_138(), GLUE_139(), GLUE_14(), GLUE_140(), GLUE_141(), GLUE_142(), GLUE_143(), GLUE_144(), GLUE_145(), GLUE_146(), GLUE_147(), GLUE_148(), GLUE_149(), GLUE_15(), GLUE_150(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_56(), GLUE_57(), GLUE_58(), GLUE_59(), GLUE_6(), GLUE_60(), GLUE_61(), GLUE_62(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_67(), GLUE_68(), GLUE_69(), GLUE_7(), GLUE_70(), GLUE_71(), GLUE_72(), GLUE_73(), GLUE_74(), GLUE_75(), GLUE_76(), GLUE_77(), GLUE_78(), GLUE_79(), GLUE_8(), GLUE_80(), GLUE_81(), GLUE_82(), GLUE_83(), GLUE_84(), GLUE_85(), GLUE_86(), GLUE_87(), GLUE_88(), GLUE_89(), GLUE_9(), GLUE_90(), GLUE_91(), GLUE_92(), GLUE_93(), GLUE_94(), GLUE_95(), GLUE_96(), GLUE_97(), GLUE_98(), and GLUE_99().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_polynomial_rational")); call_glue (string ("glue_series_integer")); define_type<series<rational> > (gen (lit ("Series"), lit ("Rational"))); define ("set_variable_name", GLUE_1); define ("set_output_order", GLUE_2); define ("set_cancel_order", GLUE_3); define ("set_formula_output", GLUE_4); define ("series", GLUE_5); define_converter ("upgrade", GLUE_6, PENALTY_INCLUSION); define_converter ("upgrade", GLUE_7, PENALTY_INCLUSION); define_converter (":>", GLUE_8, PENALTY_CAST); define (".[]", GLUE_9); define (".[]", GLUE_10); define ("-", GLUE_11); define ("square", GLUE_12); define ("+", GLUE_13); define ("-", GLUE_14); define ("*", GLUE_15); define ("+", GLUE_16); define ("+", GLUE_17); define ("-", GLUE_18); define ("-", GLUE_19); define ("*", GLUE_20); define ("*", GLUE_21); define ("^", GLUE_22); define ("^", GLUE_23); define ("derive", GLUE_24); define ("xderive", GLUE_25); define ("dilate", GLUE_26); define ("<<", GLUE_27); define (">>", GLUE_28); define ("/", GLUE_29); define ("/", GLUE_30); define ("/", GLUE_31); define ("div", GLUE_32); define ("divides?", GLUE_33); define ("gcd", GLUE_34); define ("lcm", GLUE_35); define ("integrate", GLUE_36); define ("@", GLUE_37); define ("reverse", GLUE_38); define ("q_difference", GLUE_39); define ("shift", GLUE_40); define ("shift", GLUE_41); define ("<=", GLUE_42); define (">=", GLUE_43); define ("<", GLUE_44); define (">", GLUE_45); define_converter (":>", GLUE_46, PENALTY_INCLUSION); define_converter (":>", GLUE_47, PENALTY_PROMOTE_GENERIC); define ("^", GLUE_48); define ("sqrt", GLUE_49); define ("exp", GLUE_50); define ("log", GLUE_51); define ("cos", GLUE_52); define ("sin", GLUE_53); define ("tan", GLUE_54); define ("arccos", GLUE_55); define ("arcsin", GLUE_56); define ("arctan", GLUE_57); define_type<unknown<rational> > (gen (lit ("Unknown"), lit ("Rational"))); define_converter ("upgrade", GLUE_58, PENALTY_INCLUSION); define ("-", GLUE_59); define ("square", GLUE_60); define ("+", GLUE_61); define ("-", GLUE_62); define ("*", GLUE_63); define ("*", GLUE_64); define ("*", GLUE_65); define ("fixed_point_series", GLUE_66); define ("fixed_point_series", GLUE_67); define ("integrate_series", GLUE_68); define ("integrate_series", GLUE_69); define ("implicit_series", GLUE_70); define ("implicit_series", GLUE_71); define_type<series<complex<rational> > > (gen (lit ("Series"), gen (lit ("Complex"), lit ("Rational")))); define_type<series<unknown<rational> > > (gen (lit ("Series"), gen (lit ("Unknown"), lit ("Rational")))); define ("set_variable_name", GLUE_72); define ("set_output_order", GLUE_73); define ("set_cancel_order", GLUE_74); define ("set_formula_output", GLUE_75); define ("series", GLUE_76); define_converter ("upgrade", GLUE_77, PENALTY_INCLUSION); define_converter ("upgrade", GLUE_78, PENALTY_INCLUSION); define_converter (":>", GLUE_79, PENALTY_CAST); define (".[]", GLUE_80); define (".[]", GLUE_81); define ("-", GLUE_82); define ("square", GLUE_83); define ("+", GLUE_84); define ("-", GLUE_85); define ("*", GLUE_86); define ("+", GLUE_87); define ("+", GLUE_88); define ("-", GLUE_89); define ("-", GLUE_90); define ("*", GLUE_91); define ("*", GLUE_92); define ("^", GLUE_93); define ("^", GLUE_94); define ("derive", GLUE_95); define ("xderive", GLUE_96); define ("dilate", GLUE_97); define ("<<", GLUE_98); define (">>", GLUE_99); define ("set_variable_name", GLUE_100); define ("set_output_order", GLUE_101); define ("set_cancel_order", GLUE_102); define ("set_formula_output", GLUE_103); define ("series", GLUE_104); define_converter ("upgrade", GLUE_105, PENALTY_INCLUSION); define_converter (":>", GLUE_106, PENALTY_CAST); define (".[]", GLUE_107); define ("-", GLUE_108); define ("square", GLUE_109); define ("+", GLUE_110); define ("-", GLUE_111); define ("*", GLUE_112); define ("+", GLUE_113); define ("+", GLUE_114); define ("-", GLUE_115); define ("-", GLUE_116); define ("*", GLUE_117); define ("*", GLUE_118); define ("^", GLUE_119); define ("^", GLUE_120); define ("derive", GLUE_121); define ("xderive", GLUE_122); define ("dilate", GLUE_123); define ("<<", GLUE_124); define (">>", GLUE_125); define ("/", GLUE_126); define ("/", GLUE_127); define ("/", GLUE_128); define ("div", GLUE_129); define ("divides?", GLUE_130); define ("gcd", GLUE_131); define ("lcm", GLUE_132); define ("integrate", GLUE_133); define ("@", GLUE_134); define ("reverse", GLUE_135); define ("q_difference", GLUE_136); define ("shift", GLUE_137); define ("shift", GLUE_138); define_converter (":>", GLUE_139, PENALTY_INCLUSION); define_converter (":>", GLUE_140, PENALTY_INCLUSION); define_converter (":>", GLUE_141, PENALTY_INCLUSION); define_converter (":>", GLUE_142, PENALTY_INCLUSION); define_converter (":>", GLUE_143, PENALTY_PROMOTE_GENERIC); define_converter (":>", GLUE_144, PENALTY_PROMOTE_GENERIC); define ("fixed_point_series", GLUE_145); define ("fixed_point_series", GLUE_146); define ("integrate_series", GLUE_147); define ("integrate_series", GLUE_148); define ("implicit_series", GLUE_149); define ("implicit_series", GLUE_150); }
void glue_vector_int | ( | ) |
Definition at line 199 of file glue_vector_int.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_int")); call_glue (string ("glue_vector_generic")); define_type<vector<int> > (gen (lit ("Vector"), lit ("Int"))); define ("vector", GLUE_1); define ("[]", GLUE_2); define_converter (":>", GLUE_3, PENALTY_CAST); define ("#", GLUE_4); define (".[]", GLUE_5); define (".[]", GLUE_6); define (".[]", GLUE_7); define ("reverse", GLUE_8); define ("><", GLUE_9); define ("<<", GLUE_10); define ("cons", GLUE_11); define ("car", GLUE_12); define ("cdr", GLUE_13); define ("nil?", GLUE_14); define ("atom?", GLUE_15); define ("insert", GLUE_16); define ("find", GLUE_17); define ("contains?", GLUE_18); define ("-", GLUE_19); define ("square", GLUE_20); define ("+", GLUE_21); define ("-", GLUE_22); define ("*", GLUE_23); define ("+", GLUE_24); define ("+", GLUE_25); define ("-", GLUE_26); define ("-", GLUE_27); define ("*", GLUE_28); define ("*", GLUE_29); define ("dot", GLUE_30); define ("big_mul", GLUE_31); define ("big_add", GLUE_32); define ("<=", GLUE_33); define (">=", GLUE_34); define ("<", GLUE_35); define (">", GLUE_36); define_converter (":>", GLUE_37, PENALTY_PROMOTE_GENERIC); }
void glue_vector_integer | ( | ) |
Definition at line 195 of file glue_vector_integer.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_integer")); call_glue (string ("glue_vector_generic")); define_type<vector<integer> > (gen (lit ("Vector"), lit ("Integer"))); define ("vector", GLUE_1); define ("[]", GLUE_2); define_converter (":>", GLUE_3, PENALTY_CAST); define ("#", GLUE_4); define (".[]", GLUE_5); define (".[]", GLUE_6); define (".[]", GLUE_7); define ("reverse", GLUE_8); define ("><", GLUE_9); define ("<<", GLUE_10); define ("cons", GLUE_11); define ("car", GLUE_12); define ("cdr", GLUE_13); define ("nil?", GLUE_14); define ("atom?", GLUE_15); define ("insert", GLUE_16); define ("find", GLUE_17); define ("contains?", GLUE_18); define ("-", GLUE_19); define ("square", GLUE_20); define ("+", GLUE_21); define ("-", GLUE_22); define ("*", GLUE_23); define ("+", GLUE_24); define ("+", GLUE_25); define ("-", GLUE_26); define ("-", GLUE_27); define ("*", GLUE_28); define ("*", GLUE_29); define ("dot", GLUE_30); define ("big_mul", GLUE_31); define ("big_add", GLUE_32); define ("<=", GLUE_33); define (">=", GLUE_34); define ("<", GLUE_35); define (">", GLUE_36); define_converter (":>", GLUE_37, PENALTY_PROMOTE_GENERIC); }
void mmx::glue_vector_modular_integer | ( | ) |
Referenced by glue_algebramix().
void glue_vector_rational | ( | ) |
Definition at line 412 of file glue_vector_rational.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_56(), GLUE_57(), GLUE_58(), GLUE_59(), GLUE_6(), GLUE_60(), GLUE_61(), GLUE_62(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_67(), GLUE_68(), GLUE_69(), GLUE_7(), GLUE_70(), GLUE_71(), GLUE_72(), GLUE_73(), GLUE_74(), GLUE_75(), GLUE_76(), GLUE_77(), GLUE_78(), GLUE_79(), GLUE_8(), GLUE_80(), and GLUE_9().
Referenced by glue_algebramix().
{ static bool done = false; if (done) return; done = true; call_glue (string ("glue_complex_rational")); call_glue (string ("glue_vector_integer")); define_type<vector<rational> > (gen (lit ("Vector"), lit ("Rational"))); define_type<vector<complex<rational> > > (gen (lit ("Vector"), gen (lit ("Complex"), lit ("Rational")))); define ("vector", GLUE_1); define ("[]", GLUE_2); define_converter (":>", GLUE_3, PENALTY_CAST); define ("#", GLUE_4); define (".[]", GLUE_5); define (".[]", GLUE_6); define (".[]", GLUE_7); define ("reverse", GLUE_8); define ("><", GLUE_9); define ("<<", GLUE_10); define ("cons", GLUE_11); define ("car", GLUE_12); define ("cdr", GLUE_13); define ("nil?", GLUE_14); define ("atom?", GLUE_15); define ("insert", GLUE_16); define ("find", GLUE_17); define ("contains?", GLUE_18); define ("vector", GLUE_19); define ("[]", GLUE_20); define_converter (":>", GLUE_21, PENALTY_CAST); define ("#", GLUE_22); define (".[]", GLUE_23); define (".[]", GLUE_24); define (".[]", GLUE_25); define ("reverse", GLUE_26); define ("><", GLUE_27); define ("<<", GLUE_28); define ("cons", GLUE_29); define ("car", GLUE_30); define ("cdr", GLUE_31); define ("nil?", GLUE_32); define ("atom?", GLUE_33); define ("insert", GLUE_34); define ("find", GLUE_35); define ("contains?", GLUE_36); define ("-", GLUE_37); define ("square", GLUE_38); define ("+", GLUE_39); define ("-", GLUE_40); define ("*", GLUE_41); define ("+", GLUE_42); define ("+", GLUE_43); define ("-", GLUE_44); define ("-", GLUE_45); define ("*", GLUE_46); define ("*", GLUE_47); define ("dot", GLUE_48); define ("big_mul", GLUE_49); define ("big_add", GLUE_50); define ("/", GLUE_51); define ("/", GLUE_52); define ("/", GLUE_53); define ("<=", GLUE_54); define (">=", GLUE_55); define ("<", GLUE_56); define (">", GLUE_57); define ("abs", GLUE_58); define_converter (":>", GLUE_59, PENALTY_INCLUSION); define_converter (":>", GLUE_60, PENALTY_HOMOMORPHISM); define_converter (":>", GLUE_61, PENALTY_PROMOTE_GENERIC); define_converter (":>", GLUE_62, PENALTY_HOMOMORPHISM); define_converter (":>", GLUE_63, PENALTY_PROMOTE_GENERIC); define ("-", GLUE_64); define ("square", GLUE_65); define ("+", GLUE_66); define ("-", GLUE_67); define ("*", GLUE_68); define ("+", GLUE_69); define ("+", GLUE_70); define ("-", GLUE_71); define ("-", GLUE_72); define ("*", GLUE_73); define ("*", GLUE_74); define ("dot", GLUE_75); define ("big_mul", GLUE_76); define ("big_add", GLUE_77); define ("/", GLUE_78); define ("/", GLUE_79); define ("/", GLUE_80); }
polynomial<C,V> mmx::graeffe | ( | const polynomial< C, V > & | P | ) |
Definition at line 1261 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Referenced by GLUE_37(), GLUE_41(), GLUE_45(), and GLUE_96().
{ typedef implementation<polynomial_graeffe,V> Pol; nat n= N(P); nat l= aligned_size<C,V> (n); C* r= mmx_formatted_new<C> (l, CF(P)); Pol::graeffe (r, seg (P), n); return Polynomial (r, n, l, CF(P)); }
bool mmx::hard_eq | ( | const quotient< NT, DT > & | x1, |
const quotient< NT, DT > & | x2 | ||
) | [inline] |
Definition at line 152 of file quotient.hpp.
References denominator(), hard_eq(), and numerator().
{ return hard_eq (numerator (x1), numerator (x2)) && hard_eq (denominator (x1), denominator (x2)); }
bool mmx::hard_eq | ( | const algebraic_number_extension< C, Ball > & | x, |
const algebraic_number_extension< C, Ball > & | y | ||
) | [inline] |
Definition at line 86 of file algebraic_number.hpp.
References hard_eq().
{ return hard_eq (*x, *y); }
bool mmx::hard_eq | ( | const algebraic_extension< C > & | x, |
const algebraic_extension< C > & | y | ||
) | [inline] |
Definition at line 66 of file algebraic_extension.hpp.
References hard_eq().
{ return hard_eq (*x, *y); }
bool mmx::hard_eq | ( | const algebraic< C, Extension > & | x1, |
const algebraic< C, Extension > & | x2 | ||
) | [inline] |
nat mmx::hard_hash | ( | const algebraic_number_extension< C, Ball > & | x | ) | [inline] |
Definition at line 77 of file algebraic_number.hpp.
References hard_hash().
{ return hard_hash (*x); }
nat mmx::hard_hash | ( | const algebraic_extension< C > & | x | ) | [inline] |
Definition at line 57 of file algebraic_extension.hpp.
References hard_hash().
{ return hard_hash (*x); }
nat mmx::hard_hash | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 139 of file quotient.hpp.
References denominator(), hard_hash(), and numerator().
{ nat h= hard_hash (numerator (x)); return (h<<1) ^ (h<<5) ^ (h>>29) ^ hard_hash (denominator (x)); }
nat mmx::hard_hash | ( | const algebraic< C, Extension > & | x | ) | [inline] |
Definition at line 108 of file algebraic.hpp.
References field(), and value().
Referenced by hard_hash().
bool mmx::hard_neq | ( | const algebraic_extension< C > & | x, |
const algebraic_extension< C > & | y | ||
) | [inline] |
Definition at line 68 of file algebraic_extension.hpp.
References hard_neq().
{ return hard_neq (*x, *y); }
bool mmx::hard_neq | ( | const quotient< NT, DT > & | x1, |
const quotient< NT, DT > & | x2 | ||
) | [inline] |
bool mmx::hard_neq | ( | const algebraic< C, Extension > & | x1, |
const algebraic< C, Extension > & | x2 | ||
) | [inline] |
Definition at line 119 of file algebraic.hpp.
References hard_eq().
Referenced by hard_neq(), and upgrade().
{ return !hard_eq (x1, x2); }
bool mmx::hard_neq | ( | const algebraic_number_extension< C, Ball > & | x, |
const algebraic_number_extension< C, Ball > & | y | ||
) | [inline] |
Definition at line 88 of file algebraic_number.hpp.
References hard_neq().
{ return hard_neq (*x, *y); }
nat mmx::hash | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 133 of file quotient.hpp.
References denominator(), hash(), and numerator().
{ nat h= hash (numerator (x)); return (h<<1) ^ (h<<5) ^ (h>>29) ^ hash (denominator (x)); }
nat mmx::hash | ( | const algebraic< C, Extension > & | x | ) | [inline] |
nat mmx::hash | ( | const algebraic_number_extension< C, Ball > & | x | ) | [inline] |
nat mmx::hash | ( | const quotient_series< Series, Monomial > & | f | ) | [inline] |
Definition at line 89 of file quotient_series.hpp.
{ // FIXME: find something better to return here (void) f; return 0; }
nat mmx::hash | ( | const series< C, V > & | s | ) | [inline] |
Definition at line 283 of file series.hpp.
{
return unary_hash<hash_op> (s);
}
nat mmx::hash | ( | const algebraic_extension< C > & | x | ) | [inline] |
quotient_series<Series,Monomial> mmx::head | ( | const quotient_series< Series, Monomial > & | f, |
const list< Monomial > & | l | ||
) |
Definition at line 124 of file quotient_series.hpp.
References Quotient_series.
Referenced by implementation< series_multiply, U, series_fast >::nrelax_mul_series_rep< C, V >::direct_transform(), implementation< series_multiply, U, series_fast >::level_info< C >::level_info(), and implementation< series_multiply, U, series_fast >::level_info< C >::~level_info().
{ return Quotient_series (head (f->f, stair_mul (1/f->m, l)), f->m); }
Definition at line 720 of file matrix.hpp.
{ matrix<C> m (promote (0, fm), n, n); for (nat i=0; i<(nat) n; i++) for (nat j=0; j<(nat) n; j++) m (i, j)= 1 / promote (1 + i + j, fm); return m; }
Definition at line 775 of file matrix.hpp.
References CF(), cols(), is_non_scalar(), Matrix, and rows().
Referenced by bareiss_krylov(), GLUE_15(), GLUE_17(), GLUE_18(), and GLUE_32().
{ ASSERT (is_non_scalar (m1) || is_non_scalar (m2), "non-scalar matrix expected"); if (!is_non_scalar (m1)) return horizontal_join (Matrix (m1.scalar(), rows (m2), rows (m2)), m2); if (!is_non_scalar (m2)) return horizontal_join (m1, Matrix (m2.scalar(), rows (m1), rows (m1))); ASSERT (rows (m1) == rows (m2), "unequal number of rows"); Matrix r (promote (0, CF(m1)), rows (m1), cols (m1) + cols (m2)); for (nat i=0; i<rows(m1); i++) { for (nat j=0; j<cols(m1); j++) r(i,j)= m1(i,j); for (nat j=0; j<cols(m2); j++) r(i,j+cols(m1))= m2(i,j); } return r; }
vector<nat> mmx::id_vector | ( | nat | n | ) | [inline] |
Definition at line 27 of file permutation.hpp.
Referenced by cycle(), and transposition().
{ vector<nat> v= fill<nat> (n); for (nat i=0; i<n; i++) v[i]= i; return v; }
Definition at line 695 of file matrix.hpp.
{
return matrix<C> (promote (1, fm), n, n);
}
Definition at line 671 of file matrix.hpp.
{ return unary_map<Im_op> (m); }
algebraic_real mmx::Im | ( | const algebraic_number & | z | ) | [inline] |
polynomial<Real_type(C),V> mmx::Im | ( | const polynomial< C, V > & | p | ) |
Definition at line 1395 of file polynomial.hpp.
{ return unary_map<Im_op> (p); }
Definition at line 1180 of file matrix.hpp.
References CF(), cols(), is_non_scalar(), Matrix, range(), rows(), and tab().
Referenced by GLUE_110(), GLUE_40(), GLUE_65(), and krylov().
Definition at line 146 of file series_sugar.hpp.
References access(), and solver().
Referenced by GLUE_149(), GLUE_51(), GLUE_70(), and implicit_series().
{ series_rep<VC >* rep= (series_rep<VC >*) new implicit_series_rep<C> (fun, c); return access (solver (series<VC > (rep)), 0); }
Definition at line 152 of file series_sugar.hpp.
References implicit_series().
{ return implicit_series (fun, vec<C> (c)); }
vector<series<C> > mmx::implicit_vector_series | ( | const routine & | fun, |
const vector< vector< C > > & | c | ||
) | [inline] |
Definition at line 188 of file series_sugar.hpp.
References as_vector(), N(), and solver().
Referenced by gen_implicit_vector_series(), and implicit_vector_series().
{ ASSERT (N(c) > 0, "at least one initial condition required"); series_rep<VC >* rep= (series_rep<VC >*) new implicit_vector_series_rep<C> (fun, c); return as_vector (solver (series<VC > (rep))); }
vector<series<C> > mmx::implicit_vector_series | ( | const routine & | fun, |
const vector< C > & | c | ||
) | [inline] |
Definition at line 196 of file series_sugar.hpp.
References implicit_vector_series().
{ return implicit_vector_series (fun, vec<vector<C> > (c)); }
bool mmx::improve_zero | ( | const polynomial< C > & | p, |
Ball & | z | ||
) |
Definition at line 127 of file algebraic_number.hpp.
References abs(), center(), Center_type(), copy(), derive(), eval(), Polynomial, radius(), and sharpen().
Referenced by increase_precision(), and shrink().
{ typedef Center_type(Ball) CBall; typedef Radius_type(Ball) RBall; if (p[0] == 0 && z == 0) { z= Ball (0); return true; } CBall x= center (copy (z)); RBall r= radius (z); Polynomial dp= derive (p); while (true) { CBall nx= x - eval (p, x) / eval (dp, x); RBall nr= as<RBall> (abs (nx - x)); while (true) { Ball nb= Ball (nx, nr); if (eval (dp, nb) == 0) return false; RBall rr= abs_up (eval (p, sharpen (nb)) / eval (dp, nb)); if (rr <= nr) break; nr= max (2 * nr, rr); } bool ok= (2 * nr >= r); x= nx; r= nr; if (ok) break; } if (!included (Ball (x, r), z)) return false; z= Ball (x, r); return true; }
void mmx::increase_order | ( | const series< C, V > & | f, |
nat | l | ||
) |
Definition at line 196 of file series.hpp.
Referenced by ldiv_mat_series_rep< C, V, W, U >::Increase_order(), ldiv_sc_mat_series_rep< C, V, W, U >::Increase_order(), carry_special_add_series_rep< C, V >::Increase_order(), carry_add_quorem_series_rep< C, V >::Increase_order(), carry_mul_quorem_series_rep< C, V, X >::Increase_order(), lshiftz_series_vector_rep< C, V, W >::Increase_order(), vector_series_rep< C, V, W >::Increase_order(), vector_access_series_rep< C, V, W >::Increase_order(), implementation< series_multiply, U, series_relaxed< W > >::mul_series_rep< C, V >::Increase_order(), implementation< series_compose, U, series_naive >::reverse_series_rep< C, V >::Increase_order(), implementation< series_compose, U, series_naive >::compose_series_rep< C, V >::Increase_order(), implementation< series_abstractions, U, series_naive >::binary_series_rep< Op, C, V >::Increase_order(), implementation< series_abstractions, U, series_naive >::unary_series_rep< Op, C, V >::Increase_order(), implementation< series_recursive_abstractions, U, series_naive >::binary_scalar_recursive_series_rep< Op, C, V, X >::Increase_order(), implementation< series_recursive_abstractions, U, series_naive >::binary_recursive_series_rep< Op, C, V >::Increase_order(), implementation< series_recursive_abstractions, U, series_naive >::unary_recursive_series_rep< Op, C, V >::Increase_order(), implementation< series_map_as_abstractions, U, series_naive >::unary_map_as_series_rep< Op, C, V, S, SV >::Increase_order(), implementation< series_scalar_abstractions, U, series_naive >::ternary_scalar_series_rep< Op, C, V, X, Y >::Increase_order(), implementation< series_scalar_abstractions, U, series_naive >::binary_scalar_series_rep< Op, C, V, X >::Increase_order(), ldiv_mat_mat_series_rep< C, V, U >::Increase_order(), ldiv_sc_mat_mat_series_rep< C, V, U, UU >::Increase_order(), lshiftz_series_matrix_rep< C, V, U >::Increase_order(), matrix_series_rep< C, V, U >::Increase_order(), matrix_access_series_rep< C, V, U >::Increase_order(), solver_container_series_rep< C, V >::Increase_order(), solver_series_rep< C, V >::Increase_order(), known_series_rep< C, V, UV >::Increase_order(), implementation< series_multiply, U, series_fast >::mul_series_rep< C, V >::Increase_order(), implementation< series_multiply, U, series_fast >::nrelax_mul_series_rep< C, V >::Increase_order(), implementation< series_multiply, U, series_carry_relaxed< W > >::mul_series_rep< M, V >::Increase_order(), implementation< series_divide, U, series_carry_naive >::div_series_rep< M, V >::Increase_order(), implementation< series_divide, U, series_carry_naive >::rdiv_sc_series_rep< M, V, X >::Increase_order(), implementation< series_divide, U, series_carry_naive >::carry_mul_sc_series_rep< M, V, X >::Increase_order(), implementation< series_abstractions, U, series_carry_naive >::binary_series_rep< Op, M, V >::Increase_order(), implementation< series_abstractions, U, series_carry_naive >::unary_series_rep< Op, M, V >::Increase_order(), implementation< series_scalar_abstractions, U, series_carry_naive >::binary_scalar_series_rep< Op, M, V, X >::Increase_order(), implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::mul_series_rep< M, V >::Increase_order(), binary_scalar_recursive_monoblock_series_rep< Op, M, V, s, BV, t, X >::Increase_order(), truncate_mul_monoblock_series_rep< M, V, s, BV, t >::Increase_order(), binary_monoblock_series_rep< Op, M, V, s, BV, t >::Increase_order(), change_precision_series_rep< C, V >::Increase_order(), deflate_series_rep< C, V >::Increase_order(), dilate_series_rep< C, V >::Increase_order(), q_difference_series_rep< C, V >::Increase_order(), shift_series_rep< C, V >::Increase_order(), integrate_series_rep< C, V >::Increase_order(), xderive_series_rep< C, V >::Increase_order(), derive_series_rep< C, V >::Increase_order(), piecewise_series_rep< C, V >::Increase_order(), restrict_series_rep< C, V >::Increase_order(), lshiftz_series_rep< C, V >::Increase_order(), lcm_series_rep< C, V >::Increase_order(), gcd_series_rep< C, V >::Increase_order(), map_series_rep< C, V, S, SV >::Increase_order(), cast_series_rep< C, V, K, W >::Increase_order(), slow_series_rep< C, V >::Increase_order(), fast_series_rep< C, V >::Increase_order(), recursive_container_series_rep< C, V >::Increase_order(), recursive_series_rep< vector< C > >::Increase_order(), system_root_series_rep< M, V, W >::increase_order_generic(), and root_series_rep< M, V >::increase_order_generic().
{
if (f->l < l) inside (f) -> Increase_order (l);
}
void mmx::increase_precision | ( | const algebraic_number_extension< C, Ball > & | ext | ) |
Definition at line 176 of file algebraic_number.hpp.
References Center_type(), Field, improve_zero(), and precision().
Referenced by eval().
{ typedef Center_type(Ball) CBall; typedef Radius_type(Ball) RBall; if (precision (ext.x) >= mmx_bit_precision) return; Ball new_x= ext.x; if (!improve_zero (ext.ext.mp, new_x)) { mmerr << "mp= " << ext.ext.mp << "\n"; mmerr << "x = " << new_x << "\n"; ERROR ("unexpected situation"); } (const_cast<Field*> (&ext)) -> x= new_x; }
mmx::INDIRECT_IMPL_2 | ( | quotient_series | , |
quotient_series_rep | , | ||
typename Series | , | ||
Series | , | ||
typename Monomial | , | ||
Monomial | |||
) |
mmx::INDIRECT_IMPL_2 | ( | series | , |
series_rep | , | ||
typename C | , | ||
C | , | ||
typename V | , | ||
V | |||
) |
Definition at line 310 of file series_implicit.hpp.
References is_exact_zero(), N(), and reduce().
Referenced by solver_series_rep< C, V >::next().
{ for (nat i=0; i<N(sys); i++) reduce (c, sys[i]); if (is_exact_zero (c)) return; ASSERT (c->i1 != c->i2, "contradictory equations"); sys << c; }
static polynomial< mmx_modular(integer), polynomial_carry_variant_helper< mmx_modular(integer) >::PV > integer_as_p_expansion | ( | const integer & | c, |
const modulus< integer > & | p | ||
) | [inline, static] |
Definition at line 24 of file glue_p_adic_modular_integer.cpp.
References simple_as_p_expansion.
Referenced by GLUE_8().
{ return simple_as_p_expansion(integer)(c, p); }
polynomial<C,V> mmx::integrate | ( | const polynomial< C, V > & | P | ) |
Definition at line 1041 of file polynomial.hpp.
References C, CF(), integrate(), N(), Polynomial, and seg().
{ typedef implementation<polynomial_linear,V> Pol; nat n= N(P); nat l= aligned_size<C,V> (n+1); C* r= mmx_formatted_new<C> (l, CF(P)); Pol::integrate (r, seg (P), n); return Polynomial (r, n+1, l, CF(P)); }
Definition at line 628 of file matrix.hpp.
Referenced by integrate_series_rep< C, V >::expression(), gen_integrate_vector_series(), GLUE_133(), GLUE_27(), GLUE_30(), GLUE_36(), GLUE_38(), GLUE_44(), GLUE_89(), integrate(), and integrate_series().
{
return unary_map<integrate_op> (m); }
Definition at line 944 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
{ if (is_exact_zero (f)) return Series (CF(f)); return (Series_rep*) new integrate_series_rep<C,V> (f); }
Definition at line 955 of file series.hpp.
{
return binary_scalar_series<integrate_op> (f, v);
}
Definition at line 950 of file series.hpp.
References Series_rep.
Referenced by integrate_series_rep< C, V >::expression().
{ return (Series_rep*) new integrate_series_rep<C,V> (f, c); }
Definition at line 63 of file series_sugar.hpp.
References fixed_point_series(), and integrate().
Referenced by GLUE_147(), GLUE_49(), and GLUE_68().
{ return fixed_point_series (integrate (fun), vec<C> (c)); }
polynomial<C,typename polynomial_variant_helper< C >::PV > mmx::interpolate | ( | const vector< C > & | v, |
const vector< C > & | x | ||
) | [inline] |
Definition at line 1184 of file polynomial.hpp.
Referenced by GLUE_35(), GLUE_43(), GLUE_94(), and implementation< polynomial_evaluate, V, polynomial_naive >::interpolate().
{
return interpolate_bis<C,typename Polynomial_variant(C) > (v, x);
}
polynomial<C,V> mmx::interpolate_bis | ( | const vector< C > & | v, |
const vector< C > & | x | ||
) | [inline] |
Definition at line 1178 of file polynomial.hpp.
{ typedef implementation<polynomial_evaluate,V> Pol; return Pol::template interpolate<Polynomial> (v, x); }
void mmx::inverse_base | ( | typename Baser::base & | d, |
const typename Baser::modulus_base * | src, | ||
nat | n, | ||
Baser & | baser | ||
) | [inline] |
Definition at line 182 of file base_naive.hpp.
Referenced by implementation< base_transform, V, base_blocks< W > >::inverse(), inverse_base(), base_unsigned_integer_transformer< I >::inverse_transform(), and base_integer_transformer< I >::inverse_transform().
{ baser.inverse_transform (d, src, n); }
void mmx::inverse_base | ( | typename Baser::base & | d, |
const vector< typename Baser::modulus_base, W > & | src, | ||
Baser & | baser | ||
) | [inline] |
Baser::base mmx::inverse_base | ( | const vector< typename Baser::modulus_base, W > & | src, |
Baser & | baser | ||
) | [inline] |
Definition at line 192 of file base_naive.hpp.
References C, inverse_base(), N(), and seg().
{ C d; inverse_base (d, seg (src), N(src), baser); return d; }
void mmx::inverse_crt | ( | typename Crter::base & | d, |
const typename Crter::modulus_base * | src, | ||
Crter & | crter | ||
) | [inline] |
Definition at line 359 of file crt_naive.hpp.
Referenced by implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::interpolate(), inverse_crt(), and implementation< matrix_multiply, V, matrix_crt< W > >::mat_inverse_crt().
{ crter.inverse_transform (d, src); }
void mmx::inverse_crt | ( | typename Crter::base & | d, |
const vector< typename Crter::modulus_base, W > & | src, | ||
Crter & | crter | ||
) | [inline] |
Definition at line 364 of file crt_naive.hpp.
References seg().
{ crter.inverse_transform (d, seg (src)); }
Crter::base mmx::inverse_crt | ( | const vector< typename Crter::modulus_base, W > & | src, |
Crter & | crter | ||
) | [inline] |
Definition at line 369 of file crt_naive.hpp.
References C, inverse_crt(), and seg().
{ C d; inverse_crt (d, seg (src), crter); return d; }
void mmx::inverse_fft | ( | C * | dest, |
nat | n | ||
) | [inline] |
Definition at line 214 of file fft_naive.hpp.
References fft_naive_transformer< C, V >::inverse_transform().
{ fft_naive_transformer<C> ffter (n); ffter.inverse_transform (dest); }
void mmx::inverse_fft_triadic | ( | C * | dest, |
nat | n | ||
) | [inline] |
Definition at line 188 of file fft_triadic_naive.hpp.
References fft_triadic_naive_transformer< C, VV >::inverse_transform_triadic().
{ fft_triadic_naive_transformer<C> ffter (n); ffter.inverse_transform_triadic (dest); }
void mmx::inverse_kronecker | ( | integer * | dest, |
nat | n, | ||
xnat | bits, | ||
const integer & | src | ||
) |
algebraic_number_extension<C,Ball>::El mmx::invert | ( | const algebraic_number_extension< C, Ball > & | ext, |
const typename algebraic_number_extension< C, Ball >::El & | p1 | ||
) | [inline] |
Definition at line 242 of file algebraic_number.hpp.
References invert().
{ return invert (ext.ext, p1); }
permutation invert | ( | const permutation & | p | ) |
Definition at line 56 of file permutation.cpp.
References N().
{ nat n= N(p); vector<nat> v= fill<nat> (n); for (nat i=0; i<n; i++) v[p(i)]= i; return permutation (v); }
Definition at line 1154 of file matrix.hpp.
References CF(), cols(), invert(), is_a_scalar(), Matrix, rows(), and tab().
Definition at line 253 of file algebraic.hpp.
References Algebraic, field(), and value().
Referenced by roots_helper< CC, UU, SS >::dtft_cross(), ldiv_mat_series_rep< C, V, W, U >::expression(), ldiv_sc_mat_series_rep< C, V, W, U >::expression(), ldiv_mat_mat_series_rep< C, V, U >::expression(), ldiv_sc_mat_mat_series_rep< C, V, U, UU >::expression(), GLUE_11(), GLUE_112(), GLUE_42(), GLUE_67(), ldiv_mat_series_rep< C, V, W, U >::initialize(), ldiv_sc_mat_series_rep< C, V, W, U >::initialize(), ldiv_mat_mat_series_rep< C, V, U >::initialize(), ldiv_sc_mat_mat_series_rep< C, V, U, UU >::initialize(), implementation< series_divide, U, series_carry_naive >::div_series_rep< M, V >::initialize(), implementation< series_divide, U, series_carry_naive >::rdiv_sc_series_rep< M, V, X >::initialize(), fft_truncated_transformer< C, Ffter >::inverse_transform(), fft_threads_transformer< C, FFTER, thr >::inverse_transform(), fft_simd_transformer< C, FFTER, FFTER_SIMD, thr >::inverse_transform(), fft_naive_transformer< C, V >::inverse_transform(), fft_blocks_transformer< C, FFTER, log2_outer_block_size, log2_block_number, log2_inner_block_size, threshold >::inverse_transform(), fft_triadic_threads_transformer< C, FFTER, thr >::inverse_transform_triadic(), fft_triadic_naive_transformer< C, VV >::inverse_transform_triadic(), invert(), roots_helper< CC, UU, SS >::itft_flip(), join(), integrate_series_rep< C, V >::next(), and operator/().
algebraic_extension<C>::El mmx::invert | ( | const algebraic_extension< C > & | ext, |
const typename algebraic_extension< C >::El & | p1 | ||
) |
polynomial<C,V> mmx::invert_hi | ( | const polynomial< C, V > & | P | ) |
Definition at line 1293 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Referenced by implementation< polynomial_divide, V, polynomial_dicho< BV > >::invert_hi(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::quo_rem(), and implementation< polynomial_divide, V, polynomial_dicho< BV > >::tquo_rem().
{ typedef implementation<polynomial_divide,V> Pol; nat n= N(P); nat l= aligned_size<C,V> (n); C* r= mmx_formatted_new<C> (l, CF(P)); Pol::invert_hi (r, seg (P), n); return Polynomial (r, n, l, CF(P)); }
polynomial<C,V> mmx::invert_lo | ( | const polynomial< C, V > & | P, |
nat | m | ||
) |
Definition at line 1271 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
Referenced by implementation< polynomial_divide, V, polynomial_dicho< BV > >::invert_lo(), invert_lo(), and implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tevaluate().
{ typedef implementation<polynomial_divide,V> Pol; nat n= N(P); nat l= aligned_size<C,V> (m); C* r= mmx_formatted_new<C> (l, CF(P)); if (n >= m) Pol::invert_lo (r, seg (P), m); else { C* t= mmx_formatted_new<C> (l, CF(P)); Pol::copy (t, seg (P), n); Pol::clear (t + n, m - n); Pol::invert_lo (r, t, m); } return Polynomial (r, m, l, CF(P)); }
polynomial<C,V> mmx::invert_lo | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 1288 of file polynomial.hpp.
References invert_lo(), and N().
polynomial<C,V> mmx::invert_modulo | ( | const polynomial< C, V > & | P, |
const polynomial< C, V > & | Q | ||
) | [inline] |
Definition at line 834 of file polynomial.hpp.
Referenced by implementation< polynomial_gcd, X, polynomial_series< BV > >::inv_mod_polynomial_series_rep< C, U, V, W >::initialize(), and modulus_polynomial_inv_naive< V >::inv_mod().
{ typedef implementation<polynomial_gcd,V> Pol; return Pol::invert_mod (P, Q); }
bool is_a_scalar | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 184 of file matrix.hpp.
Referenced by binary_map(), binary_map_scalar(), binary_test(), as_helper< matrix< T, TV >, matrix< F, FV > >::cv(), fast_helper< matrix< C, V > >::dd(), binary_helper< matrix< C, V > >::disassemble(), extend(), flatten(), invert(), is_finite(), is_fuzz(), is_infinite(), is_nan(), is_reliable(), matrix< series< C, V >, U >::matrix(), matrix_mul_quo(), vector_access_series_rep< C, V, W >::next(), operator*(), permute_columns(), permute_rows(), range(), REP_STRUCT_1(), matrix< series< C, V >, U >::scalar(), transpose(), unary_map(), unary_set(), unary_set_scalar(), fast_helper< matrix< C, V > >::uu(), and binary_helper< matrix< C, V > >::write().
{ return m->scalar_flag; }
bool mmx::is_a_scalar | ( | const matrix< C, matrix_fixed< V, RS, CS > > & | m | ) | [inline] |
Definition at line 298 of file matrix.hpp.
{ (void) m; return false; }
bool mmx::is_exact_zero | ( | const series< C, V > & | f | ) |
Definition at line 299 of file series.hpp.
Referenced by deflate(), derive(), dilate(), div_kronecker(), series_carry_monoblock_transformer< M, W, s, BV >::from_monoblock(), insert_and_reduce(), integrate(), is_exact_zero(), lshiftz(), lshiftz_series_matrix(), lshiftz_series_vector(), matrix_mul_quo(), solver_series_rep< C, V >::next(), REP_STRUCT< Series, Monomial >::normalize(), operator*(), operator+(), operator-(), operator/(), q_difference(), reduce(), rem(), restrict(), rshiftz(), implementation< series_separable_root, U, series_naive >::sep_root(), implementation< series_separable_root, U, series_carry_naive >::sep_root(), implementation< series_compose, U, series_naive >::ser_compose(), implementation< series_divide, U, series_naive >::ser_div(), implementation< series_divide, U, series_carry_naive >::ser_div(), implementation< series_divide, U, series_carry_monoblock< W, s, BV, t > >::ser_div(), ser_ldiv_mat(), ser_ldiv_mat_mat(), ser_ldiv_sc_mat(), ser_ldiv_sc_mat_mat(), implementation< series_multiply, U, series_relaxed< W > >::ser_mul(), implementation< series_multiply, U, series_naive >::ser_mul(), implementation< series_multiply, U, series_fast >::ser_mul(), implementation< series_multiply, U, series_carry_relaxed< W > >::ser_mul(), implementation< series_multiply, U, series_carry_lift< W > >::ser_mul(), implementation< series_multiply, U, series_carry_naive >::ser_mul(), implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::ser_mul(), implementation< series_multiply, U, series_carry_monoblock< W, s, BV, t > >::ser_mul(), implementation< series_multiply, U, series_carry_modular_int_naive< W > >::ser_mul(), implementation< series_divide, U, series_naive >::ser_quo(), implementation< series_divide, U, series_naive >::ser_rdiv_sc(), implementation< series_divide, U, series_carry_naive >::ser_rdiv_sc(), implementation< series_divide, U, series_naive >::ser_rquo_sc(), implementation< series_divide, U, series_naive >::ser_rrem_sc(), implementation< series_multiply, U, series_relaxed< W > >::ser_truncate_mul(), implementation< series_multiply, U, series_naive >::ser_truncate_mul(), implementation< series_multiply, U, series_fast >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_relaxed< W > >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_lift< W > >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_naive >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_monoblock< W, s, BV, t > >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_modular_int_naive< W > >::ser_truncate_mul(), shift(), sqrt(), polynomial_series_rep< C, V >::test_exact_zero(), scalar_series_rep< C, V >::test_exact_zero(), series_carry_monoblock_transformer< M, W, s, BV >::to_monoblock(), implementation< series_pth_root, U, series_carry_p_adic< W > >::unsep_root(), and xderive().
{
return f->test_exact_zero (); }
bool mmx::is_exact_zero | ( | const unknown< C, V > | c | ) |
Definition at line 120 of file series_implicit.hpp.
References is_exact_zero().
{ return c->i1 == c->i2 && is_exact_zero (c->b); }
bool mmx::is_finite | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 639 of file matrix.hpp.
References is_a_scalar().
{ if (is_a_scalar (m)) return is_finite (m.scalar()); return big<and_is_finite_op> (m); }
bool mmx::is_finite | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1368 of file polynomial.hpp.
{
return big<and_is_finite_op> (p); }
bool mmx::is_fuzz | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 648 of file matrix.hpp.
References is_a_scalar(), and is_nan().
{ if (is_a_scalar (m)) return is_fuzz (m.scalar()); return !is_nan (m) && big<or_is_fuzz_op> (m); }
bool mmx::is_fuzz | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1374 of file polynomial.hpp.
References is_nan().
{ return !is_nan (p) && big<or_is_fuzz_op> (p); }
bool mmx::is_infinite | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 645 of file matrix.hpp.
References is_a_scalar(), and is_nan().
{ if (is_a_scalar (m)) return is_infinite (m.scalar()); return !is_nan (m) && big<or_is_infinite_op> (m); }
bool mmx::is_infinite | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1372 of file polynomial.hpp.
References is_nan().
{ return !is_nan (p) && big<or_is_infinite_op> (p); }
Definition at line 84 of file series_implicit.hpp.
Referenced by subst_mul_series_rep< C, V, UV >::next().
{
return c->i2 == c->i1;
}
bool mmx::is_nan | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 642 of file matrix.hpp.
References is_a_scalar().
Referenced by is_fuzz(), and is_infinite().
{ if (is_a_scalar (m)) return is_nan (m.scalar()); return big<or_is_nan_op> (m); }
bool mmx::is_nan | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1370 of file polynomial.hpp.
{
return big<or_is_nan_op> (p); }
bool mmx::is_non_scalar | ( | const matrix< C, matrix_fixed< V, RS, CS > > & | m | ) | [inline] |
Definition at line 300 of file matrix.hpp.
{ (void) m; return true; }
bool is_non_scalar | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 185 of file matrix.hpp.
Referenced by implementation< polynomial_evaluate, V, polynomial_naive >::annulator(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::annulator(), binary_map(), binary_test(), cofactor(), column_echelon(), column_orthogonalization(), column_orthonormalization(), column_reduced_echelon(), delete_col(), delete_row(), det(), implementation< polynomial_evaluate, V, polynomial_naive >::evaluate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::evaluate(), extend(), first_minor(), horizontal_join(), image(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::interpolate(), iterate(), kernel(), krylov(), matrix_mul_quo(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_rem(), matrix< series< C, V >, U >::operator()(), operator*(), rank(), REP_STRUCT_1(), reverse_cols(), row_orthogonalization(), row_orthonormalization(), swap_col(), swap_row(), tab(), tensor_matrix(), implementation< polynomial_evaluate, V, polynomial_naive >::tevaluate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tevaluate(), implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate(), unary_set(), vandermonde(), and vertical_join().
{ return !m->scalar_flag; }
bool is_prime | ( | nat | n | ) |
Definition at line 17 of file crt_int.cpp.
Referenced by fft_prime_sequence_int< s >::extend().
{ static coprime_moduli_sequence <modulus<nat,modulus_int_naive<8*sizeof(nat)> >,prime_sequence_int> seq; if (n == 0 || n == 1) return false; for (nat i= 0; true; i++) { nat p= * seq[i]; if (n % p == 0) return false; if (p * p >= n) break; } return true; }
bool is_probable_prime | ( | unsigned long int | n | ) |
Definition at line 29 of file crt_int.cpp.
{ return is_probable_prime (integer (n)); }
bool mmx::is_reliable | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1376 of file polynomial.hpp.
References CF(), and is_reliable().
{ return is_reliable (promote (0, CF(p))); }
bool mmx::is_reliable | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 651 of file matrix.hpp.
References is_a_scalar().
Referenced by is_reliable().
{ if (is_a_scalar (m)) return is_reliable (m.scalar()); return is_reliable (C (0)); }
bool mmx::is_square_matrix | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 186 of file matrix.hpp.
References cols(), and rows().
Referenced by bareiss_krylov(), krylov(), solve_lde(), and solve_lde_init().
bool mmx::is_zero | ( | const algebraic_number_extension< C, Ball > & | ext, |
const typename algebraic_number_extension< C, Ball >::El & | p1 | ||
) | [inline] |
Definition at line 257 of file algebraic_number.hpp.
References annihilator(), deg(), derive(), eval(), is_zero(), and Polynomial.
{ if (deg (p1) <= 0) return is_zero (ext.ext, p1); Ball y= eval (ext, p1); if (is_non_zero (y)) return false; Polynomial ann= annihilator (ext, p1); if (ann[0] == 0 && is_non_zero (eval (derive (ann), y))) return true; nat old_precision= mmx_bit_precision; mmx_bit_precision *= 2; bool r= is_zero (ext, p1); mmx_bit_precision= old_precision; return r; }
bool mmx::is_zero | ( | const algebraic< C, Extension > & | x | ) | [inline] |
Definition at line 122 of file algebraic.hpp.
References field(), and value().
Referenced by is_zero(), operator!=(), and operator==().
bool mmx::is_zero | ( | const algebraic_extension< C > & | ext, |
const typename algebraic_extension< C >::El & | p1 | ||
) | [inline] |
iterator<nat> mmx::iterate | ( | const permutation & | p | ) | [inline] |
Definition at line 59 of file permutation.hpp.
References as_vector(), and iterate().
Definition at line 328 of file matrix.hpp.
References is_non_scalar().
Referenced by flatten(), GLUE_10(), GLUE_106(), GLUE_21(), GLUE_3(), GLUE_4(), GLUE_5(), GLUE_56(), GLUE_7(), GLUE_79(), GLUE_8(), GLUE_9(), iterate(), and iterate_int().
{ ASSERT (is_non_scalar (m), "non-scalar matrix expected"); return iterator<C> (new matrix_iterator_rep<C,V> (m)); }
Definition at line 292 of file polynomial.hpp.
{ return iterator<C> (new polynomial_iterator_rep<C,V> (P)); }
Definition at line 264 of file series.hpp.
{ return iterator<C> (new series_iterator_rep<C,V> (f)); }
iterator<int> mmx::iterate_int | ( | const permutation & | p | ) | [inline] |
Definition at line 61 of file permutation.hpp.
References iterate().
Referenced by GLUE_6().
{ return iterate (as_vector_int (p)); }
algebraic_extension<C> mmx::join | ( | const algebraic_extension< C > & | ext1, |
const algebraic_extension< C > & | ext2, | ||
typename algebraic_extension< C >::El & | z1, | ||
typename algebraic_extension< C >::El & | z2 | ||
) |
Definition at line 238 of file algebraic_extension.hpp.
References CF(), column(), deg(), Element, Extension, hard_eq(), invert(), N(), Polynomial, pow_matrix(), range(), rem(), square_free(), and transpose().
Referenced by upgrade().
{ // Return the smallest common extension ext of ext1 and ext2 // On exit, z1 and z2 contains the primitive els of ext1 and ext2 inside ext ASSERT (N(ext1.mp) > 0, "uninitialized algebraic extension"); ASSERT (N(ext2.mp) > 0, "uninitialized algebraic extension"); if (deg (ext1.mp) == 1) { z1= Polynomial (-ext1.mp[0]/ext1.mp[1]); z2= Polynomial (promote (1, CF(ext1)), (nat) 1); return ext2; } else if (deg (ext2.mp) == 1) { z1= Polynomial (promote (1, CF(ext1)), (nat) 1); z2= Polynomial (-ext2.mp[0]/ext2.mp[1]); return ext1; } else if (hard_eq (ext1, ext2)) { z1= Polynomial (promote (1, CF(ext1)), (nat) 1); z2= Polynomial (promote (1, CF(ext1)), (nat) 1); return ext1; } else { nat n= deg (ext1.mp) * deg (ext2.mp); matrix<C> m= transpose (pow_matrix (ext1, ext2)); matrix<C> u= invert (range (m, 0, 0, n, n)); vector<C> v= - (u * column (m, n)); v << promote (1, CF(ext1)); Polynomial mp= Polynomial (v); Polynomial sf= square_free (mp); Extension ext= Extension (sf); v= fill<C> (promote (0, CF(ext1)), n); v[deg(ext2.mp)]= promote (1, CF(ext1)); z1= Element (u * v); if (deg (sf) < deg (mp)) z1= rem (z1, sf); v= fill<C> (promote (0, CF(ext1)), n); v[1]= promote (1, CF(ext1)); z2= Element (u * v); if (deg (sf) < deg (mp)) z2= rem (z2, sf); return ext; } }
algebraic_number_extension<C,Ball> mmx::join | ( | const algebraic_number_extension< C, Ball > & | ext1, |
const algebraic_number_extension< C, Ball > & | ext2, | ||
typename algebraic_number_extension< C, Ball >::El & | z1, | ||
typename algebraic_number_extension< C, Ball >::El & | z2 | ||
) |
Definition at line 289 of file algebraic_number.hpp.
References C, column(), deg(), Element, eval(), Extension, Field, hard_eq(), invert(), Polynomial, pow_matrix(), range(), rem(), shrink(), square_free(), and transpose().
{ // Return the smallest common extension ext of ext1 and ext2 // On exit, z1 and z2 contains the primitive els of ext1 and ext2 inside ext if (deg (ext1.ext.mp) == 1) { z1= Polynomial (-ext1.ext.mp[0]/ext1.ext.mp[1]); z2= Polynomial (C(1), (nat) 1); return ext2; } else if (deg (ext2.ext.mp) == 1) { z1= Polynomial (C(1), (nat) 1); z2= Polynomial (-ext2.ext.mp[0]/ext2.ext.mp[1]); return ext1; } else if (hard_eq (ext1, ext2)) { z1= Polynomial (C(1), (nat) 1); z2= Polynomial (C(1), (nat) 1); return ext1; } else { nat n= deg (ext1.ext.mp) * deg (ext2.ext.mp); matrix<C> m= transpose (pow_matrix (ext1.ext, ext2.ext)); matrix<C> u= invert (range (m, 0, 0, n, n)); vector<C> v= - (u * column (m, n)); v << C(1); Polynomial mp= Polynomial (v); Polynomial sf= square_free (mp); Extension ext= Extension (sf); v= fill<C> (C(0), n); v[deg(ext2.ext.mp)]= C(1); z1= Element (u * v); if (deg (sf) < deg (mp)) z1= rem (z1, sf); v= fill<C> (C(0), n); v[1]= C(1); z2= Element (u * v); if (deg (sf) < deg (mp)) z2= rem (z2, sf); Ball x; nat old_precision= mmx_bit_precision; while (true) { x= eval (ext1, ext2, column (m, 1)); if (shrink (ext.mp, x)) break; mmx_bit_precision= mmx_bit_precision << 1; } mmx_bit_precision= old_precision; return Field (ext, x); } }
Definition at line 1171 of file matrix.hpp.
References CF(), cols(), is_non_scalar(), Matrix, range(), rows(), and tab().
Referenced by GLUE_109(), GLUE_39(), and GLUE_64().
Definition at line 89 of file series_implicit.hpp.
Referenced by known_series_rep< C, V, UV >::next(), operator*(), operator+(), and operator-().
{ ASSERT (c->i2 == c->i1, "cast failed"); return c->b; }
Definition at line 365 of file series_implicit.hpp.
References Series_rep.
{ return (Series_rep*) new known_series_rep<C,V,UV> (f); }
Definition at line 1196 of file matrix.hpp.
References image(), is_non_scalar(), is_square_matrix(), Matrix, rows(), and vertical_join().
Referenced by GLUE_100(), GLUE_30(), and GLUE_55().
{ ASSERT (is_non_scalar (m), "non-scalar matrix expected"); ASSERT (is_square_matrix (m), "square matrix expected"); Matrix r= image (v); Matrix p= m; while (true) { nat rk= rows (r); r= image (vertical_join (r, r*p)); if (rows (r) <= rk) return r; p= p*p; } }
Definition at line 796 of file series.hpp.
References Series_rep.
{ return (Series_rep*) new lcm_series_rep<C,V> (f, g); }
polynomial<C,V> mmx::lcm | ( | const polynomial< C, V > & | P1, |
const polynomial< C, V > & | P2 | ||
) | [inline] |
Definition at line 828 of file polynomial.hpp.
Referenced by lcm_series_rep< C, V >::expression(), GLUE_132(), GLUE_26(), GLUE_35(), GLUE_41(), and GLUE_49().
{ typedef implementation<polynomial_gcd,V> Pol; return Pol::lcm (P1, P2); }
Definition at line 45 of file series_elementary.hpp.
Referenced by GLUE_36(), GLUE_51(), pow(), and ramify().
{
return unary_recursive_series<log_op> (f);
}
Definition at line 50 of file series_elementary.hpp.
{
return unary_recursive_series<log_op> (f, c);
}
polynomial<Center_type(C),V> mmx::lower | ( | const polynomial< C, V > & | p | ) |
Definition at line 1402 of file polynomial.hpp.
{
return unary_map<lower_op> (p); }
Definition at line 678 of file matrix.hpp.
{
return unary_map<lower_op> (m); }
polynomial<C,V> mmx::lshiftz | ( | const polynomial< C, V > & | P, |
const int & | shift | ||
) |
Definition at line 1235 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, range(), seg(), and shift().
Referenced by ser_carry_separable_root_op::binpow_no_tangent(), ser_carry_pth_root_reg_op::binpow_no_tangent_normalized(), ser_carry_pth_root_reg_op::def(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_ducos_inc< BV > >::defected_prem(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_naive_inc< W > >::defected_prem(), lshiftz_series_vector_rep< C, V, W >::expression(), lshiftz_series_matrix_rep< C, V, U >::expression(), lshiftz_series_rep< C, V >::expression(), GLUE_124(), GLUE_14(), GLUE_20(), GLUE_21(), GLUE_27(), GLUE_28(), GLUE_72(), GLUE_98(), implementation< series_compose, U, series_naive >::reverse_series_rep< C, V >::initialize(), implementation< series_divide, U, series_carry_naive >::div_series_rep< M, V >::initialize(), implementation< polynomial_gcd, X, polynomial_series< BV > >::inv_mod_polynomial_series_rep< C, U, V, W >::initialize(), implementation< matrix_multiply, V, matrix_balanced< W > >::mat_lshift(), minimal_polynomial_bis(), implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::mul_series_rep< M, V >::mul_series_rep(), normalize(), rec_prod(), rec_square(), shift1(), shift2(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate(), and implementation< series_pth_root, U, series_carry_p_adic< W > >::unsep_root().
{ typedef implementation<polynomial_linear,V> Pol; if (shift == 0) return P; else if (shift <= -((int) N(P))) return promote (0, P); else if (shift < 0) return range (P, (nat) (-shift), N(P)); else { nat n= N(P) + shift; nat l= aligned_size<C,V> (n); C* r= mmx_formatted_new<C> (l, CF(P)); Pol::copy (r+shift, seg (P), N(P)); return Polynomial (r, n, l, CF(P)); } }
Definition at line 821 of file series.hpp.
References CF(), is_exact_zero(), Series, Series_rep, and shift().
{ if (is_exact_zero (f)) return Series (CF(f)); return (Series_rep*) new lshiftz_series_rep<C,V> (f, shift); }
series< matrix<C,U> ,V> mmx::lshiftz_series_matrix | ( | const series< matrix< C, U >, V > & | f, |
const nat & | r, | ||
const nat & | c, | ||
const int & | shift = 1 |
||
) | [inline] |
Definition at line 146 of file series_matrix.hpp.
References as_series(), CF(), is_exact_zero(), Matrix_series, Series, and shift().
Referenced by ldiv_mat_mat_series_rep< C, V, U >::initialize(), and ldiv_sc_mat_mat_series_rep< C, V, U, UU >::initialize().
{ if (is_exact_zero (f)) { Series zero (get_format1 (CF(f))); return as_series (Matrix_series (zero, r, c)); } return (series_rep<Matrix,V>*) new lshiftz_series_matrix_rep<C,V,U> (f, r, c, shift); }
series< vector<C,W> ,V> mmx::lshiftz_series_vector | ( | const series< vector< C, W >, V > & | f, |
const nat & | n, | ||
const int & | shift = 1 |
||
) | [inline] |
Definition at line 152 of file series_vector.hpp.
References as_series(), CF(), is_exact_zero(), Series, shift(), and Vector_series.
Referenced by ldiv_mat_series_rep< C, V, W, U >::initialize(), ldiv_sc_mat_series_rep< C, V, W, U >::initialize(), rec_prod(), and rec_square().
{ if (is_exact_zero (f)) { Series zero (get_format1 (CF(f))); return as_series (Vector_series (zero, n)); } return (series_rep<Vector,V>*) new lshiftz_series_vector_rep<C,V,W> (f, n, shift); }
double mmx::magnitude | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 662 of file matrix.hpp.
{
return big<max_magnitude_op> (m); }
double mmx::magnitude | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1386 of file polynomial.hpp.
{
return big<max_magnitude_op> (p); }
D matrix<D> mmx::map | ( | const function_1< D, Argument(S1) > & | fun, |
const matrix< S1 > & | m, | ||
const format< D > & | fm | ||
) |
series<D> mmx::map | ( | D(*)(const S1 &) | fun, |
const series< S1 > & | x1, | ||
const format< D > & | fm | ||
) | [inline] |
quotient<D,D> mmx::map | ( | const function_1< D, Argument(S1) > & | fun, |
const quotient< S1, S1 > & | x | ||
) |
Definition at line 124 of file quotient.hpp.
References denominator(), and numerator().
{ return quotient<D,D> (fun (numerator (x)), fun (denominator (x))); }
quotient<D,D> mmx::map | ( | D(*)(const S1 &) | fun, |
const quotient< S1, S1 > & | x | ||
) |
Definition at line 129 of file quotient.hpp.
References denominator(), and numerator().
{ return quotient<D,D> (fun (numerator (x)), fun (denominator (x))); }
series<D> mmx::map | ( | const function_1< D, Argument(S1) > & | fun, |
const series< S1 > & | f, | ||
const format< D > & | fm | ||
) |
Definition at line 587 of file series.hpp.
References D, and Series_variant.
{ typedef map_series_rep<D,typename Series_variant(D), S1,typename Series_variant(S1) > Mapper; return (series_rep<D>*) new Mapper (fun, f, fm); }
matrix<D> mmx::map | ( | D(*)(const S1 &) | fun, |
const matrix< S1 > & | x1, | ||
const format< D > & | fm | ||
) | [inline] |
polynomial<D> mmx::map | ( | const function_1< D, Argument(S1) > & | fun, |
const polynomial< S1 > & | p1, | ||
const format< D > & | fm | ||
) |
polynomial<D> mmx::map | ( | D(*)(const S1 &) | fun, |
const polynomial< S1 > & | p1, | ||
const format< D > & | fm | ||
) | [inline] |
static vector< series<C,V> ,W> mmx::matrix_mul_nocarry | ( | const matrix< C, U > & | mat, |
const vector< series< C, V >, W > & | v | ||
) | [inline, static] |
Definition at line 218 of file series_vector.hpp.
References D, Series_variant, and W.
static matrix< series<C,V> ,U> mmx::matrix_mul_nocarry | ( | const matrix< C, UU > & | mat, |
const matrix< series< C, V >, U > & | m | ||
) | [inline, static] |
Definition at line 189 of file series_matrix.hpp.
References D, and Series_variant.
Referenced by ldiv_sc_mat_series_rep< C, V, W, U >::initialize(), and ldiv_sc_mat_mat_series_rep< C, V, U, UU >::initialize().
{ typedef typename Series_variant(D) SV; return as<Matrix_series> (as<matrix<series<C,SV>, U> > (mat) * as<matrix<series<C,SV>, U> > (m)); }
static vector< series<C,V> ,W> mmx::matrix_mul_quo | ( | const matrix< C, U > & | mat, |
const vector< series< C, V >, W > & | v | ||
) | [static] |
Definition at line 292 of file series_vector.hpp.
References C, carry_add_rem(), carry_mul_rem_series(), carry_special_add(), CF(), cols(), is_a_scalar(), is_non_scalar(), N(), rows(), Series, and Vector_series.
{ nat m= rows(mat), n= cols(mat); ASSERT (N(v) == n, "sizes don't match"); if (is_a_scalar (mat)) return as<Series> (mat.scalar()) * v; ASSERT (is_non_scalar (v), "non-scalar vector expected"); Series zero (get_format1 (CF(v))); Vector_series w (zero, m); Series mr, mq, c, ar, aq; for (nat k=0; k < m; k++) { mr = carry_mul_rem_series (mat(k,0), v[0], mq); c = mq; ar = mr; for (nat l=1; l < n; l++) { if (mat (k,l) == C(0)) { mr = zero; mq = zero; aq = zero; continue; } mr = carry_mul_rem_series (mat(k,l), v[l], mq); ar = carry_add_rem (ar, mr, aq); c = carry_special_add (c, mq, aq); } w[k] = c; } return w; }
static matrix< series<C,V> ,U> mmx::matrix_mul_quo | ( | const matrix< C, UU > & | Mat, |
const matrix< series< C, V >, U > & | ma | ||
) | [static] |
Definition at line 197 of file series_matrix.hpp.
References carry_add_rem(), carry_mul_rem_series(), carry_special_add(), CF(), cols(), is_a_scalar(), is_exact_zero(), is_non_scalar(), Matrix, Matrix_series, rows(), and Series.
Referenced by ldiv_sc_mat_series_rep< C, V, W, U >::initialize(), and ldiv_sc_mat_mat_series_rep< C, V, U, UU >::initialize().
{ Matrix mat= as<Matrix> (Mat); nat m= rows(mat), n= cols(mat); ASSERT (rows(ma) == n, "sizes don't match"); if (is_a_scalar (mat)) return as<Series> (mat.scalar()) * ma; ASSERT (is_non_scalar (ma), "non-scalar matrix expected"); Series zero (CF(Mat)); Matrix_series w (zero, m, cols(ma)); Series mr, mq, c, ar, aq; for (nat k=0; k < m; k++) for (nat j=0; j < cols(ma); j++) { mr = carry_mul_rem_series (mat(k,0), ma(0,j), mq); c = mq; ar = mr; for (nat l=1; l < n; l++) { if (is_exact_zero (mat (k,l))) { mr = zero; mq = zero; aq = zero; continue; } mr = carry_mul_rem_series (mat(k,l), ma(l,j), mq); ar = carry_add_rem (ar, mr, aq); c = carry_special_add (c, mq, aq); } w(k,j) = c; } return w; }
xnat matrix_product_bit_size | ( | const integer * | s1, |
nat | s1_rs, | ||
nat | s1_cs, | ||
const integer * | s2, | ||
nat | s2_rs, | ||
nat | s2_cs, | ||
nat | r, | ||
nat | l, | ||
nat | c | ||
) |
Definition at line 18 of file matrix_integer.cpp.
Referenced by matrix_crt_multiply_helper< integer >::size().
{ double count= 1.0; xnat sz = 0; // NOTE: the largest integer in the result will be bounded by // count * 2^sz at the end. The bound is computed carefully, // so as to be both fast and relatively sharp. for (nat k=0; k<l; k++) { xnat sz1= 0, sz2= 0; const integer* ss1= s1 + k * s1_cs; const integer* ss2= s2 + k * s2_rs; for (nat i=0; i<r; i++, ss1 += s1_rs) sz1= max (sz1, bit_size (*ss1)); for (nat j=0; j<c; j++, ss2 += s2_cs) sz2= max (sz2, bit_size (*ss2)); xnat szs= sz1 + sz2; if (szs > sz) { if (szs >= sz + 30) { count= (count / 1.0e9) + 1.000000001; sz = szs; } else { count= (count / ((double) (1 << (szs - sz)))) + 1.000000001; sz = szs; } } else { if (sz >= szs + 30) count += 1.0e-9; else count += 1.000000001 / ((double) (1 << (sz - szs))); } } return sz + ((xnat) logb (count)) + 1; }
xnat max_bit_size | ( | const integer * | src, |
nat | n | ||
) |
Definition at line 113 of file kronecker_integer.cpp.
Referenced by mul_kronecker(), and square_kronecker().
{ xnat m= 0; for (nat i=0; i<n; i++) m= max (m, bit_size (src[i])); return m; }
nat mmx::max_polynomial_size | ( | const polynomial< C, V > * | src, |
nat | n | ||
) |
Definition at line 26 of file kronecker_polynomial.hpp.
References N().
Referenced by div_kronecker(), mul_kronecker(), and square_kronecker().
{ nat m= 0; for (nat i= 0; i < n; i++) m= max (N(src[i]), m); return m; }
polynomial<C,typename polynomial_variant_helper< C >::PV > mmx::minimal_polynomial | ( | const vector< C, W > & | v | ) | [inline] |
Definition at line 859 of file polynomial.hpp.
References minimal_polynomial_bis().
{ polynomial<C,typename Polynomial_variant(C) > P; minimal_polynomial_bis (P, v); return P; }
void mmx::minimal_polynomial_bis | ( | polynomial< C, V > & | p, |
const vector< C, W > & | v | ||
) | [inline] |
Definition at line 846 of file polynomial.hpp.
References deg(), lshiftz(), N(), pade(), Polynomial, and reverse().
Referenced by minimal_polynomial().
{ // p is the minimal polynomial of the sequence of the elements in v // Algorithm 12.19 of "Modern Computer Algebra" nat n= N(v); nat k= n >> 1; ASSERT ((n & 1) == 0, "even size expected"); Polynomial h (v), s, t; pade (h, n, k, s, t); t= reverse (t); p= (deg(t) < 1 + deg(s)) ? lshiftz (t, 1 + deg (s) - deg (t)) : t; }
static mmx::mmx_ball | ( | mmx_floating | , |
mmx_floating | |||
) | const [static] |
Definition at line 60 of file glue_algebraic_number.cpp.
References as_ball().
static mmx::mmx_ball | ( | mmx_floating | , |
complex< mmx_floating > | |||
) | const [static] |
Definition at line 205 of file glue_algebraic_number.cpp.
References as_ball().
static mmx::mmx_modular | ( | int | ) | const [static] |
modulus< typename Crter::base , typename Crter::modulus_variant> mmx::moduli_product | ( | Crter & | crter | ) | [inline] |
Definition at line 314 of file crt_naive.hpp.
Referenced by implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::annulator(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tevaluate(), and implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate().
{
return crter.product (); }
Monomial mmx::monomial_val | ( | const quotient_series< Series, Monomial > | f | ) | [inline] |
Definition at line 119 of file quotient_series.hpp.
Referenced by operator/().
{ return monomial_val (f->f) * f->m; }
algebraic_number_extension<C,Ball>::El mmx::mul | ( | const algebraic_number_extension< C, Ball > & | ext, |
const typename algebraic_number_extension< C, Ball >::El & | p1, | ||
const typename algebraic_number_extension< C, Ball >::El & | p2 | ||
) | [inline] |
Definition at line 237 of file algebraic_number.hpp.
References mul().
{ return mul (ext.ext, p1, p2); }
algebraic_extension<C>::El mmx::mul | ( | const algebraic_extension< C > & | ext, |
const typename algebraic_extension< C >::El & | p1, | ||
const typename algebraic_extension< C >::El & | p2 | ||
) | [inline] |
Definition at line 102 of file algebraic_extension.hpp.
References rem().
Referenced by implementation< polynomial_evaluate, V, polynomial_naive >::annulator(), implementation< polynomial_compose, V, polynomial_naive >::compose(), fft_mul(), roots_triadic_helper< CC, UU, SS >::fft_shift(), fft_simd_transformer< C, FFTER, FFTER_SIMD, thr >::inverse_transform(), fft_triadic_threads_transformer< C, FFTER, thr >::inverse_transform_triadic(), implementation< matrix_invert, V, matrix_naive >::invert(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::invert_hi(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::invert_lo(), implementation< matrix_iterate, V, matrix_naive >::iterate_mul(), multiplier< modular< modulus< C, modulus_int_preinverse< size > >, V > >::lmul(), implementation< polynomial_multiply, V, polynomial_balanced_tft< W > >::mul(), implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_tangent< CV > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_inc< W, Th, Th_rec > >::mul(), implementation< polynomial_multiply, V, polynomial_quotient< W > >::mul(), implementation< polynomial_multiply, V, polynomial_modular< W > >::mul(), implementation< polynomial_multiply, V, polynomial_kronecker< W > >::mul(), implementation< polynomial_multiply, V, polynomial_complex< CV > >::mul(), implementation< polynomial_multiply, V, polynomial_balanced< W > >::mul(), implementation< matrix_multiply, V, matrix_quotient< W > >::mul(), implementation< matrix_multiply, V, matrix_crt< W > >::mul(), implementation< matrix_multiply, V, matrix_complex< CV > >::mul(), implementation< matrix_multiply, V, matrix_balanced< W > >::mul(), implementation< matrix_multiply_base, Z, matrix_assume_aligned< V, W > >::mul(), mul(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul_negative_cyclic(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul_negative_cyclic_truncated(), implementation< polynomial_vectorial, V, polynomial_naive >::mul_sc(), implementation< polynomial_multiply, V, polynomial_schonhage_triadic_inc< W, Th > >::mul_triadic(), implementation< polynomial_multiply, V, polynomial_karatsuba< W > >::multiply(), implementation< series_multiply, U, series_relaxed< W > >::mul_series_rep< C, V >::next(), operator*(), implementation< polynomial_euclidean, V, polynomial_dicho< BV > >::pade(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::pinvert_hi(), implementation< polynomial_divide, V, polynomial_ring_dicho_inc< W > >::pquo_rem(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::pquo_rem(), implementation< matrix_iterate, V, matrix_naive >::project_iterate_mul(), implementation< polynomial_divide, V, polynomial_ring_dicho_inc< W > >::quo_rem(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::quo_rem(), multiplier< modular< modulus< C, modulus_int_preinverse< size > >, V > >::rmul(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::negative_cyclic_roots_helper< Cp >::fft_mul_sc_op::set_op(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::shift(), implementation< polynomial_multiply, V, polynomial_unrolled< W, m > >::square(), implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::square(), implementation< polynomial_multiply, V, polynomial_tangent< CV > >::square(), implementation< polynomial_multiply, V, polynomial_schonhage_inc< W, Th, Th_rec > >::square(), and implementation< polynomial_evaluate, V, polynomial_naive >::tevaluate().
{ return rem (p1 * p2, ext.mp); }
void mmx::mul_complete | ( | D * | dest, |
const S1 * | src1, | ||
const S2 * | src2, | ||
nat | r, | ||
nat | rr, | ||
nat | l, | ||
nat | ll, | ||
nat | c, | ||
nat | cc, | ||
nat | hr, | ||
nat | hl, | ||
nat | hc | ||
) |
Definition at line 44 of file matrix_unrolled.hpp.
{ typedef implementation<matrix_multiply,V> Mat; typedef typename Op::acc_op Acc; if (hr < r && hl != 0 && hc != 0) Mat::template mul<Op > (dest + Mat::index (hr, 0, rr, cc), src1 + Mat::index (hr, 0, rr, ll), src2, r-hr, rr, hl, ll, hc, cc); if (hc < c && hl != 0) Mat::template mul<Op > (dest + Mat::index (0, hc, rr, cc), src1, src2 + Mat::index (0, hc, ll, cc), r , rr, hl, ll, c-hc, cc); if (hl < l) Mat::template mul<Acc> (dest, src1 + Mat::index (0, hl, rr, ll), src2 + Mat::index (hl, 0, ll, cc), r , rr, l-hl, ll, c , cc); }
void mul_kronecker | ( | unsigned short int * | dest, |
const unsigned short int * | src1, | ||
nat | n1, | ||
const unsigned short int * | src2, | ||
nat | n2 | ||
) |
Definition at line 184 of file kronecker_int.cpp.
{
void mmx::mul_kronecker | ( | signed short int * | dest, |
const signed short int * | src1, | ||
nat | n1, | ||
const signed short int * | src2, | ||
nat | n2 | ||
) |
Definition at line 183 of file kronecker_int.cpp.
{
void mul_kronecker | ( | signed char * | dest, |
const signed char * | src1, | ||
nat | n1, | ||
const signed char * | src2, | ||
nat | n2 | ||
) |
Definition at line 181 of file kronecker_int.cpp.
Referenced by implementation< polynomial_multiply, V, polynomial_kronecker< W > >::mul().
{
void mmx::mul_kronecker | ( | modular< modulus< I, MoV >, MaV > * | dest, |
const modular< modulus< I, MoV >, MaV > * | s1, | ||
nat | n1, | ||
const modular< modulus< I, MoV >, MaV > * | s2, | ||
nat | n2 | ||
) | [inline] |
Definition at line 51 of file kronecker_modular_int.hpp.
References I, and mul_kronecker_mod().
{ mul_kronecker_mod ((I*) (void*) dest, (const I*) (const void*) s1, n1, (const I*) (const void*) s2, n2, * C::get_modulus()); }
void mmx::mul_kronecker | ( | short int * | dest, |
const short int * | src1, | ||
nat | n1, | ||
const short int * | src2, | ||
nat | n2 | ||
) |
void mul_kronecker | ( | unsigned char * | dest, |
const unsigned char * | src1, | ||
nat | n1, | ||
const unsigned char * | src2, | ||
nat | n2 | ||
) |
Definition at line 182 of file kronecker_int.cpp.
{
void mul_kronecker | ( | integer * | dest, |
const integer * | src1, | ||
nat | n1, | ||
const integer * | src2, | ||
nat | n2 | ||
) |
Definition at line 121 of file kronecker_integer.cpp.
References decode_kronecker(), encode_kronecker(), and max_bit_size().
{ /* mmout << "n1= " << n1 << ", " << "n2= " << n2 << "\n"; for (nat i=0; i<n1; i++) mmout << " s" << i << "\t" << src1[i] << "\n"; for (nat i=0; i<n2; i++) mmout << " t" << i << "\t" << src2[i] << "\n"; */ if (n1 == 0 && n2 == 0) return; for (nat i= 0; i < n1 + n2 - 1; i++) dest[i]= 0; while (n1 > 0 && src1[n1-1] == 0) n1--; while (n2 > 0 && src2[n2-1] == 0) n2--; if (n1 == 0 || n2 == 0) return; xnat bits1= max_bit_size (src1, n1); xnat bits2= max_bit_size (src2, n2); xnat bits= bits1 + bits2 + bit_size (integer (min (n1, n2))) + 1; integer aux1, aux2; //mmout << "Encoding\n"; //nat start= mmx_time (); encode_kronecker (aux1, src1, n1, bits); encode_kronecker (aux2, src2, n2, bits); //mmout << "Done in " << mmx_time () - start << "ms\n"; //mmout << "Multiplying\n"; //start= mmx_time (); integer aux= aux1*aux2; //mmout << "Done in " << mmx_time () - start << "ms\n"; //mmout << "Decoding\n"; //start= mmx_time (); decode_kronecker (dest, n1+n2-1, bits, aux); //mmout << "Done in " << mmx_time () - start << "ms\n"; /* integer* dest1= mmx_new<integer> (n1+n2-1); decode_kronecker_naive (dest1, n1+n2-1, bits, aux); decode_kronecker (dest, n1+n2-1, bits, aux); for (nat i=0; i<n1+n2-1; i++) { mmout << "naive\t" << i << "\t" << dest1[i] << "\n"; mmout << "fast\t" << i << "\t" << dest[i] << "\n"; } mmx_delete<integer> (dest1, n1+n2-1); */ }
void mul_kronecker | ( | int * | dest, |
const int * | src1, | ||
nat | n1, | ||
const int * | src2, | ||
nat | n2 | ||
) |
Definition at line 185 of file kronecker_int.cpp.
{
void mul_kronecker | ( | unsigned int * | dest, |
const unsigned int * | src1, | ||
nat | n1, | ||
const unsigned int * | src2, | ||
nat | n2 | ||
) |
Definition at line 186 of file kronecker_int.cpp.
{
void mul_kronecker | ( | unsigned long long int * | dest, |
const unsigned long long int * | src1, | ||
nat | n1, | ||
const unsigned long long int * | src2, | ||
nat | n2 | ||
) |
Definition at line 190 of file kronecker_int.cpp.
{
void mul_kronecker | ( | long int * | dest, |
const long int * | src1, | ||
nat | n1, | ||
const long int * | src2, | ||
nat | n2 | ||
) |
Definition at line 187 of file kronecker_int.cpp.
{
void mul_kronecker | ( | long long int * | dest, |
const long long int * | src1, | ||
nat | n1, | ||
const long long int * | src2, | ||
nat | n2 | ||
) |
Definition at line 189 of file kronecker_int.cpp.
{
void mul_kronecker | ( | unsigned long int * | dest, |
const unsigned long int * | src1, | ||
nat | n1, | ||
const unsigned long int * | src2, | ||
nat | n2 | ||
) |
Definition at line 188 of file kronecker_int.cpp.
{
void mmx::mul_kronecker | ( | polynomial< C, V > * | dest, |
const polynomial< C, V > * | s1, | ||
nat | n1, | ||
const polynomial< C, V > * | s2, | ||
nat | n2 | ||
) | [inline] |
Definition at line 67 of file kronecker_polynomial.hpp.
References decode_kronecker(), encode_kronecker(), max_polynomial_size(), and Polynomial.
{ typedef implementation<polynomial_linear,V> Pol; if (n1 == 0 || n2 == 0) return; if (n1 == 1) { Pol::mul_sc (dest, s2, s1[0], n2); return; } if (n2 == 1) { Pol::mul_sc (dest, s1, s2[0], n1); return; } nat m1= max_polynomial_size (s1, n1); nat m2= max_polynomial_size (s2, n2); nat m = m1 + m2 - 1; Polynomial x1, x2, y; encode_kronecker (x1, s1, n1, m); encode_kronecker (x2, s2, n2, m); y= x1 * x2; decode_kronecker (dest, y, n1 + n2 - 1, m); }
void mmx::mul_kronecker | ( | modular< modulus< I, MoV >, modular_local > * | dest, |
const modular< modulus< I, MoV >, modular_local > * | s1, | ||
const modular< modulus< I, MoV >, modular_local > * | s2, | ||
nat | n1, | ||
nat | n2 | ||
) | [inline] |
Definition at line 72 of file kronecker_modular_int.hpp.
References C, I, and mul_kronecker_mod().
{ nat l1= default_aligned_size<I> (n1), l2= default_aligned_size<I> (n2); nat spc= l1 + l2 + default_aligned_size<I> (n1 + n2 - 1); I* t1= mmx_new<I> (spc); I* t2= t1 + l1, * r= t1 + l1 + l2; for (nat i= 0; i < n1; i++) t1[i]= * s1[i]; for (nat i= 0; i < n2; i++) t2[i]= * s2[i]; I p= * get_modulus (s1[0]); mul_kronecker_mod (r, t1, n1, t2, n2, p); for (nat i= 0; i < n1 + n2 - 1; i++) dest[i]= C (* r[i], p, true); mmx_delete<I> (t1, spc); }
static void mmx::mul_kronecker_int | ( | I * | dest, |
const I * | src1, | ||
nat | n1, | ||
const I * | src2, | ||
nat | n2 | ||
) | [inline, static] |
Definition at line 159 of file kronecker_int.cpp.
References decode_kronecker(), encode_kronecker(), and I.
{ if (n1 == 0 && n2 == 0) return; for (nat i= 0; i < n1 + n2 - 1; i++) dest[i]= 0; while (n1 > 0 && src1[n1-1] == 0) n1--; while (n2 > 0 && src2[n2-1] == 0) n2--; if (n1 == 0 || n2 == 0) return; xnat bits= 16 * sizeof (I) + bit_size (min (n1, n2)); integer aux1, aux2; encode_kronecker (aux1, src1, n1, bits); encode_kronecker (aux2, src2, n2, bits); integer aux= aux1 * aux2; decode_kronecker (dest, n1+n2-1, bits, aux); }
void mul_kronecker_mod | ( | long long int * | dest, |
const long long int * | src1, | ||
nat | n1, | ||
const long long int * | src2, | ||
nat | n2, | ||
const long long int & | p | ||
) |
Definition at line 129 of file kronecker_modular_int.cpp.
{
void mul_kronecker_mod | ( | unsigned int * | dest, |
const unsigned int * | src1, | ||
nat | n1, | ||
const unsigned int * | src2, | ||
nat | n2, | ||
const unsigned int & | p | ||
) |
Definition at line 126 of file kronecker_modular_int.cpp.
{
void mul_kronecker_mod | ( | long int * | dest, |
const long int * | src1, | ||
nat | n1, | ||
const long int * | src2, | ||
nat | n2, | ||
const long int & | p | ||
) |
Definition at line 127 of file kronecker_modular_int.cpp.
{
void mul_kronecker_mod | ( | signed char * | dest, |
const signed char * | src1, | ||
nat | n1, | ||
const signed char * | src2, | ||
nat | n2, | ||
const signed char & | p | ||
) |
void mul_kronecker_mod | ( | short int * | dest, |
const short int * | src1, | ||
nat | n1, | ||
const short int * | src2, | ||
nat | n2, | ||
const short int & | p | ||
) |
Definition at line 123 of file kronecker_modular_int.cpp.
{
void mul_kronecker_mod | ( | unsigned long long int * | dest, |
const unsigned long long int * | src1, | ||
nat | n1, | ||
const unsigned long long int * | src2, | ||
nat | n2, | ||
const unsigned long long int & | p | ||
) |
Definition at line 130 of file kronecker_modular_int.cpp.
{
void mul_kronecker_mod | ( | unsigned short int * | dest, |
const unsigned short int * | src1, | ||
nat | n1, | ||
const unsigned short int * | src2, | ||
nat | n2, | ||
const unsigned short int & | p | ||
) |
Definition at line 124 of file kronecker_modular_int.cpp.
{
void mul_kronecker_mod | ( | unsigned long int * | dest, |
const unsigned long int * | src1, | ||
nat | n1, | ||
const unsigned long int * | src2, | ||
nat | n2, | ||
const unsigned long int & | p | ||
) |
Definition at line 128 of file kronecker_modular_int.cpp.
{
void mul_kronecker_mod | ( | unsigned char * | dest, |
const unsigned char * | src1, | ||
nat | n1, | ||
const unsigned char * | src2, | ||
nat | n2, | ||
const unsigned char & | p | ||
) |
Definition at line 122 of file kronecker_modular_int.cpp.
{
void mul_kronecker_mod | ( | int * | dest, |
const int * | src1, | ||
nat | n1, | ||
const int * | src2, | ||
nat | n2, | ||
const int & | p | ||
) |
Definition at line 125 of file kronecker_modular_int.cpp.
{
static void mmx::mul_kronecker_mod_int | ( | I * | dest, |
const I * | src1, | ||
nat | n1, | ||
const I * | src2, | ||
nat | n2, | ||
const I & | p | ||
) | [inline, static] |
Definition at line 99 of file kronecker_modular_int.cpp.
References decode_kronecker_mod(), and encode_kronecker().
{ if (n1 == 0 && n2 == 0) return; for (nat i= 0; i < n1 + n2 - 1; i++) dest[i]= 0; while (n1 > 0 && src1[n1-1] == 0) n1--; while (n2 > 0 && src2[n2-1] == 0) n2--; if (n1 == 0 || n2 == 0) return; xnat bits= 2 * bit_size (p-1) + bit_size (min (n1, n2)); integer aux1, aux2; encode_kronecker (aux1, src1, n1, bits); encode_kronecker (aux2, src2, n2, bits); integer aux= aux1*aux2; decode_kronecker_mod (dest, n1+n2-1, bits, aux, p); }
matrix<C> mmx::mul_matrix | ( | const algebraic_extension< C > & | ext1, |
const algebraic_extension< C > & | ext2, | ||
const vector< C > & | v | ||
) |
Definition at line 172 of file algebraic_extension.hpp.
References CF(), deg(), shift1(), and shift2().
Referenced by pow_matrix().
{ // let p (x1, x2) be the bivariate polynomial represented by v // return the matrix whose rows represent polynomials p (x1, x2) x1^i x2^j nat d1= deg (ext1.mp), d2= deg (ext2.mp); matrix<C> r (promote (0, CF(ext1)), d1*d2, d1*d2); vector<C> aux= fill<C> (promote (0, CF(ext1)), d1*d2); for (nat i1=0; i1<d1; i1++) { if (i1 == 0) for (nat k=0; k<d1*d2; k++) r (0, k)= v[k]; else { for (nat k=0; k<d1*d2; k++) aux[k]= r((i1-1)*d2, k); aux= shift1 (ext1, ext2, aux); for (nat k=0; k<d1*d2; k++) r(i1*d2, k)= aux[k]; } for (nat i2=1; i2<d2; i2++) { for (nat k=0; k<d1*d2; k++) aux[k]= r(i1*d2 + i2-1, k); aux= shift2 (ext1, ext2, aux); for (nat k=0; k<d1*d2; k++) r(i1*d2 + i2, k)= aux[k]; } } return r; }
void mmx::mul_unrolled | ( | D * | dest, |
const S1 * | src1, | ||
const S2 * | src2, | ||
nat | r, | ||
nat | rr, | ||
nat | l, | ||
nat | ll, | ||
nat | c, | ||
nat | cc | ||
) |
Definition at line 73 of file matrix_unrolled.hpp.
{ typedef implementation<matrix_multiply,V> Mat; typedef implementation<matrix_multiply_base,matrix_naive> NMat; typedef typename Op::acc_op Acc; nat nr= r/ur, nl= l/ul, nc= c/uc; if (nl == 0) NMat::template clr<Op> (dest, r, rr, c, cc); else for (nat ir=0; ir<nr; ir++) for (nat ic=0; ic<nc; ic++) { nat il=0; for (; il<1; il++) matrix_multiply_helper<Op,D,S1,S2,ur,ul,uc>:: mul_stride (dest + Mat::index (ir*ur, ic*uc, rr, cc), src1 + Mat::index (ir*ur, il*ul, rr, ll), src2 + Mat::index (il*ul, ic*uc, ll, cc), rr, ll); for (; il<nl; il++) matrix_multiply_helper<Acc,D,S1,S2,ur,ul,uc>:: mul_stride (dest + Mat::index (ir*ur, ic*uc, rr, cc), src1 + Mat::index (ir*ur, il*ul, rr, ll), src2 + Mat::index (il*ul, ic*uc, ll, cc), rr, ll); } mul_complete<Op,V> (dest, src1, src2, r, rr, l, ll, c, cc, ur*nr, ul*nl, uc*nc); }
nat mmx::N | ( | const crt_dicho_transformer< C, M, V > & | crter | ) | [inline] |
Definition at line 208 of file crt_dicho.hpp.
References crt_dicho_transformer< C, S, V >::size().
{
return crter.size ();
}
nat mmx::N | ( | const crt_naive_transformer< C, M, V > & | crter | ) | [inline] |
Definition at line 299 of file crt_naive.hpp.
References crt_naive_transformer< C, S, V >::size().
{
return crter.size ();
}
nat mmx::N | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 186 of file polynomial.hpp.
{ return P->n; }
nat mmx::N | ( | const crt_blocks_transformer< WL, WH, s, V > & | crter | ) | [inline] |
Definition at line 175 of file crt_blocks.hpp.
References crt_blocks_transformer< WL, WH, s, V >::size().
Referenced by root_series_rep< M, V >::_derive(), system_root_series_rep< M, V, W >::_eps(), root_series_rep< M, V >::_eps(), system_root_series_rep< M, V, W >::_ev_der(), root_series_rep< M, V >::_eval(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::_half_gcd(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::_multi_rem(), annihilator(), implementation< polynomial_evaluate, V, polynomial_naive >::annulator(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::annulator(), as_matrix(), as_p_expansion(), as_vector(), big_add(), big_mul(), binary_map_scalar(), binary_test(), coefficients(), compare(), compose(), contents(), moduli_helper< integer, M, fft_prime_sequence_int< t > >::covering(), crt_blocks_transformer< WL, WH, s, V >::crt_blocks_transformer(), crt_dicho_transformer< C, S, V >::crt_dicho_transformer(), as_helper< polynomial< T, TV >, polynomial< F, FV > >::cv(), as_helper< polynomial< modular< modulus< C, U1 >, U2 >, V >, Lift_type(modular< modulus< C, U1 >, U2 >)>::cv(), fast_helper< polynomial< C, V > >::dd(), decode_kronecker(), derive(), implementation< series_multiply, U, series_fast >::determine_sizes(), dilate(), direct_crt(), implementation< polynomial_evaluate, V, polynomial_naive >::evaluate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::evaluate(), evaluate(), expand(), coprime_moduli_sequence_polynomial::extend(), probable_prime_sequence_int< s >::extend(), fft_prime_sequence_int< s >::extend(), prime_sequence_int::extend(), extract_mod(), flatten(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::gcd(), implementation< polynomial_gcd, V, polynomial_naive >::gcd(), implementation< series_multiply, U, series_carry_relaxed< W > >::mul_series_rep< M, V >::get_power_of_p(), get_vector_format(), GLUE_22(), GLUE_23(), GLUE_4(), GLUE_5(), GLUE_57(), GLUE_6(), GLUE_7(), GLUE_8(), GLUE_9(), graeffe(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::half_subresultant(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::half_subresultant_rec(), hankel_matrix(), implicit_vector_series(), ldiv_mat_series_rep< C, V, W, U >::Increase_order(), ldiv_sc_mat_series_rep< C, V, W, U >::Increase_order(), vector_series_rep< C, V, W >::Increase_order(), solver_series_rep< C, V >::Increase_order(), implementation< series_multiply, U, series_fast >::mul_series_rep< C, V >::Increase_order(), system_root_series_rep< M, V, W >::increase_order_generic(), root_series_rep< M, V >::increase_order_generic(), ldiv_mat_series_rep< C, V, W, U >::initialize(), ldiv_sc_mat_series_rep< C, V, W, U >::initialize(), fixed_point_vector_series_rep< C >::initialize(), fixed_point_series_rep< C >::initialize(), system_root_series_rep< M, V, W >::initialize(), implementation< polynomial_gcd, X, polynomial_series< BV > >::inv_mod_polynomial_series_rep< C, U, V, W >::initialize(), insert_and_reduce(), integrate(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::interpolate(), inverse_base(), invert(), invert_hi(), invert_lo(), implementation< polynomial_gcd, X, polynomial_series< BV > >::invert_mod(), join(), lshiftz(), map(), implementation< matrix_multiply, V, matrix_crt< W > >::mat_direct_crt(), implementation< matrix_multiply, V, matrix_crt< W > >::mat_inverse_crt(), implementation< matrix_multiply, V, matrix_balanced< W > >::mat_size(), matrix_mul_quo(), matrix_new(), max_polynomial_size(), minimal_polynomial_bis(), implementation< matrix_multiply, V, matrix_crt< W > >::mul(), implementation< series_multiply, U, series_carry_modular_int_naive< W > >::mul_series_rep< M, V >::mul_series_rep(), implementation< polynomial_evaluate, V, polynomial_gcd_ring_dicho_inc< W > >::multi_gcd(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_rem(), vector_series_rep< C, V, W >::next(), vector_access_series_rep< C, V, W >::next(), solver_series_rep< C, V >::next(), polynomial_series_rep< C, V >::next(), implementation< series_multiply, U, series_carry_modular_int_naive< W > >::mul_series_rep< M, V >::next(), quotient_normalization_helper< polynomial< rational, V >, polynomial< rational, V > >::normalize(), nr_transpositions(), implementation< series_multiply, U, series_fast >::nrelax_mul_series_rep< C, V >::nrelax_mul_series_rep(), nth_root(), permutation::operator()(), operator*(), operator+(), polynomial< C, V >::operator+=(), operator-(), polynomial< C, V >::operator-=(), operator/(), coprime_moduli_sequence< M, V >::operator[](), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::pade(), implementation< polynomial_gcd, V, polynomial_naive >::pade(), polynomial< series< C, V >, U >::polynomial(), pquo(), prem(), primitive_part(), q_difference(), quo(), rec_prod(), rec_square(), rem(), reverse(), root_modular_naive::roots(), row_matrix(), separable_root(), set_as(), implementation< series_multiply, U, series_carry_relaxed< W > >::mul_series_rep< M, V >::Set_order(), shift(), sign(), singleton_vector(), matrix_crt_multiply_helper< C >::size(), size_bound_in_base_helper< C, I >::size(), skew_div(), solver_series_rep< C, V >::solver_series_rep(), square(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::subresultant_compose(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_ducos_inc< BV > >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_naive_inc< W > >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_ring_naive< W > >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::subresultant_sequence(), implementation< polynomial_subresultant, V, polynomial_naive >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_naive >::subresultant_sequence(), tensor_matrix(), implementation< polynomial_evaluate, V, polynomial_naive >::tevaluate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tevaluate(), implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate(), tmul(), toeplitz_matrix(), tquo(), trem(), unary_hash(), unary_map(), fast_helper< polynomial< C, V > >::uu(), val(), vandermonde(), WRAP_BINARY_IMPL(), binary_helper< polynomial< C, V > >::write(), and xderive().
{
return crter.size ();
}
nat mmx::nbcol | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 180 of file matrix.hpp.
References cols().
Referenced by bareiss_coimage(), bareiss_det(), bareiss_extended_pivoting(), bareiss_image(), and bareiss_pivoting().
{return cols(m);}
nat mmx::nbrow | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 181 of file matrix.hpp.
References rows().
Referenced by bareiss_cokernel(), bareiss_det(), bareiss_extended_pivoting(), bareiss_kernel(), bareiss_krylov(), and bareiss_pivoting().
{return rows(m);}
quotient_series<Series,Monomial> mmx::normalize | ( | const quotient_series< Series, Monomial > & | f, |
const Monomial & | dom_m | ||
) | [inline] |
Definition at line 131 of file quotient_series.hpp.
References lshiftz(), and Quotient_series.
{ return Quotient_series (lshiftz (f->f, f->m / dom_m), dom_m); }
algebraic_extension<C> mmx::normalize | ( | const algebraic_extension< C > & | ext, |
const typename algebraic_extension< C >::El & | p | ||
) |
Definition at line 331 of file algebraic_extension.hpp.
References annihilator(), and Extension.
{ return Extension (annihilator (ext, p)); }
Definition at line 181 of file algebraic.hpp.
References Algebraic, CF(), Extension, field(), Polynomial, and value().
Referenced by abs(), GLUE_36(), GLUE_4(), GLUE_7(), polynomial< C, V >::operator+=(), quotient< NT, DT >::quotient(), Re(), root(), set_as(), and REP_STRUCT< Series, Monomial >::unknown_rep().
algebraic_number_extension<C,Ball> mmx::normalize | ( | const algebraic_number_extension< C, Ball > & | ext, |
const typename algebraic_number_extension< C, Ball >::El & | p | ||
) |
Definition at line 360 of file algebraic_number.hpp.
References annihilator(), eval(), Extension, Field, Polynomial, and shrink().
{ Polynomial mp= annihilator (ext.ext, p); Ball z; nat old_precision= mmx_bit_precision; while (true) { z= eval (ext, p); if (shrink (mp, z)) break; mmx_bit_precision= mmx_bit_precision << 1; } mmx_bit_precision= old_precision; return Field (Extension (mp), z); }
nat nr_transpositions | ( | const permutation & | p | ) |
Definition at line 39 of file permutation.cpp.
References N().
Referenced by GLUE_9().
{ nat s= 0, n= N(p); for (nat i=0; i<n; i++) if (p (i) > i) s += p (i) - i; return s; }
Definition at line 144 of file root_modular.hpp.
References N(), and nth_roots().
vector< modular< modulus<C,V> ,W> > mmx::nth_roots | ( | const modular< modulus< C, V >, W > & | a, |
nat | r | ||
) |
Definition at line 136 of file root_modular.hpp.
References C, Modular, and separable_roots().
Referenced by nth_root().
{ // return all the r th roots of a C p= * get_modulus (a); if (Modular (r) == 0) return nth_roots (a, r / as<nat> (p)); return separable_roots (a, r); }
Definition at line 606 of file series.hpp.
References C, recursive(), Series_variant, and V.
{ typedef typename Series_variant (C) V; typedef implementation<series_recursive_abstractions,V> Ser; typedef typename Ser::template nullary_recursive_series_rep<Op,C,V> Nullary; series_rep<C>* rep= new Nullary (c); return recursive (series<C> (rep)); }
NT numerator | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 96 of file quotient.hpp.
Referenced by CF(), derive(), binary_helper< quotient< NT, DT > >::disassemble(), exact_eq(), exact_hash(), flatten(), GLUE_5(), hard_eq(), hard_hash(), hash(), map(), operator*(), operator+(), operator-(), operator/(), operator==(), precision(), sign(), binary_helper< quotient< NT, DT > >::write(), and xderive().
{ return x.n; }
Definition at line 296 of file series.hpp.
{
return !binary_test<equal_op> (f1, f2); }
bool mmx::operator!= | ( | const algebraic< C, Extension > & | x1, |
const algebraic< C, Extension > & | x2 | ||
) | [inline] |
bool mmx::operator!= | ( | const algebraic_number_extension< C, Ball > & | x, |
const algebraic_number_extension< C, Ball > & | y | ||
) | [inline] |
Definition at line 80 of file algebraic_number.hpp.
{
return (*x) != (*y); }
bool mmx::operator!= | ( | const quotient_series< Series, Monomial > & | f, |
const quotient_series< Series, Monomial > & | g | ||
) | [inline] |
Definition at line 97 of file quotient_series.hpp.
{
return !(f == g); }
bool mmx::operator!= | ( | const matrix< C, V > & | m, |
const K & | c | ||
) |
bool mmx::operator!= | ( | const algebraic_extension< C > & | x, |
const algebraic_extension< C > & | y | ||
) | [inline] |
Definition at line 60 of file algebraic_extension.hpp.
{
return (*x) != (*y); }
bool mmx::operator!= | ( | const quotient< NT, DT > & | x1, |
const quotient< NT, DT > & | x2 | ||
) | [inline] |
Definition at line 145 of file quotient.hpp.
{
return !(x1 == x2); }
polynomial<C,V> mmx::operator* | ( | const polynomial< C, V > & | P, |
const C & | c | ||
) |
Definition at line 547 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Definition at line 1031 of file matrix.hpp.
References CF(), cols(), is_a_scalar(), Matrix, rows(), seg(), and tab().
Definition at line 588 of file matrix.hpp.
{
return binary_map_scalar<lmul_op> (m, c); }
Definition at line 192 of file series_implicit.hpp.
References C, is_exact_zero(), and UC.
{ //mmerr << " scalar times " << c1 << ", " << c2 << "\n"; if (is_exact_zero (c1)) return c1; if (is_exact_zero (c2)) return UC (c1->f, C (0), mmx_new<C> (0), c1->i1, c1->i1); nat n= c1->i2 - c1->i1; C* s= mmx_new<C> (n); for (nat i=0; i<n; i++) s[i]= c1->s[i] * c2; return UC (c1->f, c1->b * c2, s, c1->i1, c1->i2); }
Definition at line 242 of file quotient.hpp.
References denominator(), DT, gcd(), numerator(), and Quotient.
{ DT g = gcd (c, denominator (x)); return Quotient ((c / g) * numerator (x), denominator (x) / g); }
Definition at line 248 of file quotient.hpp.
References denominator(), DT, gcd(), numerator(), and Quotient.
{ DT g = gcd (c, denominator (x)); return Quotient (numerator (x) * (c / g), denominator (x) / g); }
series< unknown<C,V> ,UV> mmx::operator* | ( | const series< unknown< C, V >, UV > & | f, |
const series< unknown< C, V >, UV > & | g | ||
) |
Definition at line 414 of file series_implicit.hpp.
References CF(), and is_exact_zero().
{ if (is_exact_zero (f) || is_exact_zero (g)) return series<UC,UV> (CF(f)); return (series_rep<UC,UV>*) new subst_mul_series_rep<C,V,UV> (f, g); }
quotient_series<Series,Monomial> mmx::operator* | ( | const typename scalar_type_helper< Series >::val & | c, |
const quotient_series< Series, Monomial > & | f | ||
) |
Definition at line 192 of file quotient_series.hpp.
References Quotient_series.
{ return Quotient_series (c * f->f, f->m); }
Definition at line 586 of file matrix.hpp.
{
return binary_map_scalar<rmul_op> (m, c); }
quotient< polynomial<C,V> , polynomial<C,V> > mmx::operator* | ( | const C & | c, |
const quotient< polynomial< C, V >, polynomial< C, V > > & | x | ||
) | [inline] |
Definition at line 47 of file quotient_polynomial.hpp.
References denominator(), numerator(), and Quotient.
{ return Quotient (c * numerator (x), denominator (x)); }
quotient_series<Series,Monomial> mmx::operator* | ( | const quotient_series< Series, Monomial > & | f, |
const quotient_series< Series, Monomial > & | g | ||
) |
Definition at line 202 of file quotient_series.hpp.
References Quotient_series.
{ return Quotient_series (f->f * g->f, f->m * g->m); }
Definition at line 269 of file series_implicit.hpp.
References is_exact_zero(), known(), substitute(), and UC.
{ //mmerr << " times " << c1 << ", " << c2 << "\n"; if (is_exact_zero (c1)) return c1; if (is_exact_zero (c2)) return c2; if (c1->i1 == c1->i2) return known (c1) * c2; if (c2->i1 == c2->i2) return c1 * known (c2); UC c1b= substitute (c1); UC c2b= substitute (c2); if (c1b->i1 == c1b->i2) return known (c1b) * c2b; if (c2b->i1 == c2b->i2) return c1b * known (c2b); ERROR ("invalid product of unknown coefficients"); }
quotient<NT,DT> mmx::operator* | ( | const quotient< NT, DT > & | x1, |
const quotient< NT, DT > & | x2 | ||
) | [inline] |
Definition at line 254 of file quotient.hpp.
References denominator(), DT, gcd(), numerator(), and Quotient.
{ DT g1 = gcd (numerator (x1), denominator (x2)); DT g2 = gcd (numerator (x2), denominator (x1)); return Quotient ((numerator (x1) / g1) * (numerator (x2) / g2), (denominator (x1) / g2) * (denominator (x2) / g1)); }
Definition at line 205 of file series_implicit.hpp.
References C, is_exact_zero(), and UC.
{ //mmerr << " scalar times " << c1 << ", " << c2 << "\n"; if (is_exact_zero (c2)) return c2; if (is_exact_zero (c1)) return UC (c2->f, C (0), mmx_new<C> (0), c2->i1, c2->i1); nat n= c2->i2 - c2->i1; C* s= mmx_new<C> (n); for (nat i=0; i<n; i++) s[i]= c1 * c2->s[i]; return UC (c2->f, c1 * c2->b, s, c2->i1, c2->i2); }
multiplier<C> X mmx::operator* | ( | const X & | a, |
const multiplier< C > & | b | ||
) | [inline] |
Definition at line 55 of file multiplier.hpp.
{
X c (a);
Multiplier::rmul (c, b);
return c; }
quotient_series<Series,Monomial> mmx::operator* | ( | const quotient_series< Series, Monomial > & | f, |
const typename scalar_type_helper< Series >::val & | c | ||
) |
Definition at line 197 of file quotient_series.hpp.
References Quotient_series.
{ return Quotient_series (c * f->f, f->m); }
quotient< polynomial<C,V> , polynomial<C,V> > mmx::operator* | ( | const quotient< polynomial< C, V >, polynomial< C, V > > & | x, |
const C & | c | ||
) | [inline] |
Definition at line 52 of file quotient_polynomial.hpp.
References denominator(), numerator(), and Quotient.
{ return Quotient (numerator (x) * c, denominator (x)); }
X mmx::operator* | ( | const multiplier< C > & | b, |
const X & | a | ||
) | [inline] |
Definition at line 61 of file multiplier.hpp.
{
X c (a);
Multiplier::lmul (c, b);
return c; }
Definition at line 727 of file series.hpp.
References is_exact_zero(), and Series.
{ if (is_exact_zero (f) || is_exact_zero (c)) return Series (get_format (c)); return binary_scalar_series<rmul_op> (f, c); }
Definition at line 1042 of file matrix.hpp.
References CF(), cols(), is_a_scalar(), Matrix, rows(), seg(), and tab().
polynomial<C,V> mmx::operator* | ( | const polynomial< C, V > & | P1, |
const polynomial< C, V > & | P2 | ||
) |
Definition at line 502 of file polynomial.hpp.
permutation operator* | ( | const permutation & | p1, |
const permutation & | p2 | ||
) |
Definition at line 47 of file permutation.cpp.
References N().
Definition at line 1062 of file series.hpp.
{ typedef implementation<series_multiply,V> Ser; return Ser::ser_mul (f, g); }
quotient_series<Series,Monomial> mmx::operator* | ( | const quotient_series< Series, Monomial > & | f, |
const Monomial & | m | ||
) |
Definition at line 187 of file quotient_series.hpp.
References Quotient_series.
{ return Quotient_series (f->f, f->m * m); }
Definition at line 875 of file matrix.hpp.
References CF(), cols(), is_a_scalar(), is_non_scalar(), N(), rows(), matrix< C, V >::scalar(), seg(), and tab().
{ typedef implementation<vector_linear,W> Vec; typedef implementation<matrix_linear,V> Mat; if (is_a_scalar (m)) return m.scalar() * v; ASSERT (is_non_scalar (v), "non-scalar vector expected"); nat rr= rows (m), cc= cols (m); ASSERT (cc == N(v), "sizes don't match"); nat l= aligned_size<C,W> (rr); C* a= mmx_formatted_new<C> (l, CF(m)); for (nat i=0; i<rr; i++) a[i]= Vec::template vec_binary_big_stride<mul_add_op> (tab (m) + Mat::index (i, 0, rr, cc), Mat::index (0, 1, rr, cc), seg (v), 1, cc); return vector<C,W> (a, rr, l, CF(m)); }
Definition at line 734 of file series.hpp.
References is_exact_zero(), and Series.
{ if (is_exact_zero (f) || is_exact_zero (c)) return Series (get_format (c)); return binary_scalar_series<lmul_op> (f, c); }
Definition at line 892 of file matrix.hpp.
References CF(), cols(), is_a_scalar(), is_non_scalar(), N(), rows(), matrix< C, V >::scalar(), seg(), and tab().
{ typedef implementation<vector_linear,W> Vec; typedef implementation<matrix_linear,V> Mat; if (is_a_scalar (m)) return v * m.scalar(); ASSERT (is_non_scalar (v), "non-scalar vector expected"); nat rr= rows (m), cc= cols (m); ASSERT (rr == N(v), "sizes don't match"); nat l= aligned_size<C,W> (cc); C* a= mmx_formatted_new<C> (l, CF(m)); for (nat i=0; i<cc; i++) a[i]= Vec::template vec_binary_big_stride<mul_add_op> (seg (v), 1, tab (m) + Mat::index (0, i, rr, cc), Mat::index (1, 0, rr, cc), rr); return vector<C,W> (a, cc, l, CF(m)); }
polynomial<C,V> mmx::operator* | ( | const C & | c, |
const polynomial< C, V > & | P | ||
) |
Definition at line 557 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
quotient_series<Series,Monomial> mmx::operator* | ( | const Monomial & | m, |
const quotient_series< Series, Monomial > & | f | ||
) |
Definition at line 182 of file quotient_series.hpp.
References Quotient_series.
{ return Quotient_series (f->f, m * f->m); }
Definition at line 859 of file matrix.hpp.
References CF(), cols(), is_a_scalar(), is_non_scalar(), Matrix, mul(), rows(), and tab().
{ typedef implementation<matrix_multiply,V> Mat; if (is_a_scalar (m) || is_a_scalar (n)) { if (is_non_scalar (m)) return m * n.scalar(); if (is_non_scalar (n)) return m.scalar() * n; return Matrix (m.scalar() * n.scalar()); } nat mrows= rows (m), mcols= cols (m), nrows= rows(n), ncols= cols(n); ASSERT (nrows == mcols, "numbers of rows and columns don't match"); nat l= aligned_size<C,V> (mrows * ncols); C* r= mmx_formatted_new<C> (l, CF(m)); Mat::mul (r, tab (m), tab (n), mrows, mcols, ncols); return Matrix (r, mrows, ncols, CF(m)); }
X mmx::operator*= | ( | X & | a, |
const multiplier< C > & | b | ||
) | [inline] |
Definition at line 67 of file multiplier.hpp.
{
Multiplier::rmul (a, b);
return a; }
Definition at line 600 of file matrix.hpp.
{
return unary_set_scalar<rmul_op> (m, x); }
quotient< polynomial<C,V> , polynomial<C,V> > mmx::operator+ | ( | const quotient< polynomial< C, V >, polynomial< C, V > > & | x1, |
const C & | x2 | ||
) | [inline] |
Definition at line 23 of file quotient_polynomial.hpp.
References denominator(), numerator(), and Quotient.
{ return Quotient (numerator (x1) + x2 * denominator (x1), denominator (x1)); }
Definition at line 679 of file series.hpp.
References is_exact_zero().
{ if (is_exact_zero (f)) return g; if (is_exact_zero (g)) return f; return binary_series<add_op> (f, g); }
polynomial<C,V> mmx::operator+ | ( | const polynomial< C, V > & | P1, |
const polynomial< C, V > & | P2 | ||
) |
Definition at line 454 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
{ typedef implementation<polynomial_linear,V> Pol; nat m= min (N(P1), N(P2)); nat n= max (N(P1), N(P2)); nat l= aligned_size<C,V> (n); C* r= mmx_formatted_new<C> (l, CF(P1)); Pol::add (r, seg (P1), seg (P2), m); if (N(P1) > m) Pol::copy (r+m, seg(P1)+m, n-m); if (N(P2) > m) Pol::copy (r+m, seg(P2)+m, n-m); return Polynomial (r, n, l, CF(P1)); }
polynomial<C,V> mmx::operator+ | ( | const polynomial< C, V > & | P, |
const C & | c | ||
) |
Definition at line 466 of file polynomial.hpp.
References Polynomial.
{ return P + Polynomial (c); }
Definition at line 578 of file matrix.hpp.
References Matrix.
{ return binary_map<add_op> (Matrix (m), n); }
Definition at line 574 of file matrix.hpp.
{
return binary_map<add_op> (m, n); }
DT quotient<NT,DT> mmx::operator+ | ( | const quotient< NT, DT > & | x1, |
const quotient< NT, DT > & | x2 | ||
) | [inline] |
Definition at line 193 of file quotient.hpp.
References denominator(), DT, gcd(), NT, numerator(), and Quotient.
{ DT g = gcd (denominator (x1), denominator(x2)); DT y1 = denominator (x1) / g; DT y2 = denominator (x2) / g; NT n = numerator(x1) * y2 + numerator(x2) * y1; DT h = gcd (g, n); return Quotient (n / h, (g / h) * y1 * y2); }
Definition at line 179 of file series_implicit.hpp.
References C, is_exact_zero(), and UC.
{ //mmerr << " scalar plus " << c1 << ", " << c2 << "\n"; if (is_exact_zero (c1)) return UC (c1->f, c2, mmx_new<C> (0), c1->i1, c1->i1); if (is_exact_zero (c2)) return c1; nat n= c1->i2 - c1->i1; C* s= mmx_new<C> (n); for (nat i=0; i<n; i++) s[i]= c1->s[i]; return UC (c1->f, c1->b + c2, s, c1->i1, c1->i2); }
Definition at line 209 of file quotient.hpp.
References denominator(), numerator(), and Quotient.
{ return Quotient (x1 * denominator (x2) + numerator (x2), denominator (x2)); }
Definition at line 203 of file quotient.hpp.
References denominator(), numerator(), and Quotient.
{ return Quotient (numerator (x1) + x2 * denominator (x1), denominator (x1)); }
Definition at line 693 of file series.hpp.
References is_exact_zero(), and Series.
{ if (is_exact_zero (c)) return f; if (is_exact_zero (f)) return Series (c); return binary_series<add_op> (f, Series (c)); }
Definition at line 686 of file series.hpp.
References is_exact_zero(), and Series.
{ if (is_exact_zero (c)) return f; if (is_exact_zero (f)) return Series (c); return binary_series<add_op> (Series (c), f); }
Definition at line 218 of file series_implicit.hpp.
References C, known(), and UC.
{ //mmerr << " plus " << c1 << ", " << c2 << "\n"; if (c1->i1 == c1->i2) return c2 + known (c1); if (c2->i1 == c2->i2) return c1 + known (c2); ASSERT (c1->f == c2->f, "incompatible unknown coefficients"); nat i1= min (c1->i1, c2->i1); nat i2= max (c1->i2, c2->i2); C* s= mmx_new<C> (i2-i1); for (nat i= i1; i<i2; i++) s[i-i1]= (i >= c1->i1 && i < c1->i2? c1->s[i - c1->i1]: C(0)) + (i >= c2->i1 && i < c2->i2? c2->s[i - c2->i1]: C(0)); return UC (c1->f, c1->b + c2->b, s, i1, i2); }
quotient_series<Series,Monomial> mmx::operator+ | ( | const quotient_series< Series, Monomial > & | f, |
const quotient_series< Series, Monomial > & | g | ||
) |
Definition at line 139 of file quotient_series.hpp.
References gcd(), Monomial, and Quotient_series.
{ if (f->m == g->m) return Quotient_series (f->f + g->f, f->m); else { Monomial m= gcd (f->m, g->m); return Quotient_series (f->f * (f->m / m) + g->f * (g->m / m), m); } }
polynomial<C,V> mmx::operator+ | ( | const C & | c, |
const polynomial< C, V > & | P | ||
) |
Definition at line 468 of file polynomial.hpp.
References Polynomial.
{ return Polynomial (c) + P; }
quotient_series<Series,Monomial> mmx::operator+ | ( | const quotient_series< Series, Monomial > & | f, |
const typename scalar_type_helper< Series >::val & | c | ||
) |
Definition at line 148 of file quotient_series.hpp.
References Quotient_series.
{ return Quotient_series (f->f + Quotient_series (c)); }
Definition at line 576 of file matrix.hpp.
References Matrix.
{ return binary_map<add_op> (m, Matrix (n)); }
quotient_series<Series,Monomial> mmx::operator+ | ( | const typename scalar_type_helper< Series >::val & | c, |
const quotient_series< Series, Monomial > & | f | ||
) |
Definition at line 153 of file quotient_series.hpp.
References Quotient_series.
{ return Quotient_series (Quotient_series (c) + f->f); }
quotient< polynomial<C,V> , polynomial<C,V> > mmx::operator+ | ( | const C & | x1, |
const quotient< polynomial< C, V >, polynomial< C, V > > & | x2 | ||
) | [inline] |
Definition at line 29 of file quotient_polynomial.hpp.
References denominator(), numerator(), and Quotient.
{ return Quotient (x1 * denominator (x2) + numerator (x2), denominator (x2)); }
Definition at line 596 of file matrix.hpp.
{
return unary_set<add_op> (m, n); }
quotient_series<Series,Monomial> mmx::operator- | ( | const quotient_series< Series, Monomial > & | f, |
const typename scalar_type_helper< Series >::val & | c | ||
) |
Definition at line 172 of file quotient_series.hpp.
References Quotient_series.
{ return Quotient_series (f->f - Quotient_series (c)); }
Definition at line 215 of file quotient.hpp.
References denominator(), numerator(), and Quotient.
{ return Quotient (-numerator (x), denominator (x)); }
polynomial<C,V> mmx::operator- | ( | const polynomial< C, V > & | P, |
const C & | c | ||
) |
Definition at line 496 of file polynomial.hpp.
References Polynomial.
{ return P - Polynomial (c); }
Definition at line 720 of file series.hpp.
References is_exact_zero(), and Series.
{ if (is_exact_zero (f)) return Series (-c); if (is_exact_zero (c)) return f; return binary_series<sub_op> (f, Series (c)); }
Definition at line 584 of file matrix.hpp.
References Matrix.
{ return binary_map<sub_op> (Matrix (m), n); }
Definition at line 230 of file quotient.hpp.
References denominator(), numerator(), and Quotient.
{ return Quotient (numerator (x1) - x2 * denominator (x1), denominator (x1)); }
quotient_series<Series,Monomial> mmx::operator- | ( | const typename scalar_type_helper< Series >::val & | c, |
const quotient_series< Series, Monomial > & | f | ||
) |
Definition at line 177 of file quotient_series.hpp.
References Quotient_series.
{ return Quotient_series (Quotient_series (c) - f->f); }
quotient_series<Series,Monomial> mmx::operator- | ( | const quotient_series< Series, Monomial > & | f | ) |
Definition at line 158 of file quotient_series.hpp.
References Quotient_series.
{ return Quotient_series (-f->f, f->m); }
Definition at line 582 of file matrix.hpp.
References Matrix.
{ return binary_map<sub_op> (m, Matrix (n)); }
quotient< polynomial<C,V> , polynomial<C,V> > mmx::operator- | ( | const quotient< polynomial< C, V >, polynomial< C, V > > & | x1, |
const C & | x2 | ||
) | [inline] |
Definition at line 35 of file quotient_polynomial.hpp.
References denominator(), numerator(), and Quotient.
{ return Quotient (numerator (x1) - x2 * denominator (x1), denominator (x1)); }
polynomial<C,V> mmx::operator- | ( | const polynomial< C, V > & | P1, |
const polynomial< C, V > & | P2 | ||
) |
Definition at line 484 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
{ typedef implementation<polynomial_linear,V> Pol; nat m= min (N(P1), N(P2)); nat n= max (N(P1), N(P2)); nat l= aligned_size<C,V> (n); C* r= mmx_formatted_new<C> (l, CF(P1)); Pol::sub (r, seg (P1), seg (P2), m); if (N(P1) > m) Pol::copy (r+m, seg(P1)+m, n-m); if (N(P2) > m) Pol::neg (r+m, seg(P2)+m, n-m); return Polynomial (r, n, l, CF(P1)); }
Definition at line 572 of file matrix.hpp.
{
return unary_map<neg_op> (m); }
quotient_series<Series,Monomial> mmx::operator- | ( | const quotient_series< Series, Monomial > & | f, |
const quotient_series< Series, Monomial > & | g | ||
) |
Definition at line 163 of file quotient_series.hpp.
References gcd(), Monomial, and Quotient_series.
{ if (f->m == g->m) return Quotient_series (f->f - g->f, f->m); else { Monomial m= gcd (f->m, g->m); return Quotient_series (f->f * (f->m / m) - g->f * (g->m / m), m); } }
polynomial<C,V> mmx::operator- | ( | const C & | c, |
const polynomial< C, V > & | P | ||
) |
Definition at line 498 of file polynomial.hpp.
References Polynomial.
{ return Polynomial (c) - P; }
Definition at line 706 of file series.hpp.
References is_exact_zero().
{ if (is_exact_zero (f)) return -g; if (is_exact_zero (g)) return f; return binary_series<sub_op> (f, g); }
quotient< polynomial<C,V> , polynomial<C,V> > mmx::operator- | ( | const C & | x1, |
const quotient< polynomial< C, V >, polynomial< C, V > > & | x2 | ||
) | [inline] |
Definition at line 41 of file quotient_polynomial.hpp.
References denominator(), numerator(), and Quotient.
{ return Quotient (x1 * denominator (x2) - numerator (x2), denominator (x2)); }
Definition at line 234 of file series_implicit.hpp.
References C, known(), and UC.
{ //mmerr << " minus " << c1 << ", " << c2 << "\n"; if (c1->i1 == c1->i2) return (-c2) + known (c1); if (c2->i1 == c2->i2) return c1 + (-known (c2)); ASSERT (c1->f == c2->f, "incompatible unknown coefficients"); nat i1= min (c1->i1, c2->i1); nat i2= max (c1->i2, c2->i2); C* s= mmx_new<C> (i2-i1); for (nat i=i1; i<i2; i++) s[i-i1]= (i >= c1->i1 && i < c1->i2? c1->s[i - c1->i1]: C(0)) - (i >= c2->i1 && i < c2->i2? c2->s[i - c2->i1]: C(0)); return UC (c1->f, c1->b - c2->b, s, i1, i2); }
Definition at line 700 of file series.hpp.
References is_exact_zero().
{ if (is_exact_zero (f)) return f; return unary_series<neg_op> (f); }
Definition at line 713 of file series.hpp.
References is_exact_zero(), and Series.
{ if (is_exact_zero (c)) return -f; if (is_exact_zero (f)) return Series (c); return binary_series<sub_op> (Series (c), f); }
Definition at line 168 of file series_implicit.hpp.
References C, is_exact_zero(), and UC.
{ //mmerr << " negate " << c << "\n"; if (is_exact_zero (c)) return c; nat n= c->i2 - c->i1; C* s= mmx_new<C> (n); for (nat i=0; i<n; i++) s[i]= -c->s[i]; return UC (c->f, -c->b, s, c->i1, c->i2); }
polynomial<C,V> mmx::operator- | ( | const polynomial< C, V > & | P | ) |
Definition at line 444 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Definition at line 580 of file matrix.hpp.
{
return binary_map<sub_op> (m, n); }
quotient<NT,DT> mmx::operator- | ( | const quotient< NT, DT > & | x1, |
const quotient< NT, DT > & | x2 | ||
) | [inline] |
Definition at line 220 of file quotient.hpp.
References denominator(), DT, gcd(), NT, numerator(), and Quotient.
{ DT g = gcd (denominator (x1), denominator(x2)); DT y1 = denominator (x1) / g; DT y2 = denominator (x2) / g; NT n = numerator(x1) * y2 - numerator(x2) * y1; DT h = gcd (g, n); return Quotient (n / h, (g / h) * y1 * y2); }
Definition at line 236 of file quotient.hpp.
References denominator(), numerator(), and Quotient.
{ return Quotient (x1 * denominator (x2) - numerator (x2), denominator (x2)); }
Definition at line 598 of file matrix.hpp.
{
return unary_set<sub_op> (m, n); }
quotient_series<Series,Monomial> mmx::operator/ | ( | const quotient_series< Series, Monomial > & | f, |
const typename scalar_type_helper< Series >::val & | c | ||
) |
Definition at line 219 of file quotient_series.hpp.
References Quotient_series.
{ return Quotient_series (f->f / c, f->m); }
Definition at line 270 of file quotient.hpp.
References denominator(), DT, gcd(), numerator(), and Quotient.
Definition at line 1075 of file series.hpp.
{ typedef implementation<series_divide,V> Ser; return Ser::ser_rdiv_sc (f, c); }
quotient< polynomial<C,V> , polynomial<C,V> > mmx::operator/ | ( | const quotient< polynomial< C, V >, polynomial< C, V > > & | x, |
const C & | c | ||
) | [inline] |
Definition at line 63 of file quotient_polynomial.hpp.
References denominator(), numerator(), and Quotient.
{ ASSERT (c != 0, "division by zero"); return Quotient (numerator (x) / c, denominator (x)); }
quotient< polynomial<C,V> , polynomial<C,V> > mmx::operator/ | ( | const C & | c, |
const quotient< polynomial< C, V >, polynomial< C, V > > & | x | ||
) | [inline] |
Definition at line 57 of file quotient_polynomial.hpp.
References denominator(), numerator(), and Quotient.
{ ASSERT (numerator (x) != 0, "division by zero"); return Quotient (c * denominator (x), numerator (x)); }
polynomial<C,V> mmx::operator/ | ( | const polynomial< C, V > & | P1, |
const polynomial< C, V > & | P2 | ||
) |
Definition at line 583 of file polynomial.hpp.
References C, CF(), div(), N(), Polynomial, and seg().
{ typedef implementation<polynomial_exact_divide,V> Pol; nat n1= N(P1), n2= N(P2); ASSERT (n2 != 0, "division by zero"); if (n1 < n2) return Polynomial (CF(P1)); nat lq= aligned_size<C,V> (n1-n2+1); C* q= mmx_formatted_new<C> (lq, CF(P1)); Pol::div (q, seg (P1), seg (P2), n1, n2); return Polynomial (q, n1-n2+1, lq, CF(P1)); }
Definition at line 262 of file quotient.hpp.
References denominator(), DT, gcd(), numerator(), and Quotient.
quotient_series<Series,Monomial> mmx::operator/ | ( | const Monomial & | m, |
const quotient_series< Series, Monomial > & | f | ||
) |
Definition at line 212 of file quotient_series.hpp.
References C, Monomial, monomial_val(), and Quotient_series.
{ Monomial v= monomial_val (f); if (v != Monomial (1)) return (m/v) / (f/v); return Quotient_series (C(1) / f->f, m / f->m); }
quotient_series<Series,Monomial> mmx::operator/ | ( | const quotient_series< Series, Monomial > & | f, |
const Monomial & | m | ||
) |
Definition at line 207 of file quotient_series.hpp.
References Quotient_series.
{ return Quotient_series (f->f, f->m / m); }
Definition at line 1081 of file series.hpp.
{ typedef implementation<series_divide,V> Ser; return Ser::ser_div (f, g); }
Definition at line 1087 of file series.hpp.
References is_exact_zero(), and Series.
{ typedef implementation<series_divide,V> Ser; if (is_exact_zero (c)) return Series (get_format (c)); return Ser::ser_div (Series (c), f); }
quotient_series<Series,Monomial> mmx::operator/ | ( | const quotient_series< Series, Monomial > & | f, |
const quotient_series< Series, Monomial > & | g | ||
) |
Definition at line 231 of file quotient_series.hpp.
References Monomial, monomial_val(), and Quotient_series.
{ Monomial v= monomial_val (g); if (v != Monomial (1)) return (f/v) / (g/v); return Quotient_series (f->f / g->f, f->m); }
quotient_series<Series,Monomial> mmx::operator/ | ( | const typename scalar_type_helper< Series >::val & | c, |
const quotient_series< Series, Monomial > & | f | ||
) |
Definition at line 224 of file quotient_series.hpp.
References Monomial, monomial_val(), and Quotient_series.
{ Monomial v= monomial_val (f); if (v != Monomial (1)) return (c / (f/v)) / v; return Quotient_series (c / f->f, Monomial (1) / f->m); }
Definition at line 590 of file matrix.hpp.
{
return binary_map_scalar<rdiv_op> (m, c); }
quotient<NT,DT> mmx::operator/ | ( | const quotient< NT, DT > & | x1, |
const quotient< NT, DT > & | x2 | ||
) | [inline] |
Definition at line 277 of file quotient.hpp.
References denominator(), DT, gcd(), NT, numerator(), and Quotient.
{ // assumes NT = DT ASSERT (numerator (x2) != 0, "division by zero"); NT g1= gcd (numerator (x1), numerator (x2)); DT g2= gcd (denominator (x1), denominator (x2)); return Quotient ((numerator (x1) / g1) * (denominator (x2) / g2), (denominator (x1) / g2) * (numerator (x2) / g1)); }
polynomial<C,V> mmx::operator/ | ( | const polynomial< C, V > & | P, |
const C & | c | ||
) |
Definition at line 573 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
polynomial<C,V> mmx::operator/ | ( | const C & | c, |
const polynomial< C, V > & | P | ||
) | [inline] |
Definition at line 765 of file polynomial.hpp.
References Polynomial.
{ return Polynomial (c) / P; }
Definition at line 602 of file matrix.hpp.
{
return unary_set_scalar<rdiv_op> (m, x); }
Definition at line 604 of file matrix.hpp.
{
return binary_test<lesseq_op> (m, n); }
bool mmx::operator<= | ( | const matrix< C, V > & | m, |
const C & | c | ||
) |
bool mmx::operator== | ( | const algebraic< C, Extension > & | x1, |
const algebraic< C, Extension > & | x2 | ||
) | [inline] |
Definition at line 294 of file series.hpp.
{
return binary_test<equal_op> (f1, f2); }
bool mmx::operator== | ( | const quotient< NT, DT > & | x1, |
const quotient< NT, DT > & | x2 | ||
) | [inline] |
Definition at line 142 of file quotient.hpp.
References denominator(), and numerator().
{ return numerator (x1) * denominator (x2) == numerator (x2) * denominator (x1); }
bool mmx::operator== | ( | const algebraic_extension< C > & | x, |
const algebraic_extension< C > & | y | ||
) | [inline] |
Definition at line 58 of file algebraic_extension.hpp.
{
return (*x) == (*y); }
bool mmx::operator== | ( | const matrix< C, V > & | m, |
const K & | c | ||
) |
bool mmx::operator== | ( | const quotient_series< Series, Monomial > & | f, |
const quotient_series< Series, Monomial > & | g | ||
) | [inline] |
bool mmx::operator== | ( | const algebraic_number_extension< C, Ball > & | x, |
const algebraic_number_extension< C, Ball > & | y | ||
) | [inline] |
Definition at line 78 of file algebraic_number.hpp.
{
return (*x) == (*y); }
Definition at line 606 of file matrix.hpp.
{
return binary_test<gtreq_op> (m, n); }
bool mmx::operator>= | ( | const matrix< C, V > & | m, |
const C & | c | ||
) |
algebraic_number mmx::over_i | ( | const algebraic_number & | z | ) | [inline] |
Definition at line 402 of file algebraic_number.hpp.
Referenced by GLUE_59(), and Im().
{
return -z * imaginary_cst<algebraic_number> ();
}
void mmx::pade | ( | const polynomial< C, V > & | P, |
nat | n, | ||
nat | k, | ||
polynomial< C, V > & | Num, | ||
polynomial< C, V > & | Den | ||
) | [inline] |
Definition at line 840 of file polynomial.hpp.
Referenced by minimal_polynomial_bis(), implementation< polynomial_gcd, V, polynomial_naive >::pade(), and implementation< polynomial_euclidean, V, polynomial_dicho< BV > >::pade().
{ typedef implementation<polynomial_gcd,V> Pol; Pol::pade (P, n, k, Num, Den); }
void mmx::permute_columns | ( | matrix< C, V > & | m, |
const permutation & | p | ||
) |
Definition at line 1013 of file matrix.hpp.
References cols(), is_a_scalar(), rows(), seg(), and tab().
{ // replace m by m * as_matrix (p) typedef implementation<matrix_permute,V> Mat; if (is_a_scalar (m)) return; nat rs= rows (m), cs= cols (m); Mat::col_permute (tab (m), seg (*p), rs, cs); }
void mmx::permute_rows | ( | matrix< C, V > & | m, |
const permutation & | p | ||
) |
Definition at line 1022 of file matrix.hpp.
References cols(), is_a_scalar(), rows(), seg(), and tab().
{ // replace m by transpose (as_matrix (p)) * m typedef implementation<matrix_permute,V> Mat; if (is_a_scalar (m)) return; nat rs= rows (m), cs= cols (m); Mat::row_permute (tab (m), seg (*p), rs, cs); }
Pseudo division lc(P2)^pexponent (P1,P2) P1 = pquo(P1,P2) * P2 + prem(P1,P2)
Definition at line 715 of file polynomial.hpp.
References deg().
Definition at line 873 of file series.hpp.
References Series_rep.
Referenced by truncate_mul_monoblock_series_rep< M, V, s, BV, t >::Increase_order(), implementation< series_multiply, U, series_relaxed< W > >::ser_truncate_mul(), implementation< series_multiply, U, series_fast >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_relaxed< W > >::ser_truncate_mul(), and implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::ser_truncate_mul().
{ return (Series_rep*) new piecewise_series_rep<C,V> (f, g, pos); }
polynomial< C > polynomial_reverse | ( | const vector< C > & | v | ) |
Definition at line 55 of file series_elementary.hpp.
matrix<C> mmx::pow_matrix | ( | const algebraic_extension< C > & | ext1, |
const algebraic_extension< C > & | ext2, | ||
const vector< C > & | v | ||
) |
Definition at line 201 of file algebraic_extension.hpp.
References CF(), deg(), and mul_matrix().
Referenced by join(), and pow_matrix().
{ // let p (x1, x2) be the bivariate polynomial represented by v // return the matrix whose rows represent the powers p (x1, x2)^i nat d1= deg (ext1.mp), d2= deg (ext2.mp); matrix<C> m= mul_matrix (ext1, ext2, v); matrix<C> r (promote (0, CF(ext1)), d1*d2+1, d1*d2); vector<C> aux= fill<C> (promote (0, CF(ext1)), d1*d2); aux[0]= promote (1, CF(ext1)); for (nat i1=0; i1<=d1*d2; i1++) { for (nat i2=0; i2<d1*d2; i2++) r (i1, i2)= aux[i2]; aux= aux * m; } return r; }
matrix<C> mmx::pow_matrix | ( | const algebraic_extension< C > & | ext1, |
const algebraic_extension< C > & | ext2 | ||
) |
Definition at line 218 of file algebraic_extension.hpp.
References CF(), deg(), pow_matrix(), and rank().
{ // return matrix whose rows represent the powers of a primitive element nat d1= deg (ext1.mp), d2= deg (ext2.mp); vector<C> v= fill<C> (promote (0, CF(ext1)), d1*d2); for (nat i=1; i<1000; i++) { v[1]= promote (1, CF(ext1)); v[d2]= promote ((int) i, CF(ext1)); matrix<C> m= pow_matrix (ext1, ext2, v); if (rank (m) == d1*d2) return m; } ERROR ("unexpected situation"); }
polynomial<C,V> mmx::pquo | ( | const polynomial< C, V > & | P1, |
const polynomial< C, V > & | P2 | ||
) |
Definition at line 720 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
{ typedef implementation<polynomial_divide,V> Pol; nat n1= N(P1), n2= N(P2); if (n1 < n2 || n2 == 0) return Polynomial (CF(P1)); nat lq= aligned_size<C,V> (n1-n2+1); nat lr= aligned_size<C,V> (n1); C* q= mmx_formatted_new<C> (lq, CF(P1)); C* r= mmx_formatted_new<C> (lr, CF(P1)); Pol::copy (r, seg (P1), n1); Pol::pquo_rem (q, r, seg (P2), n1, n2); mmx_delete<C> (r, lr); return Polynomial (q, n1-n2+1, lq, CF(P1)); }
xnat mmx::precision | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 657 of file matrix.hpp.
Referenced by increase_precision(), and precision().
{
return big<min_precision_op> (m); }
nat mmx::precision | ( | const series< C, V > & | f | ) | [inline] |
xnat mmx::precision | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1381 of file polynomial.hpp.
{
return big<min_precision_op> (p); }
nat mmx::precision | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 102 of file quotient.hpp.
References denominator(), numerator(), and precision().
{ return max (precision (numerator (x)), precision (denominator (x))); }
polynomial<C,V> mmx::prem | ( | const polynomial< C, V > & | P1, |
const polynomial< C, V > & | P2, | ||
polynomial< C, V > & | Q | ||
) |
Returns the pseudo-remainder and stores the pseudo-quotient in Q.
Definition at line 751 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
{ typedef implementation<polynomial_divide,V> Pol; nat n1= N(P1), n2= N(P2); if (n1 < n2 || n2 == 0) return Polynomial (CF(P1)); nat lq= aligned_size<C,V> (n1-n2+1); nat lr= aligned_size<C,V> (n1); C* q= mmx_formatted_new<C> (lq, CF(P1)); C* r= mmx_formatted_new<C> (lr, CF(P1)); Pol::copy (r, seg (P1), n1); Pol::pquo_rem (q, r, seg (P2), n1, n2); Q= Polynomial (q, n1-n2+1, lq, CF(P1)); return Polynomial (r, n2 - 1, lr, CF(P1)); }
vector< polynomial<C,V> > mmx::prem | ( | const polynomial< C, V > & | p, |
const vector< polynomial< C, V > > & | q | ||
) | [inline] |
Definition at line 1114 of file polynomial.hpp.
{ typedef implementation<polynomial_evaluate,V> Pol; return Pol::multi_prem (p, q); }
polynomial<C,V> mmx::prem | ( | const polynomial< C, V > & | P1, |
const polynomial< C, V > & | P2 | ||
) |
Definition at line 735 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
Referenced by implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::half_subresultant(), implementation< polynomial_evaluate, V, polynomial_gcd_ring_dicho_inc< W > >::multi_gcd(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_ducos_inc< BV > >::subresultant_sequence(), and implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_naive_inc< W > >::subresultant_sequence().
{ typedef implementation<polynomial_divide,V> Pol; nat n1= N(P1), n2= N(P2); if (n1 < n2 || n2 == 0) return P1; nat lq= aligned_size<C,V> (n1-n2+1); nat lr= aligned_size<C,V> (n1); C* q= mmx_formatted_new<C> (lq, CF(P1)); C* r= mmx_formatted_new<C> (lr, CF(P1)); Pol::copy (r, seg (P1), n1); Pol::pquo_rem (q, r, seg (P2), n1, n2); mmx_delete<C> (q, lq); return Polynomial (r, n2 - 1, lr, CF(P1)); }
polynomial<C,V> mmx::primitive_part | ( | const polynomial< C, V > & | P, |
C & | c | ||
) | [inline] |
Definition at line 784 of file polynomial.hpp.
References C, CF(), contents(), N(), Polynomial, and seg().
Referenced by implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::gcd(), GLUE_39(), GLUE_47(), and primitive_part().
polynomial<C,V> mmx::primitive_part | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 795 of file polynomial.hpp.
References C, and primitive_part().
{ C c; return primitive_part (P, c); }
C mmx::primitive_root | ( | nat | n, |
nat | i | ||
) |
Definition at line 64 of file fft_roots.hpp.
References primitive_root_helper< C >::op().
{
return primitive_root_helper<C>::op (n, i);
}
I mmx::primitive_root_max_int | ( | nat | b, |
I | p, | ||
nat & | k, | ||
I & | m | ||
) |
Definition at line 95 of file fft_roots.hpp.
References I, Modular, Modulus, and primitive_root_max_order_int().
Referenced by primitive_root_helper_modular_int< long int, V, W >::op().
{ // root of maximal order k for radix b modulo p typedef modulus<I, modulus_int_preinverse<8*sizeof(I)> > Modulus; typedef modular<Modulus> Modular; k= primitive_root_max_order_int (b, p, m); if (k == 1) return I (1); Modulus tmp= Modular::get_modulus (); Modular::set_modulus (p); Modular v; for (I x = 1; x < p; x++) { v = binpow (Modular (x), (nat) m); if (v == 1) continue; if (binpow (v, k / b) != 1) break; } Modular::set_modulus (tmp); return * v; }
nat mmx::primitive_root_max_order | ( | nat | b | ) |
Definition at line 69 of file fft_roots.hpp.
References primitive_root_helper< C >::max_order().
{
return primitive_root_helper<C>::max_order (b);
}
nat mmx::primitive_root_max_order_int | ( | nat | b, |
I | p, | ||
I & | m | ||
) |
Definition at line 86 of file fft_roots.hpp.
Referenced by primitive_root_helper_modular_int< long int, V, W >::max_order(), and primitive_root_max_int().
{ // p must be nonnegative nat k= 0; m= (nat) (p-1); while (m % b == 0) { k++; m /= b; } return ((nat) (p-1)) / m; }
quotient_series<Series,Monomial> mmx::project | ( | const quotient_series< Series, Monomial > & | f, |
const list< Monomial > & | l | ||
) |
Definition at line 122 of file quotient_series.hpp.
References Quotient_series.
{ return Quotient_series (project (f->f, stair_mul (1/f->m, l)), f->m); }
Definition at line 128 of file root_modular.hpp.
Referenced by GLUE_28(), and implementation< series_pth_root, U, series_carry_p_adic< W > >::unsep_root().
{ // p-th root of a return a; }
Definition at line 1150 of file series.hpp.
{ typedef implementation<series_pth_root,V> Ser; return Ser::unsep_root (f); }
polynomial<C,V> mmx::q_difference | ( | const polynomial< C, V > & | P, |
const K & | q | ||
) |
Definition at line 1080 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Referenced by GLUE_136(), GLUE_30(), GLUE_32(), GLUE_38(), GLUE_39(), GLUE_40(), GLUE_91(), and implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::shift().
{ typedef implementation<polynomial_linear,V> Pol; nat n= N(P); if (n <= 1) return P; nat l= aligned_size<C,V> (n); C* r= mmx_formatted_new<C> (l, CF(P)); Pol::q_difference (r, seg (P), q, n); return Polynomial (r, n, l, CF(P)); }
Definition at line 1009 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
{ if (is_exact_zero (f)) return Series (CF(f)); return (Series_rep*) new q_difference_series_rep<C,V> (f, q); }
Definition at line 1099 of file series.hpp.
{ typedef implementation<series_divide,V> Ser; return Ser::ser_rquo_sc (f, c); }
Definition at line 1105 of file series.hpp.
{ typedef implementation<series_divide,V> Ser; return Ser::ser_quo (f, g); }
polynomial<C,V> mmx::quo | ( | const polynomial< C, V > & | P, |
const C & | c | ||
) |
Definition at line 608 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
polynomial<C,V> mmx::quo | ( | const polynomial< C, V > & | P1, |
const polynomial< C, V > & | P2 | ||
) |
Definition at line 628 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
{ typedef implementation<polynomial_divide,V> Pol; nat n1= N(P1), n2= N(P2); if (n1 < n2 || n2 == 0) return Polynomial (CF(P1)); nat lq= aligned_size<C,V> (n1-n2+1); nat lr= aligned_size<C,V> (n1); C* q= mmx_formatted_new<C> (lq, CF(P1)); C* r= mmx_formatted_new<C> (lr, CF(P1)); Pol::copy (r, seg (P1), n1); Pol::quo_rem (q, r, seg (P2), n1, n2); mmx_delete<C> (r, lr); return Polynomial (q, n1-n2+1, lq, CF(P1)); }
Definition at line 592 of file matrix.hpp.
Referenced by moduli_signed_integer_helper< short int, M, W >::covering(), moduli_unsigned_integer_helper< unsigned int, M, W >::covering(), GLUE_23(), GLUE_29(), GLUE_31(), GLUE_82(), implementation< series_divide, U, series_carry_naive >::carry_mul_sc_series_rep< M, V, X >::next(), polynomial_quo_rem_helper< V, C >::op(), implementation< polynomial_divide, V, polynomial_naive >::quo_rem(), implementation< polynomial_vectorial, V, polynomial_naive >::quo_sc(), rem(), square_free(), and implementation< polynomial_divide, V, polynomial_naive >::tquo_rem().
{
return binary_map_scalar<rquo_op> (m, c); }
polynomial<Radius_type(C),V> mmx::radius | ( | const polynomial< C, V > & | p | ) |
Definition at line 1400 of file polynomial.hpp.
{
return unary_map<radius_op> (p); }
Definition at line 676 of file matrix.hpp.
Referenced by improve_zero().
{
return unary_map<radius_op> (m); }
algebraic_extension<C> mmx::ramify | ( | const algebraic_extension< C > & | ext, |
nat | p | ||
) |
algebraic_number_extension<C,Ball> mmx::ramify | ( | const algebraic_number_extension< C, Ball > & | ext, |
nat | p | ||
) |
Definition at line 824 of file matrix.hpp.
References CF(), cols(), is_a_scalar(), Matrix, rows(), and tab().
{ typedef implementation<matrix_linear,V> Mat; if (is_a_scalar (m)) return Matrix (m.scalar(), r2-r1, c2-c1); nat nrows= rows (m), ncols= cols (m); nat l= aligned_size<C,V> ((r2-r1) * (c2-c1)); C* r= mmx_formatted_new<C> (l, CF(m)); Mat::get_range (r, tab (m), r1, c1, r2, c2, nrows, ncols); return Matrix (r, r2-r1, c2-c1, CF(m)); }
polynomial<C,V> mmx::range | ( | const polynomial< C, V > & | P, |
nat | start, | ||
nat | end | ||
) |
Definition at line 1216 of file polynomial.hpp.
References C, CF(), and Polynomial.
{ typedef implementation<polynomial_linear,V> Pol; nat l= aligned_size<C,V> (end-start); C* r= mmx_formatted_new<C> (l, CF(P)); for (nat i=start; i<end; i++) r[i-start]= P[i]; return Polynomial (r, end-start, l, CF(P)); }
polynomial<C, typename series_polynomial_helper<C,V>::PV> mmx::range | ( | const series< C, V > & | f, |
nat | start, | ||
nat | end | ||
) |
Definition at line 236 of file series.hpp.
References C, CF(), and Polynomial.
{ typedef typename series_polynomial_helper<C,V>::PV PV; nat n= (end >= start? end - start: 0); nat l= aligned_size<C,PV> (n); C* coeffs= mmx_formatted_new<C> (l, CF(f)); if (end>start) (void) f[end-1]; for (nat i=0; i<n; i++) coeffs[i]= f[i + start]; return Polynomial (coeffs, n, l, CF(f)); }
vector<M> mmx::range | ( | coprime_moduli_sequence< M, V > & | seq, |
nat | beg, | ||
nat | end | ||
) |
Definition at line 52 of file crt_naive.hpp.
References M.
Referenced by implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::_half_gcd(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::_multi_rem(), bareiss_coimage(), bareiss_cokernel(), bareiss_image(), bareiss_kernel(), moduli_helper< integer, M, fft_prime_sequence_int< t > >::covering(), crt_blocks_transformer< WL, WH, s, V >::crt_blocks_transformer(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_ducos_inc< BV > >::defected_prem(), GLUE_10(), GLUE_11(), GLUE_13(), GLUE_14(), GLUE_25(), GLUE_28(), GLUE_7(), GLUE_81(), GLUE_9(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::half_subresultant_rec(), image(), join(), kernel(), lshiftz(), rec_prod(), rec_square(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::subresultant_compose(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::subresultant_sequence(), and implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate().
nat mmx::rank | ( | const matrix< C, V > & | m | ) |
Definition at line 1189 of file matrix.hpp.
References cols(), is_non_scalar(), rows(), and tab().
Referenced by GLUE_111(), GLUE_41(), GLUE_66(), and pow_matrix().
{ typedef implementation<matrix_image,V> Mat; ASSERT (is_non_scalar (m), "non-scalar matrix expected"); return Mat::rank (tab(m), rows(m), cols(m)); }
algebraic_real mmx::Re | ( | const algebraic_number & | z | ) | [inline] |
Definition at line 422 of file algebraic_number.hpp.
References conj(), algebraic_number_extension< C, Ball >::ext, field(), normalize(), value(), and algebraic_number_extension< C, Ball >::x.
Referenced by abs(), GLUE_55(), and Im().
{ algebraic_number x= normalize ((z + conj (z)) / rational (2)); algebraic_complex_extension cext= field (x); algebraic_real_extension rext (cext.ext, Re (cext.x)); return algebraic_real (rext, value (x)); }
Definition at line 670 of file matrix.hpp.
{ return unary_map<Re_op> (m); }
polynomial<Real_type(C),V> mmx::Re | ( | const polynomial< C, V > & | p | ) |
Definition at line 1394 of file polynomial.hpp.
{ return unary_map<Re_op> (p); }
Definition at line 188 of file matrix.hpp.
Referenced by binary_helper< algebraic_number_extension< C, Ball > >::read(), binary_helper< algebraic_extension< C > >::read(), and solve_lde().
{ return m(i,j); }
vector< series<M,V> > mmx::rec_add | ( | const vector< series< M, V > > & | p, |
const vector< series< M, V > > & | q | ||
) | [inline] |
Definition at line 476 of file series_carry_naive.hpp.
Referenced by system_root_series_rep< M, V, W >::_eps(), and root_series_rep< M, V >::_eps().
{
return p + q;
}
Definition at line 567 of file series_carry_naive.hpp.
References CF(), rec_lin(), and Series.
Referenced by system_root_series_rep< M, V, W >::_eps(), and root_series_rep< M, V >::_eps().
Definition at line 557 of file series_carry_naive.hpp.
Referenced by system_root_series_rep< M, V, W >::_eps(), root_series_rep< M, V >::_eps(), and rec_cst().
Definition at line 481 of file series_carry_naive.hpp.
Referenced by system_root_series_rep< M, V, W >::_eps(), and root_series_rep< M, V >::_eps().
{
return -p;
}
vector< series<M,V> > mmx::rec_minus | ( | const vector< series< M, V > > & | p, |
const vector< series< M, V > > & | q | ||
) | [inline] |
Definition at line 486 of file series_carry_naive.hpp.
{
return p - q;
}
vector< series<M,V> > mmx::rec_prod | ( | const vector< series< M, V > > & | p, |
const vector< series< M, V > > & | q, | ||
const vector< series< M, V > > & | y | ||
) | [inline] |
Definition at line 507 of file series_carry_naive.hpp.
References as_series(), as_vector(), lshiftz(), lshiftz_series_vector(), N(), range(), rshiftz(), and Series.
{ nat l= N(p); ASSERT (l == N(q) && (l-2) == N(y), "Wrong size of arguments"); const Series& ep=p[0], ap=p[1], eq=q[0], aq=q[1]; vector<Series> bp = range (p, 2, l); vector<Series> bq = range (q, 2, l); //Beware of as_vector (rshiftz (y)) which call // as_vector (y, N(f[1])) vector<Series> ry = as_vector (rshiftz (as_series (y)), N(y)); vector<Series> lry = as_vector (lshiftz_series_vector (rshiftz (as_series (y)), l-2)); Series tp = ap + dot (bp, lry); Series tq = aq + dot (bq, lry); Series er = (ep * eq + lshiftz (tp * rshiftz (eq, 2), 2) + lshiftz (rshiftz (ep, 2) * tq, 2) + lshiftz (dot (ry, bp) * dot (bq, ry), 2)); return (vec<Series> (er, ap * aq) << (ap * bq + bp * aq)); }
vector< series<M,V> > mmx::rec_prod | ( | const vector< series< M, V > > & | p, |
const vector< series< M, V > > & | q, | ||
const series< M, V > & | y | ||
) | [inline] |
Definition at line 491 of file series_carry_naive.hpp.
References lshiftz(), N(), rshiftz(), Series, and square().
Referenced by system_root_series_rep< M, V, W >::_eps(), and root_series_rep< M, V >::_eps().
{ ASSERT (N(p) == N(q) && N(p) == 3, "Wrong size of arguments"); const Series& ep=p[0], ap=p[1], eq=q[0], aq=q[1]; const Series& bp=p[2], bq=q[2]; Series ry = rshiftz (y); Series tp = ap + bp * lshiftz (ry); Series tq = aq + bq * lshiftz (ry); //TODO stocker récursivement rshiftz (er, 2) plutôt Series er = (ep * eq + lshiftz (tp * rshiftz (eq, 2), 2) + lshiftz (rshiftz (ep, 2) * tq, 2) + bp * bq * lshiftz (square (ry), 2)); return vec<Series> (er, ap * aq, ap * bq + bp * aq); }
vector< series<M,V> > mmx::rec_square | ( | const vector< series< M, V > > & | p, |
const series< M, V > & | y | ||
) | [inline] |
Definition at line 528 of file series_carry_naive.hpp.
References coefficients(), default_p_expansion, lshiftz(), M, N(), rshiftz(), Series, and square().
Referenced by system_root_series_rep< M, V, W >::_eps(), and root_series_rep< M, V >::_eps().
{ ASSERT (N(p) == 3, "Wrong size of arguments"); Series ser_2 (coefficients (as<default_p_expansion(M)> (2))); const Series& ep=p[0], ap=p[1], bp=p[2]; Series ry = rshiftz (y); Series tp = ap + bp * lshiftz (ry); Series er = (square (ep) + ser_2 * lshiftz (tp * rshiftz (ep, 2), 2) + lshiftz (square (bp * ry), 2)); return vec<Series> (er, square (ap), ser_2 * ap * bp); }
vector< series<M,V> > mmx::rec_square | ( | const vector< series< M, V > > & | p, |
const vector< series< M, V > > & | y | ||
) | [inline] |
Definition at line 541 of file series_carry_naive.hpp.
References as_series(), as_vector(), coefficients(), default_p_expansion, lshiftz(), lshiftz_series_vector(), M, N(), range(), rshiftz(), Series, and square().
{ nat l= N(p); ASSERT ((l-2) == N(y), "Wrong size of arguments"); Series ser_2 (coefficients (as<default_p_expansion(M)> (2))); const Series& ep=p[0], ap=p[1]; vector<Series> bp = range (p, 2, l); vector<Series> ry = as_vector (rshiftz (as_series (y)), N(y)); vector<Series> lry = as_vector (lshiftz_series_vector (rshiftz (as_series (y)), l-2)); Series tp = ap + dot (bp, lry); Series er = (square (ep) + ser_2 * lshiftz (tp * rshiftz (ep, 2), 2) + lshiftz (square (dot (bp, ry)), 2)); return (vec<Series> (er, square (ap)) << (ser_2 * ap * bp)); }
Definition at line 159 of file series.hpp.
References Series_rep.
Referenced by binary_recursive_series(), binary_scalar_recursive_series(), fixed_point_series(), fixed_point_series_vector(), nullary_recursive_series(), root_series(), implementation< series_separable_root, U, series_naive >::sep_root(), implementation< series_divide, U, series_naive >::ser_div(), implementation< series_divide, U, series_carry_naive >::ser_div(), ser_ldiv_mat(), ser_ldiv_mat_mat(), ser_ldiv_sc_mat(), ser_ldiv_sc_mat_mat(), implementation< series_divide, U, series_naive >::ser_quo(), implementation< series_divide, U, series_carry_naive >::ser_rdiv_sc(), implementation< series_compose, U, series_naive >::ser_reverse(), system_root_series(), and unary_recursive_series().
{ return (Series_rep*) new recursive_container_series_rep<C,V> (f); }
Definition at line 287 of file series_implicit.hpp.
References better_pivot(), C, is_exact_zero(), and UC.
Referenced by insert_and_reduce().
{ // Triangulation of two "rows" c1 and c2 // On exit, the simplest "row" is put into c1 //mmerr << " reduce " << c1 << ", " << c2 << "\n"; if (is_exact_zero (c1)) return; if (is_exact_zero (c2)) { swap (c1, c2); return; } ASSERT (c1->f == c2->f, "incompatible unknown coefficients"); if (c1->i2 < c2->i2) return; if (c2->i2 < c1->i2) { swap (c1, c2); return; } if (better_pivot (c1->s[c1->i2 - 1 - c1->i1], c2->s[c2->i2 - 1 - c2->i1])) swap (c1, c2); C lambda= c1->s[c1->i2 - 1 - c1->i1] / c2->s[c2->i2 - 1 - c2->i1]; nat i1= min (c1->i1, c2->i1); nat i2= c1->i2; C* s= mmx_new<C> (i2-i1-1); for (nat i= i1; i<i2-1; i++) s[i-i1]= (i >= c1->i1? c1->s[i - c1->i1]: C(0)) - lambda * (i >= c2->i1? c2->s[i - c2->i1]: C(0)); c1= UC (c1->f, c1->b - lambda * c2->b, s, i1, i2-1); }
Definition at line 594 of file matrix.hpp.
Referenced by implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::_half_gcd(), annihilator(), compose(), DEFINE_VARIANT(), implementation< base_transform, V, base_signed< W > >::direct(), implementation< base_transform, V, base_naive >::direct(), implementation< base_transform, V, base_dicho< W > >::direct(), div(), divides(), GLUE_24(), GLUE_30(), GLUE_32(), GLUE_83(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::half_subresultant(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::half_subresultant_rec(), implementation< polynomial_gcd, X, polynomial_series< BV > >::inv_mod_polynomial_series_rep< C, U, V, W >::initialize(), join(), implementation< crt_project, V, crt_naive >::mod(), mul(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_gcd(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::multi_gcd(), carry_mul_quorem_series_rep< C, V, X >::next(), implementation< series_multiply, U, series_carry_relaxed< W > >::mul_series_rep< M, V >::next(), implementation< series_multiply, U, series_carry_lift< W > >::truncate_mul_series_rep< M, V >::next(), implementation< series_multiply, U, series_carry_lift< W > >::mul_series_rep< M, V >::next(), implementation< series_multiply, U, series_carry_naive >::truncate_mul_series_rep< M, V >::next(), implementation< series_multiply, U, series_carry_naive >::mul_series_rep< M, V >::next(), implementation< series_multiply, U, series_carry_modular_int_naive< W > >::mul_series_rep< M, V >::next(), implementation< polynomial_vectorial, V, polynomial_naive >::rem_sc(), shift1(), shift2(), and square().
{
return binary_map_scalar<rrem_op> (m, c); }
Definition at line 1117 of file series.hpp.
References CF(), is_exact_zero(), quo(), and Series.
{ if (is_exact_zero (f)) return Series (CF(f)); return f - g * quo (f, g); }
polynomial<C,V> mmx::rem | ( | const polynomial< C, V > & | P1, |
const polynomial< C, V > & | P2, | ||
polynomial< C, V > & | Q | ||
) |
Returns the remainder and stores the quotient in Q.
Definition at line 681 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
{ typedef implementation<polynomial_divide,V> Pol; nat n1= N(P1), n2= N(P2); if (n1 < n2 || n2 == 0) return Polynomial (CF(P1)); nat lq= aligned_size<C,V> (n1-n2+1); nat lr= aligned_size<C,V> (n1); C* q= mmx_formatted_new<C> (lq, CF(P1)); C* r= mmx_formatted_new<C> (lr, CF(P1)); Pol::copy (r, seg (P1), n1); Pol::quo_rem (q, r, seg (P2), n1, n2); Q= Polynomial (q, n1-n2+1, lq, CF(P1)); return Polynomial (r, n2 - 1, lr, CF(P1)); }
polynomial<C,V> mmx::rem | ( | const polynomial< C, V > & | P, |
const C & | c | ||
) |
Definition at line 618 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
polynomial<C,V> mmx::rem | ( | const polynomial< C, V > & | P1, |
const polynomial< C, V > & | P2 | ||
) |
Definition at line 660 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
{ typedef implementation<polynomial_divide,V> Pol; nat n1= N(P1), n2= N(P2); if (n1 < n2 || n2 == 0) return P1; nat lq= aligned_size<C,V> (n1-n2+1); nat lr= aligned_size<C,V> (n1); C* q= mmx_formatted_new<C> (lq, CF(P1)); C* r= mmx_formatted_new<C> (lr, CF(P1)); Pol::copy (r, seg (P1), n1); Pol::quo_rem (q, r, seg (P2), n1, n2); mmx_delete<C> (q, lq); return Polynomial (r, n2 - 1, lr, CF(P1)); }
vector< polynomial<C,V> > mmx::rem | ( | const polynomial< C, V > & | p, |
const vector< polynomial< C, V > > & | q | ||
) | [inline] |
Definition at line 1108 of file polynomial.hpp.
{ typedef implementation<polynomial_evaluate,V> Pol; return Pol::multi_rem (p, q); }
Definition at line 1111 of file series.hpp.
{ typedef implementation<series_divide,V> Ser; return Ser::ser_rrem_sc (f, c); }
class series_rep REP_STRUCT_1 | ( | C | ) |
Definition at line 46 of file matrix.hpp.
References C, cols(), Format, is_a_scalar(), is_non_scalar(), Matrix, rows(), and tab().
{ C* a; nat nr; nat nc; bool scalar_flag; public: inline matrix_rep (C* a2, nat nr2, nat nc2, bool flag, const Format& fm): Format (fm), a (a2), nr (nr2), nc (nc2), scalar_flag (flag) {} inline ~matrix_rep () { mmx_delete<C> (a, aligned_size<C,V> (nr * nc)); } friend class Matrix; friend nat cols LESSGTR (const Matrix& m); friend nat rows LESSGTR (const Matrix& m); friend C* tab LESSGTR (Matrix& m); friend const C* tab LESSGTR (const Matrix& m); friend bool is_a_scalar LESSGTR (const Matrix& m); friend bool is_non_scalar LESSGTR (const Matrix& m); };
class matrix_rep< C, matrix_fixed< V, RS, CS > > mmx::REP_STRUCT_1 | ( | C | ) |
Definition at line 279 of file matrix.hpp.
References C, cols(), FMatrix, Format, is_a_scalar(), is_non_scalar(), Matrix, rows(), tab(), and val().
{ C* a; public: inline matrix_rep (C* a2, nat, nat, bool, const Format& fm): Format (fm), a (a2) {} inline virtual ~matrix_rep () { mmx_delete<C> (a, RS::val * CS::val); } friend class FMatrix; friend nat cols LESSGTR (const FMatrix& m); friend nat rows LESSGTR (const FMatrix& m); friend C* tab LESSGTR (const FMatrix& m); friend bool is_a_scalar LESSGTR (const Matrix& m); friend bool is_non_scalar LESSGTR (const Matrix& m); };
Definition at line 850 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
{ if (is_exact_zero (f)) return Series (CF(f)); return (Series_rep*) new restrict_series_rep<C,V> (f, start, end); }
Definition at line 978 of file polynomial.hpp.
References C, CF(), degree(), and Polynomial.
Referenced by discriminant(), GLUE_28(), GLUE_34(), GLUE_36(), and GLUE_87().
{ typedef implementation<polynomial_subresultant,V> Pol; int n= degree (P), m= degree (Q); if (n < 0 || m < 0) return promote (0, CF(P)); if (m == 0) return binpow (Q[0], n); if (n == 0) { C r= binpow (P[0], m); return (n & 1) ? -r : r; } Polynomial d; C zero= promote (0, CF(P)), one= promote (1, CF(P)); vector<Polynomial> res (Polynomial (one), 1), co_P (Polynomial (zero), 0), co_Q (Polynomial (zero), 0); Pol::subresultant_sequence (P, Q, res, co_P, co_Q, d, d, d, d, d, d, 0); return res[0][0]; }
Definition at line 1166 of file series.hpp.
{ typedef implementation<series_compose,V> Ser; return Ser::ser_reverse (f); }
polynomial<C,V> mmx::reverse | ( | const polynomial< C, V > & | P | ) |
Definition at line 1250 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Referenced by GLUE_135(), GLUE_26(), GLUE_29(), GLUE_38(), GLUE_8(), minimal_polynomial_bis(), polynomial_mul_helper< V, C, K >::op(), polynomial_reverse(), and implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate().
void mmx::reverse_cols | ( | matrix< C, V > & | m | ) |
Definition at line 969 of file matrix.hpp.
References cols(), is_non_scalar(), rows(), and tab().
{ typedef implementation<matrix_linear,V> Mat; ASSERT (is_non_scalar (m), "non-scalar matrix expected"); Mat::col_reverse (tab (m), rows (m), cols (m)); }
Definition at line 281 of file algebraic.hpp.
References Algebraic, CF(), field(), normalize(), Polynomial, and ramify().
static series<M,V> mmx::root_series | ( | const generic & | f, |
const generic & | x, | ||
const M & | y0 | ||
) | [inline, static] |
Definition at line 689 of file series_carry_naive.hpp.
References recursive(), Series, and Series_rep.
{ return recursive(Series ((Series_rep*) new root_series_rep<M,V> (f, x, y0))); }
Definition at line 913 of file matrix.hpp.
Referenced by annihilator(), GLUE_12(), GLUE_14(), GLUE_15(), GLUE_29(), implementation< matrix_vectorial, V, matrix_naive >::index(), and row_vectors().
void mmx::row_div | ( | matrix< C, V > & | m, |
C | c, | ||
nat | i | ||
) |
Definition at line 992 of file matrix.hpp.
Referenced by bareiss_extended_pivoting(), bareiss_pivoting(), and implementation< matrix_orthogonalization, V, matrix_naive >::row_orthonormalize().
{
Definition at line 1099 of file matrix.hpp.
References column_echelon(), and transpose().
Referenced by annihilator(), GLUE_102(), GLUE_32(), GLUE_57(), and row_reduced_echelon().
{ return transpose (column_echelon (transpose (m), reduced)); }
matrix<C,V> mmx::row_echelon | ( | const matrix< C, V > & | m, |
matrix< C, V > & | k, | ||
bool | reduced = false |
||
) | [inline] |
Definition at line 1109 of file matrix.hpp.
References column_echelon(), Matrix, and transpose().
{ Matrix c= column_echelon (transpose (m), k, reduced); k= transpose (k); return transpose (c); }
Definition at line 939 of file matrix.hpp.
void mmx::row_mul | ( | matrix< C, V > & | m, |
C | c, | ||
nat | i | ||
) |
Definition at line 991 of file matrix.hpp.
{
Definition at line 1234 of file matrix.hpp.
References CF(), cols(), copy(), is_non_scalar(), Matrix, rows(), seg(), and tab().
{ typedef implementation<matrix_orthogonalization,V> Mat; ASSERT (is_non_scalar (m), "non-scalar matrix expected"); Matrix c= copy (m); vector<C> n (promote (0, CF(m)), rows(m)); l= Matrix (promote (0, CF(m)), rows(m), rows(m)); Mat::row_orthogonalize (tab(c), rows(m), cols(m), tab(l), seg(n)); return c; }
Definition at line 1214 of file matrix.hpp.
References CF(), cols(), copy(), is_non_scalar(), Matrix, rows(), seg(), and tab().
Definition at line 1274 of file matrix.hpp.
References CF(), cols(), copy(), is_non_scalar(), Matrix, rows(), and tab().
Definition at line 1256 of file matrix.hpp.
References cols(), copy(), is_non_scalar(), Matrix, rows(), and tab().
Definition at line 1116 of file matrix.hpp.
References row_echelon().
{ return row_echelon (m, k, true); }
Definition at line 1104 of file matrix.hpp.
References row_echelon().
Referenced by GLUE_104(), GLUE_34(), GLUE_59(), and wrap_row_reduced_echelon_with_transform().
{ return row_echelon (m, true); }
vector<vector<C> > mmx::row_vectors | ( | const matrix< C > & | m | ) |
nat rows | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 178 of file matrix.hpp.
Referenced by as_matrix(), binary_map(), binary_map_scalar(), binary_test(), cofactor(), column(), column_echelon(), column_orthogonalization(), column_orthonormalization(), column_reduced_echelon(), as_helper< matrix< T, TV >, matrix< F, FV > >::cv(), fast_helper< matrix< C, V > >::dd(), delete_col(), delete_row(), det(), binary_helper< matrix< C, V > >::disassemble(), extend(), first_minor(), flatten(), get_matrix_format(), GLUE_10(), GLUE_24(), GLUE_6(), GLUE_7(), GLUE_9(), horizontal_join(), image(), ldiv_mat_mat_series_rep< C, V, U >::Increase_order(), ldiv_sc_mat_mat_series_rep< C, V, U, UU >::Increase_order(), matrix_series_rep< C, V, U >::Increase_order(), invert(), matrix_iterator_rep< C, V >::is_busy(), is_square_matrix(), kernel(), krylov(), map(), matrix< series< C, V >, U >::matrix(), matrix_mul_quo(), matrix_new(), N(), nbrow(), matrix_series_rep< C, V, U >::next(), nullary_set(), operator!=(), matrix< series< C, V >, U >::operator()(), operator*(), operator<=(), operator==(), operator>=(), permute_columns(), permute_rows(), implementation< matrix_vectorial, V, matrix_naive >::print(), range(), rank(), REP_STRUCT_1(), reverse_cols(), row_orthogonalization(), row_orthonormalization(), row_vectors(), implementation< matrix_vectorial, V, matrix_naive >::set(), solve_lde(), solve_lde_init(), swap_col(), swap_row(), implementation< matrix_vectorial, V, matrix_naive >::transpose(), transpose(), unary_hash(), unary_map(), unary_set(), unary_set_scalar(), fast_helper< matrix< C, V > >::uu(), vertical_join(), and binary_helper< matrix< C, V > >::write().
{ return m->nr; }
nat mmx::rows | ( | const matrix< C, matrix_fixed< V, RS, CS > > & | m | ) | [inline] |
void mmx::rows_linsub | ( | matrix< C, V > & | m, |
nat | i, | ||
C | ci, | ||
nat | j, | ||
C | cj | ||
) |
Definition at line 995 of file matrix.hpp.
Referenced by bareiss_extended_pivoting(), and bareiss_pivoting().
{
Definition at line 827 of file series.hpp.
References CF(), is_exact_zero(), Series, Series_rep, and shift().
Referenced by ser_carry_separable_root_op::binpow_no_tangent(), ser_carry_pth_root_reg_op::binpow_no_tangent_normalized(), ser_carry_pth_root_reg_op::def(), GLUE_125(), GLUE_15(), GLUE_21(), GLUE_22(), GLUE_28(), GLUE_29(), GLUE_73(), GLUE_99(), ldiv_mat_series_rep< C, V, W, U >::initialize(), implementation< series_compose, U, series_naive >::reverse_series_rep< C, V >::initialize(), ldiv_mat_mat_series_rep< C, V, U >::initialize(), implementation< series_divide, U, series_carry_naive >::div_series_rep< M, V >::initialize(), implementation< polynomial_gcd, X, polynomial_series< BV > >::inv_mod_polynomial_series_rep< C, U, V, W >::initialize(), implementation< matrix_multiply, V, matrix_balanced< W > >::mat_rshift(), implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::mul_series_rep< M, V >::mul_series_rep(), subst_mul_series_rep< C, V, UV >::next(), rec_prod(), rec_square(), and implementation< series_pth_root, U, series_carry_p_adic< W > >::unsep_root().
{ if (is_exact_zero (f)) return Series (CF(f)); return (Series_rep*) new lshiftz_series_rep<C,V> (f, -shift); }
Definition at line 190 of file polynomial.hpp.
{ return P->a; }
Definition at line 189 of file polynomial.hpp.
Referenced by implementation< polynomial_evaluate, V, polynomial_naive >::annulator(), big_add(), big_mul(), binary_map_scalar(), column_orthogonalization(), combine_crt(), compose(), contents(), crt_dicho_transformer< C, S, V >::crt_dicho_transformer(), decode_kronecker(), derive(), dilate(), implementation< series_multiply, U, series_fast >::nrelax_mul_series_rep< C, V >::direct_transform(), base_dicho_transformer< C, S, V >::direct_transform(), implementation< polynomial_evaluate, V, polynomial_naive >::evaluate(), evaluate(), expand(), implementation< polynomial_gcd, V, polynomial_naive >::gcd(), graeffe(), integrate(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), inverse_base(), inverse_crt(), base_dicho_transformer< C, S, V >::inverse_transform(), invert_hi(), invert_lo(), lshiftz(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_rem(), operator*(), operator+(), polynomial< C, V >::operator+=(), operator-(), polynomial< C, V >::operator-=(), operator/(), implementation< polynomial_gcd, V, polynomial_naive >::pade(), permute_columns(), permute_rows(), polynomial< series< C, V >, U >::polynomial(), pquo(), prem(), primitive_part(), q_difference(), quo(), rem(), reverse(), row_orthogonalization(), set_as(), shift(), skew_div(), square(), implementation< polynomial_subresultant_base, V, polynomial_naive >::subresultant_sequence(), implementation< polynomial_evaluate, V, polynomial_naive >::tevaluate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tevaluate(), implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate(), tmul(), tquo(), trem(), unary_map(), and xderive().
{ return P->a; }
Definition at line 1134 of file series.hpp.
{ typedef implementation<series_separable_root,V> Ser; return Ser::sep_root (f, n); }
Definition at line 118 of file root_modular.hpp.
References N(), and separable_roots().
Referenced by GLUE_27(), ser_separable_root_op::op(), ser_carry_separable_root_op::op(), ser_separable_root_op::set_op(), and ser_carry_separable_root_op::set_op().
{ // return one r th roots of a // FIXME << to optimize if (a == 1) return a; vector<Modular> ans= separable_roots (a, r); ASSERT (N (ans) != 0, "no root"); return ans [0]; }
Definition at line 1140 of file series.hpp.
Referenced by ser_separable_root_op::op_init(), and ser_carry_separable_root_op::op_init().
{ typedef implementation<series_separable_root,V> Ser; return Ser::sep_root (f, n, init); }
vector< modular< modulus<C,V> ,W> > mmx::separable_roots | ( | const modular< modulus< C, V >, W > & | a, |
nat | r | ||
) |
Definition at line 109 of file root_modular.hpp.
References C, Modular, and root_modular_naive::roots().
Referenced by nth_roots(), and separable_root().
static vector< series<C,V> ,W> mmx::ser_ldiv_mat | ( | const matrix< series< C, V >, U > & | mat, |
const vector< series< C, V >, W > & | f | ||
) | [inline, static] |
Definition at line 400 of file series_vector.hpp.
References as_series(), as_vector(), CF(), cols(), is_exact_zero(), recursive(), Series, Series_vector, and Vector_series.
Referenced by system_root_series_rep< M, V, W >::initialize().
{ typedef ldiv_mat_series_rep<C,V,W,U> Div_mat_rep; if (is_exact_zero (as_series (f))) { Series zero (get_format1 (CF(mat))); return Vector_series (zero, cols(mat)); } Series_vector s = (series_rep<Vector,V>*) new Div_mat_rep (mat,f); return as_vector (recursive (s)); }
static matrix< series<C,V> ,U> mmx::ser_ldiv_mat_mat | ( | const matrix< series< C, V >, U > & | mat, |
const matrix< series< C, V >, U > & | f | ||
) | [inline, static] |
Definition at line 301 of file series_matrix.hpp.
References as_matrix(), as_series(), CF(), cols(), is_exact_zero(), Matrix_series, recursive(), Series, and Series_matrix.
{ typedef ldiv_mat_mat_series_rep<C,V,U> Div_mat_rep; if (is_exact_zero (as_series (f))) { Series zero (get_format1 (CF(f))); return Matrix_series (zero, cols(mat), cols(f)); } Series_matrix s = (series_rep<Matrix,V>*) new Div_mat_rep (mat,f); return as_matrix (recursive (s)); }
static vector< series<C,V> ,W> mmx::ser_ldiv_sc_mat | ( | const matrix< C, U > & | c, |
const vector< series< C, V >, W > & | f | ||
) | [inline, static] |
Definition at line 348 of file series_vector.hpp.
References as_series(), as_vector(), CF(), cols(), is_exact_zero(), recursive(), Series, Series_vector, and Vector_series.
Referenced by ldiv_mat_series_rep< C, V, W, U >::initialize().
{ typedef ldiv_sc_mat_series_rep<C,V,W,U> Div_sc_mat_rep; if (is_exact_zero (as_series (f))) return Vector_series (Series (CF(c)), cols(c)); Series_vector s = (series_rep<Vector,V>*) new Div_sc_mat_rep (c,f); return as_vector (recursive (s)); }
static matrix< series<C,V> ,U> mmx::ser_ldiv_sc_mat_mat | ( | const matrix< C, UU > & | c, |
const matrix< series< C, V >, U > & | f | ||
) | [inline, static] |
Definition at line 257 of file series_matrix.hpp.
References as_matrix(), as_series(), CF(), cols(), is_exact_zero(), Matrix_series, recursive(), Series, and Series_matrix.
Referenced by ldiv_mat_mat_series_rep< C, V, U >::initialize().
{ typedef ldiv_sc_mat_mat_series_rep<C,V,U,UU> Div_sc_mat_mat_rep; if (is_exact_zero (as_series (f))) { Series zero (get_format1 (CF(f))); return Matrix_series (zero, cols(c), cols(f)); } Series_matrix s = (series_rep<Matrix,V>*) new Div_sc_mat_mat_rep (c,f); return as_matrix (recursive (s)); }
void mmx::set_accuracy | ( | matrix< C, V > & | m | ) |
Definition at line 558 of file matrix.hpp.
{ nullary_set<accuracy_as_op> (m); }
void mmx::set_as | ( | polynomial< T, TV > & | r, |
const polynomial< F, FV > & | p | ||
) | [inline] |
void mmx::set_as | ( | matrix< C, V > & | r, |
const T & | x | ||
) | [inline] |
void mmx::set_as | ( | series< C, V > & | r, |
const T & | x | ||
) | [inline] |
void mmx::set_as | ( | polynomial< C, V > & | r, |
const T & | x | ||
) | [inline] |
Definition at line 259 of file polynomial.hpp.
References normalize(), seg(), and set_as().
void mmx::set_as | ( | series< T, TV > & | r, |
const series< F, FV > & | f | ||
) | [inline] |
void mmx::set_as | ( | matrix< T, TV > & | r, |
const matrix< F, FV > & | m | ||
) | [inline] |
Definition at line 240 of file matrix.hpp.
References CF().
Referenced by implementation< matrix_determinant, V, matrix_naive >::det(), implementation< polynomial_gcd, V, polynomial_naive >::gcd(), set_as(), and implementation< polynomial_subresultant, V, polynomial_naive >::subresultant_sequence().
{ r= matrix<T,TV> (m, CF(r)); }
void mmx::set_cancel_order | ( | const series< C, V > & | , |
const nat & | n | ||
) | [inline] |
Definition at line 114 of file series.hpp.
Referenced by GLUE_102(), GLUE_3(), GLUE_4(), GLUE_5(), and GLUE_74().
{ return Series::set_cancel_order (n); }
void mmx::set_catalan | ( | matrix< C, V > & | m | ) |
Definition at line 552 of file matrix.hpp.
{ nullary_set<catalan_as_op> (m); }
void mmx::set_euler | ( | matrix< C, V > & | m | ) |
Definition at line 551 of file matrix.hpp.
{ nullary_set<euler_as_op> (m); }
void mmx::set_formula_output | ( | const series< C, V > & | , |
const bool & | b | ||
) | [inline] |
Definition at line 116 of file series.hpp.
Referenced by GLUE_103(), GLUE_4(), GLUE_5(), GLUE_6(), and GLUE_75().
{ return Series::set_formula_output (b); }
void mmx::set_fuzz | ( | matrix< C, V > & | m | ) |
Definition at line 555 of file matrix.hpp.
{ nullary_set<fuzz_as_op> (m); }
void mmx::set_imaginary | ( | algebraic_number & | z | ) | [inline] |
Definition at line 388 of file algebraic_number.hpp.
{ typedef ball<complex<floating<> > > B; polynomial<rational> mp (vec<rational> (1, 0, 1)); polynomial<rational> i (vec<rational> (0, 1)); algebraic_complex_extension ext (mp, imaginary_cst<B> ()); z= algebraic_number (ext, i); }
void mmx::set_imaginary | ( | matrix< C, V > & | m | ) |
Definition at line 553 of file matrix.hpp.
{ nullary_set<imaginary_as_op> (m); }
void mmx::set_infinity | ( | matrix< C, V > & | m | ) |
Definition at line 559 of file matrix.hpp.
{ nullary_set<infinity_as_op> (m); }
void mmx::set_largest | ( | matrix< C, V > & | m | ) |
Definition at line 557 of file matrix.hpp.
{ nullary_set<largest_as_op> (m); }
void mmx::set_log2 | ( | matrix< C, V > & | m | ) |
Definition at line 550 of file matrix.hpp.
{ nullary_set<log2_as_op> (m); }
void mmx::set_maximal | ( | matrix< C, V > & | m | ) |
Definition at line 560 of file matrix.hpp.
{ nullary_set<maximal_as_op> (m); }
void mmx::set_minimal | ( | matrix< C, V > & | m | ) |
Definition at line 561 of file matrix.hpp.
{ nullary_set<minimal_as_op> (m); }
void mmx::set_nan | ( | matrix< C, V > & | m | ) |
Definition at line 554 of file matrix.hpp.
{ nullary_set<nan_as_op> (m); }
void mmx::set_output_order | ( | const series< C, V > & | , |
const nat & | n | ||
) | [inline] |
Definition at line 112 of file series.hpp.
Referenced by GLUE_101(), GLUE_2(), GLUE_3(), GLUE_4(), and GLUE_73().
{ return Series::set_output_order (n); }
void mmx::set_pi | ( | matrix< C, V > & | m | ) |
Definition at line 549 of file matrix.hpp.
{ nullary_set<pi_as_op> (m); }
void mmx::set_smallest | ( | matrix< C, V > & | m | ) |
Definition at line 556 of file matrix.hpp.
{ nullary_set<smallest_as_op> (m); }
void mmx::set_variable_name | ( | const polynomial< C, V > & | P, |
const generic & | x | ||
) | [inline] |
Definition at line 303 of file polynomial.hpp.
Referenced by GLUE_1(), GLUE_100(), GLUE_2(), GLUE_3(), GLUE_54(), GLUE_72(), and set_variable_name().
{ (void) P; return Polynomial::set_variable_name (x); }
void mmx::set_variable_name | ( | const series< C, V > & | , |
const generic & | x | ||
) | [inline] |
Definition at line 110 of file series.hpp.
References set_variable_name().
{ return Series::set_variable_name (x); }
Definition at line 682 of file matrix.hpp.
Referenced by improve_zero().
{
return unary_map<sharpen_op> (m); }
polynomial<C,V> mmx::sharpen | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1406 of file polynomial.hpp.
{
return unary_map<sharpen_op> (p); }
Definition at line 1201 of file series.hpp.
{
return unary_map<sharpen_op> (f); }
polynomial<C,V> mmx::shift | ( | const polynomial< C, V > & | P, |
int | i | ||
) |
Definition at line 984 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
{ if (is_exact_zero (f)) return Series (CF(f)); return (Series_rep*) new shift_series_rep<C,V> (f, q, order); }
polynomial<C,V> mmx::shift | ( | const polynomial< C, V > & | P, |
const C & | sh | ||
) |
Definition at line 1064 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Referenced by implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::expand(), GLUE_138(), GLUE_32(), GLUE_36(), GLUE_40(), GLUE_41(), GLUE_44(), GLUE_95(), fft_triadic_threads_transformer< C, FFTER, thr >::inverse_transform_triadic(), fft_triadic_naive_transformer< C, VV >::inverse_transform_triadic(), lshiftz(), lshiftz_series_matrix(), lshiftz_series_vector(), implementation< polynomial_multiply, V, polynomial_schonhage_triadic_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul_negative_cyclic(), implementation< polynomial_multiply, V, polynomial_schonhage_triadic_inc< W, Th > >::mul_triadic(), rshiftz(), shift(), fft_helper< D, R, 1 >::tf(), fft_fixed_helper< R, 6 >::transform(), fft_fixed_helper< R, 5 >::transform(), fft_fixed_helper< R, 4 >::transform(), fft_fixed_helper< R, 3 >::transform(), fft_fixed_helper< R, 2 >::transform(), fft_fixed_helper< R, 1 >::transform(), and fft_fixed_helper< R, steps >::transform().
{ typedef implementation<polynomial_compose,V> Pol; nat n= N(P); if (n <= 1 || sh == 0) return P; nat l= aligned_size<C,V> (n); C* r= mmx_formatted_new<C> (l, CF(P)); Pol::shift (r, seg (P), sh, n); return Polynomial (r, n, l, CF(P)); }
vector<C> mmx::shift1 | ( | const algebraic_extension< C > & | ext1, |
const algebraic_extension< C > & | ext2, | ||
const vector< C > & | v | ||
) |
Definition at line 140 of file algebraic_extension.hpp.
References CF(), deg(), Element, lshiftz(), and rem().
Referenced by mul_matrix().
{ // multiply the bivariate polynomial represented by v with x1 nat d1= deg (ext1.mp), d2= deg (ext2.mp); vector<C> r= fill<C> (promote (0, CF(ext1)), d1*d2); for (nat i2=0; i2<d2; i2++) { vector<C> c= fill<C> (promote (0, CF(ext1)), d1); for (nat i1=0; i1<d1; i1++) c[i1]= v[i1*d2 + i2]; Element p= rem (lshiftz (Element (c), 1), ext1.mp); for (nat i1=0; i1<d1; i1++) r[i1*d2 + i2]= p[i1]; } return r; }
vector<C> mmx::shift2 | ( | const algebraic_extension< C > & | ext1, |
const algebraic_extension< C > & | ext2, | ||
const vector< C > & | v | ||
) |
Definition at line 156 of file algebraic_extension.hpp.
References CF(), deg(), Element, lshiftz(), and rem().
Referenced by mul_matrix().
{ // multiply the bivariate polynomial represented by v with x2 nat d1= deg (ext1.mp), d2= deg (ext2.mp); vector<C> r= fill<C> (promote (0, CF(ext1)), d1*d2); for (nat i1=0; i1<d1; i1++) { vector<C> c= fill<C> (promote (0, CF(ext1)), d2); for (nat i2=0; i2<d2; i2++) c[i2]= v[i1*d2 + i2]; Element p= rem (lshiftz (Element (c), 1), ext2.mp); for (nat i2=0; i2<d2; i2++) r[i1*d2 + i2]= p[i2]; } return r; }
bool shrink | ( | const polynomial< C > & | p, |
Ball & | x | ||
) |
Definition at line 155 of file algebraic_number.hpp.
References copy(), and improve_zero().
Referenced by join(), normalize(), and shrink_check().
{ nat old_precision= mmx_bit_precision; mmx_bit_precision *= 2; Ball x2= copy (x); bool r= improve_zero (p, x2); mmx_bit_precision= old_precision; x= copy (x2); add_additive_error (x); return r; }
void mmx::shrink_check | ( | const polynomial< C > & | p, |
Ball & | x | ||
) |
Definition at line 167 of file algebraic_number.hpp.
References shrink().
Referenced by algebraic_number_extension< C, Ball >::algebraic_number_extension().
{ if (!shrink (p, x)) { mmerr << "mp= " << p << "\n"; mmerr << "x = " << x << "\n"; ERROR ("root not uniquely specified"); } }
int mmx::sign | ( | const algebraic< C, Extension > & | x | ) | [inline] |
int mmx::sign | ( | const algebraic_extension< C > & | ext, |
const typename algebraic_extension< C >::El & | p1 | ||
) | [inline] |
int mmx::sign | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 293 of file quotient.hpp.
References denominator(), numerator(), and sign().
{ return sign (numerator (x)) * sign (denominator (x)); }
int mmx::sign | ( | const series< C, V > & | f | ) |
Definition at line 337 of file series.hpp.
References sign().
{ for (nat n=0; n< Series::get_cancel_order (); n++) { int sgn= sign (f[n]); if (sgn != 0) return sgn; } return 0; }
int mmx::sign | ( | const algebraic_number_extension< C, Ball > & | ext, |
const typename algebraic_number_extension< C, Ball >::El & | p1 | ||
) | [inline] |
Definition at line 271 of file algebraic_number.hpp.
References annihilator(), deg(), derive(), eval(), Polynomial, and sign().
{ if (deg (p1) <= 0) return sign (ext.ext, p1); Ball y= eval (ext, p1); if (is_non_zero (y)) return sign (y); Polynomial ann= annihilator (ext, p1); if (ann[0] == 0 && is_non_zero (eval (derive (ann), y))) return 0; nat old_precision= mmx_bit_precision; mmx_bit_precision *= 2; int r= sign (ext, p1); mmx_bit_precision= old_precision; return r; }
int mmx::sign | ( | const polynomial< C, V > & | P | ) |
Definition at line 119 of file series_elementary.hpp.
Referenced by GLUE_38(), GLUE_53(), and primitive_root_helper< C >::op().
{
return unary_recursive_series<sin_op> (f);
}
vector<vector<C> > mmx::singleton_vector | ( | const vector< C > & | v | ) |
Definition at line 122 of file series_sugar.hpp.
References N().
{ nat n= N(v); vector<vector<C> > r= fill<vector<C> > (n); for (nat i=0; i<n; i++) r[i]= vec<C> (v[i]); return r; }
nat mmx::size_bound | ( | const typename Baser::base & | a, |
Baser & | baser | ||
) | [inline] |
Definition at line 154 of file base_naive.hpp.
Referenced by direct_base().
{ // return a bound size for the expansion of a return size_bound_in_base_helper<C,I>::size (a, * baser.p); }
polynomial<C,V> mmx::skew_div | ( | const polynomial< C, V > & | P, |
const C & | c, | ||
bool | left | ||
) |
Definition at line 595 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Definition at line 166 of file series_matrix.hpp.
References as_matrix(), as_series(), C, cols(), is_square_matrix(), Matrix, rows(), and solve_matrix_lde_init().
{ ASSERT (is_square_matrix (f), "square matrix expected"); Matrix c (C(1), rows (f), cols (f)); return as_matrix (solve_matrix_lde_init (as_series (f), c)); }
Definition at line 177 of file series_vector.hpp.
References read(), and solve_lde_init().
{ return read (solve_lde_init (f, c), 0); }
vector< series<C,V> ,W> mmx::solve_lde_init | ( | const vector< series< C, V >, W > & | f, |
const vector< C, W > & | c | ||
) |
Definition at line 172 of file series_vector.hpp.
References as_series(), as_vector(), and solve_vector_lde_init().
{ return as_vector (solve_vector_lde_init (as_series (f), c)); }
matrix< series<C,V> ,U> mmx::solve_lde_init | ( | const matrix< series< C, V >, U > & | f, |
const matrix< C, U > & | c | ||
) |
Definition at line 173 of file series_matrix.hpp.
References as_matrix(), as_series(), is_square_matrix(), rows(), and solve_matrix_lde_init().
Referenced by solve_lde().
{ ASSERT (is_square_matrix (f), "square matrix expected"); ASSERT (rows (f) == rows (c), "unequal matrix dimensions"); return as_matrix (solve_matrix_lde_init (as_series (f), c)); }
series< matrix<C,U> ,V> mmx::solve_matrix_lde_init | ( | const series< matrix< C, U >, V > & | f, |
const matrix< C, U > & | c | ||
) |
Definition at line 161 of file series_matrix.hpp.
Referenced by solve_lde(), and solve_lde_init().
{
return unary_recursive_series<solve_matrix_lde_op> (f, c);
}
series< vector<C,W> ,V> mmx::solve_vector_lde_init | ( | const series< vector< C, W >, V > & | f, |
const vector< C, W > & | c | ||
) |
Definition at line 167 of file series_vector.hpp.
Referenced by solve_lde_init().
{
return unary_recursive_series<solve_vector_lde_op> (f, c);
}
Definition at line 520 of file series_implicit.hpp.
References VSeries_rep.
Referenced by implicit_series(), and implicit_vector_series().
{ return (VSeries_rep*) new solver_container_series_rep<C,V> (f); }
Definition at line 29 of file series_elementary.hpp.
References CF(), is_exact_zero(), and Series.
{ if (is_exact_zero (f)) return Series (CF(f)); return unary_recursive_series<sqrt_op> (f); }
Definition at line 290 of file algebraic.hpp.
References root().
Referenced by abs(), implementation< matrix_orthogonalization, V, matrix_naive >::col_orthonormalize(), GLUE_22(), GLUE_34(), GLUE_49(), GLUE_51(), ramify(), and implementation< matrix_orthogonalization, V, matrix_naive >::row_orthonormalize().
{ return root (x, 2); }
Definition at line 35 of file series_elementary.hpp.
{
return unary_recursive_series<sqrt_op> (f, c);
}
Ball algebraic_number_extension<C,Ball>::El mmx::square | ( | const algebraic_number_extension< C, Ball > & | ext, |
const typename algebraic_number_extension< C, Ball >::El & | p1 | ||
) | [inline] |
Definition at line 232 of file algebraic_number.hpp.
References square().
{ return square (ext.ext, p1); }
Definition at line 231 of file algebraic.hpp.
References Algebraic, field(), and value().
Referenced by system_root_series_rep< M, V, W >::_ev_der(), root_series_rep< M, V >::_eval(), ser_carry_separable_root_op::binpow_no_tangent(), ser_carry_pth_root_reg_op::binpow_no_tangent_normalized(), ser_carry_pth_root_reg_op::def(), derive(), implementation< series_multiply, U, series_carry_relaxed< W > >::mul_series_rep< M, V >::get_power_of_p(), GLUE_10(), GLUE_109(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_20(), GLUE_24(), GLUE_27(), GLUE_38(), GLUE_41(), GLUE_6(), GLUE_60(), GLUE_61(), GLUE_65(), GLUE_8(), GLUE_83(), GLUE_86(), GLUE_9(), implementation< polynomial_graeffe, V, polynomial_unrolled< W, m > >::graeffe(), implementation< polynomial_graeffe, V, polynomial_naive >::graeffe(), implementation< series_compose, U, series_naive >::reverse_series_rep< C, V >::initialize(), rec_prod(), rec_square(), implementation< polynomial_multiply, V, polynomial_balanced_tft< W > >::square(), implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::square(), implementation< polynomial_multiply, V, polynomial_tangent< CV > >::square(), implementation< polynomial_multiply, V, polynomial_quotient< W > >::square(), implementation< polynomial_multiply, V, polynomial_modular< W > >::square(), implementation< polynomial_multiply, V, polynomial_kronecker< W > >::square(), implementation< polynomial_multiply, V, polynomial_karatsuba< W > >::square(), implementation< polynomial_multiply, V, polynomial_complex< CV > >::square(), implementation< polynomial_multiply, V, polynomial_balanced< W > >::square(), square(), square_kronecker(), square_kronecker_int(), square_kronecker_mod_int(), and xderive().
algebraic_extension<C>::El mmx::square | ( | const algebraic_extension< C > & | ext, |
const typename algebraic_extension< C >::El & | p1 | ||
) | [inline] |
polynomial<C,V> mmx::square | ( | const polynomial< C, V > & | P | ) |
Definition at line 536 of file polynomial.hpp.
References C, CF(), N(), Polynomial, seg(), and square().
{ typedef implementation<polynomial_multiply,V> Pol; nat n= N(P); if (n == 0) return P; nat l= aligned_size<C,V> (2*n-1); C* r= mmx_formatted_new<C> (l, CF(P)); Pol::square (r, seg (P), n); return Polynomial (r, 2*n-1, l, CF(P)); }
polynomial<C> mmx::square_free | ( | const polynomial< C > & | p | ) |
void square_kronecker | ( | int * | dest, |
const int * | src1, | ||
nat | n1 | ||
) |
Definition at line 216 of file kronecker_int.cpp.
void mmx::square_kronecker | ( | signed short int * | dest, |
const signed short int * | src, | ||
nat | n | ||
) |
Definition at line 214 of file kronecker_int.cpp.
void mmx::square_kronecker | ( | modular< modulus< I, MoV >, MaV > * | dest, |
const modular< modulus< I, MoV >, MaV > * | s, | ||
nat | n | ||
) | [inline] |
Definition at line 59 of file kronecker_modular_int.hpp.
References I, and square_kronecker_mod().
{ square_kronecker_mod ((I*) (void*) dest, (const I*) (const void*) s, n, * C::get_modulus()); }
void mmx::square_kronecker | ( | short int * | dest, |
const short int * | src1, | ||
nat | n1 | ||
) |
void square_kronecker | ( | integer * | dest, |
const integer * | src1, | ||
nat | n1 | ||
) |
Definition at line 169 of file kronecker_integer.cpp.
References decode_kronecker(), encode_kronecker(), max_bit_size(), and square().
{ if (n == 0) return; for (nat i= 0; i < 2 * n - 1; i++) dest[i]= 0; while (n > 0 && src[n-1] == 0) n--; if (n == 0) return; if (n == 1) { dest[0]= square (src[0]); return; } xnat bits1= max_bit_size (src, n); xnat bits = (bits1 << 1) + bit_size (integer (n)) + 1; integer aux1; encode_kronecker (aux1, src, n, bits); integer aux= square (aux1); decode_kronecker (dest, n+n-1, bits, aux); }
void square_kronecker | ( | long long int * | dest, |
const long long int * | src1, | ||
nat | n1 | ||
) |
Definition at line 220 of file kronecker_int.cpp.
void square_kronecker | ( | unsigned int * | dest, |
const unsigned int * | src1, | ||
nat | n1 | ||
) |
Definition at line 217 of file kronecker_int.cpp.
void mmx::square_kronecker | ( | modular< modulus< I, MoV >, modular_local > * | dest, |
const modular< modulus< I, MoV >, modular_local > * | s, | ||
nat | n | ||
) | [inline] |
Definition at line 85 of file kronecker_modular_int.hpp.
References C, I, and square_kronecker_mod().
{ nat ls= default_aligned_size<I> (n); nat spc= ls + default_aligned_size<I> (2 * n - 1); I* t= mmx_new<I> (spc), * r= t + ls; for (nat i= 0; i < n; i++) t[i]= * s[i]; I p= * get_modulus (s[0]); square_kronecker_mod (r, t, n, p); for (nat i= 0; i < 2 * n - 1; i++) dest[i]= C (* r[i], p, true); mmx_delete<I> (t, spc); }
void square_kronecker | ( | unsigned short int * | dest, |
const unsigned short int * | src1, | ||
nat | n1 | ||
) |
Definition at line 215 of file kronecker_int.cpp.
void square_kronecker | ( | unsigned long int * | dest, |
const unsigned long int * | src1, | ||
nat | n1 | ||
) |
Definition at line 219 of file kronecker_int.cpp.
void square_kronecker | ( | unsigned char * | dest, |
const unsigned char * | src1, | ||
nat | n1 | ||
) |
Definition at line 213 of file kronecker_int.cpp.
void mmx::square_kronecker | ( | polynomial< C, V > * | dest, |
const polynomial< C, V > * | s, | ||
nat | n | ||
) | [inline] |
Definition at line 84 of file kronecker_polynomial.hpp.
References decode_kronecker(), encode_kronecker(), max_polynomial_size(), and Polynomial.
{ typedef implementation<polynomial_linear,V> Pol; if (n == 0) return; if (n == 1) { dest[0]= square_op::op (s[0]); return; } nat m = (max_polynomial_size (s, n) << 1) - 1; Polynomial x; encode_kronecker (x, s, n, m); x= square_op::op (x); decode_kronecker (dest, x, (n << 1) - 1, m); }
void square_kronecker | ( | signed char * | dest, |
const signed char * | src1, | ||
nat | n1 | ||
) |
Definition at line 212 of file kronecker_int.cpp.
Referenced by implementation< polynomial_multiply, V, polynomial_kronecker< W > >::square().
void square_kronecker | ( | unsigned long long int * | dest, |
const unsigned long long int * | src1, | ||
nat | n1 | ||
) |
Definition at line 221 of file kronecker_int.cpp.
void square_kronecker | ( | long int * | dest, |
const long int * | src1, | ||
nat | n1 | ||
) |
Definition at line 218 of file kronecker_int.cpp.
static void mmx::square_kronecker_int | ( | I * | dest, |
const I * | src, | ||
nat | n | ||
) | [inline, static] |
Definition at line 194 of file kronecker_int.cpp.
References decode_kronecker(), encode_kronecker(), I, and square().
{ if (n == 0) return; for (nat i= 0; i < 2 * n - 1; i++) dest[i]= 0; while (n > 0 && src[n-1] == 0) n--; if (n == 0) return; if (n == 1) { dest[0]= square (src[0]); return; } xnat bits= 16 * sizeof (I) + bit_size (n); integer aux1; encode_kronecker (aux1, src, n, bits); integer aux= square (aux1); decode_kronecker (dest, 2*n - 1, bits, aux); }
void square_kronecker_mod | ( | unsigned char * | dest, |
const unsigned char * | src1, | ||
nat | n1, | ||
const unsigned char & | p | ||
) |
Definition at line 152 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | unsigned int * | dest, |
const unsigned int * | src1, | ||
nat | n1, | ||
const unsigned int & | p | ||
) |
Definition at line 156 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | unsigned long long int * | dest, |
const unsigned long long int * | src1, | ||
nat | n1, | ||
const unsigned long long int & | p | ||
) |
Definition at line 160 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | signed char * | dest, |
const signed char * | src1, | ||
nat | n1, | ||
const signed char & | p | ||
) |
Definition at line 151 of file kronecker_modular_int.cpp.
Referenced by square_kronecker().
void square_kronecker_mod | ( | short int * | dest, |
const short int * | src1, | ||
nat | n1, | ||
const short int & | p | ||
) |
Definition at line 153 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | int * | dest, |
const int * | src1, | ||
nat | n1, | ||
const int & | p | ||
) |
Definition at line 155 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | long long int * | dest, |
const long long int * | src1, | ||
nat | n1, | ||
const long long int & | p | ||
) |
Definition at line 159 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | unsigned short int * | dest, |
const unsigned short int * | src1, | ||
nat | n1, | ||
const unsigned short int & | p | ||
) |
Definition at line 154 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | unsigned long int * | dest, |
const unsigned long int * | src1, | ||
nat | n1, | ||
const unsigned long int & | p | ||
) |
Definition at line 158 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | long int * | dest, |
const long int * | src1, | ||
nat | n1, | ||
const long int & | p | ||
) |
Definition at line 157 of file kronecker_modular_int.cpp.
static void mmx::square_kronecker_mod_int | ( | I * | dest, |
const I * | src, | ||
nat | n, | ||
const I & | p | ||
) | [inline, static] |
Definition at line 134 of file kronecker_modular_int.cpp.
References decode_kronecker_mod(), encode_kronecker(), and square().
{ if (n == 0) return; for (nat i= 0; i < 2 * n - 1; i++) dest[i]= 0; while (n > 0 && src[n-1] == 0) n--; if (n == 0) return; if (n == 1) { dest[0]= square (src[0]); return; } xnat bits= 2 * bit_size (p-1) + bit_size (n); integer aux1; encode_kronecker (aux1, src, n, bits); integer aux= square (aux1); decode_kronecker_mod (dest, 2*n - 1, bits, aux, p); }
mmx::STYPE_TO_TYPE | ( | template< typename C, typename Extension > | , |
scalar_type | , | ||
algebraic< C, Extension > | , | ||
C | |||
) |
mmx::STYPE_TO_TYPE | ( | template< typename C, typename V, typename W > | , |
as_vector_type | , | ||
series< vector< C, W >, V > | , | ||
vector< series< C, V >, W > | |||
) |
mmx::STYPE_TO_TYPE | ( | template< typename C, typename V, typename U > | , |
as_matrix_type | , | ||
series< matrix< C, U >, V > | , | ||
matrix< series< C, V >, U > | |||
) |
mmx::STYPE_TO_TYPE | ( | template< typename C, typename V > | , |
monomial_type | , | ||
polynomial< C, V > | , | ||
nat | |||
) |
polynomial<C,V> mmx::subresultant | ( | const polynomial< C, V > & | P, |
const polynomial< C, V > & | Q, | ||
int | k, | ||
polynomial< C, V > & | coP | ||
) | [inline] |
Definition at line 938 of file polynomial.hpp.
References C, CF(), deg(), and Polynomial.
{ typedef implementation<polynomial_subresultant,V> Pol; int n= deg (P), m= deg (Q); nat l= max (min (n, m), 0); ASSERT (k < l, "index out of range"); Polynomial d; C zero= promote (0, CF(P)), one= promote (1, CF(P)); vector<Polynomial> res (Polynomial (zero), l), co_P (Polynomial (zero), l), co_Q (Polynomial (zero), 0); res [k]= Polynomial (one); co_P[k]= Polynomial (one); Pol::subresultant_sequence (P, Q, res, co_P, co_Q, d, d, d, d, d, d, 0); coP= co_P[k]; return res[k]; }
polynomial<C,V> mmx::subresultant | ( | const polynomial< C, V > & | P, |
const polynomial< C, V > & | Q, | ||
int | k, | ||
polynomial< C, V > & | coP, | ||
polynomial< C, V > & | coQ | ||
) | [inline] |
Definition at line 916 of file polynomial.hpp.
References C, CF(), deg(), and Polynomial.
Referenced by GLUE_26(), GLUE_32(), GLUE_34(), GLUE_85(), implementation< polynomial_subresultant_base, V, polynomial_ring_naive< W > >::subresultant(), and implementation< polynomial_subresultant_base, V, polynomial_ring_naive< W > >::subresultant_sequence().
{ typedef implementation<polynomial_subresultant,V> Pol; int n= deg (P), m= deg (Q); nat l= max (min (n, m), 0); ASSERT (k < l, "index out of range"); C zero= promote (0, CF(P)), one= promote (1, CF(P)); Polynomial d; vector<Polynomial> res (Polynomial (zero), l), co_P (Polynomial (zero), l), co_Q (Polynomial (zero), l); res [k]= Polynomial (one); co_P[k]= Polynomial (one); co_Q[k]= Polynomial (one); Pol::subresultant_sequence (P, Q, res, co_P, co_Q, d, d, d, d, d, d, 0); coP= co_P[k]; coQ= co_Q[k]; return res[k]; }
polynomial<C,V> mmx::subresultant | ( | const polynomial< C, V > & | P, |
const polynomial< C, V > & | Q, | ||
int | k | ||
) | [inline] |
Definition at line 959 of file polynomial.hpp.
References C, CF(), deg(), and Polynomial.
{ typedef implementation<polynomial_subresultant,V> Pol; if (k < 0) return promote (0, P); int n= deg (P), m= deg (Q); nat l= max (min (n, m), 0); ASSERT ((nat) k < l, "index out of range"); Polynomial d; C zero= promote (0, CF(P)), one= promote (1, CF(P)); vector<Polynomial> res (Polynomial (zero), l), co_P (Polynomial (zero), 0), co_Q (Polynomial (zero), 0); res [k]= Polynomial (one); Pol::subresultant_sequence (P, Q, res, co_P, co_Q, d, d, d, d, d, d, 0); return res[k]; }
vector< polynomial<C,V> > mmx::subresultants | ( | const polynomial< C, V > & | P, |
const polynomial< C, V > & | Q, | ||
vector< polynomial< C, V > > & | co_P, | ||
vector< polynomial< C, V > > & | co_Q | ||
) | [inline] |
Definition at line 873 of file polynomial.hpp.
References C, CF(), deg(), and Polynomial.
Referenced by wrap_subresultants().
{ typedef implementation<polynomial_subresultant,V> Pol; int n= deg (P), m= deg (Q); nat l= max (min (n, m), 0); C one= promote (1, CF(P)); Polynomial d; vector<Polynomial> res (Polynomial (one), l); co_P= vector<Polynomial> (Polynomial (one), l); co_Q= vector<Polynomial> (Polynomial (one), l); Pol::subresultant_sequence (P, Q, res, co_P, co_Q, d, d, d, d, d, d, 0); return res; }
vector< polynomial<C,V> > mmx::subresultants | ( | const polynomial< C, V > & | P, |
const polynomial< C, V > & | Q | ||
) | [inline] |
Definition at line 901 of file polynomial.hpp.
References C, CF(), deg(), and Polynomial.
{ typedef implementation<polynomial_subresultant,V> Pol; int n= deg (P), m= deg (Q); nat l= max (min (n, m), 0); Polynomial d; C zero= promote (0, CF(P)), one= promote (1, CF(P)); vector<Polynomial> res (Polynomial(one), l), co_P (Polynomial (zero), 0), co_Q (Polynomial (zero), 0); Pol::subresultant_sequence (P, Q, res, co_P, co_Q, d, d, d, d, d, d, 0); return res; }
vector< polynomial<C,V> > mmx::subresultants | ( | const polynomial< C, V > & | P, |
const polynomial< C, V > & | Q, | ||
vector< polynomial< C, V > > & | co_P | ||
) | [inline] |
Definition at line 887 of file polynomial.hpp.
References C, CF(), deg(), and Polynomial.
{ typedef implementation<polynomial_subresultant,V> Pol; int n= deg (P), m= deg (Q); nat l= max (min (n, m), 0); Polynomial d; C zero= promote (0, CF(P)), one= promote (1, CF(P)); vector<Polynomial> res (Polynomial (one), l), co_Q (Polynomial (zero), 0); co_P= vector<Polynomial> (Polynomial (one), l); Pol::subresultant_sequence (P, Q, res, co_P, co_Q, d, d, d, d, d, d, 0); return res; }
Definition at line 250 of file series_implicit.hpp.
Referenced by solver_series_rep< C, V >::next(), subst_mul_series_rep< C, V, UV >::next(), known_series_rep< C, V, UV >::next(), and operator*().
{ //mmerr << " substitute " << c << "\n"; if (c->i1 == c->i2 || c->i1 >= c->f->n * c->f->m) return c; nat i1= min (c->f->n * c->f->m, c->i2); nat d= i1 - c->i1; nat n= c->i2 - i1; C* s= mmx_new<C> (n); C b= c->b; for (nat i=0; i<d; i++) { nat k= (i + c->i1) / c->f->m; nat j= (i + c->i1) % c->f->m; b += c->s[i] * c->f->a[k][j]; } for (nat i=0; i<n; i++) s[i]= c->s[i + d]; return UC (c->f, b, s, i1, c->i2); }
void mmx::swap_col | ( | matrix< C, V > & | m, |
nat | i, | ||
nat | j | ||
) |
Definition at line 960 of file matrix.hpp.
References cols(), is_non_scalar(), rows(), and tab().
{ typedef implementation<matrix_linear,V> Mat; ASSERT (is_non_scalar (m), "non-scalar matrix expected"); nat mrows= rows (m), mcols= cols (m); ASSERT (i < mcols && j < mcols, "out of range"); Mat::col_swap (tab (m), i, j, mrows, mcols); }
void mmx::swap_row | ( | matrix< C, V > & | m, |
nat | i, | ||
nat | j | ||
) |
Definition at line 951 of file matrix.hpp.
References cols(), is_non_scalar(), rows(), and tab().
Referenced by bareiss_extended_pivoting(), and bareiss_pivoting().
{ typedef implementation<matrix_linear,V> Mat; ASSERT (is_non_scalar (m), "non-scalar matrix expected"); nat mrows= rows (m), mcols= cols (m); ASSERT (i < mrows && j < mrows, "out of range"); Mat::row_swap (tab (m), i, j, mrows, mcols); }
static vector< series<M,V> ,W> mmx::system_root_series | ( | const vector< generic > & | f, |
const vector< generic > & | x, | ||
const vector< M, W > & | y0 | ||
) | [inline, static] |
Definition at line 859 of file series_carry_naive.hpp.
References as_vector(), recursive(), and Series_vector.
{ typedef system_root_series_rep<M,V,W> Sys_root_rep; Series_vector s= (series_rep<Vector,V>*) new Sys_root_rep (f, x, y0); return as_vector (recursive(s)); }
Definition at line 189 of file matrix.hpp.
{ return m->a; }
Definition at line 190 of file matrix.hpp.
References is_non_scalar().
Referenced by binary_map(), binary_map_scalar(), binary_test(), column_echelon(), column_orthogonalization(), column_orthonormalization(), column_reduced_echelon(), as_helper< matrix< T, TV >, matrix< F, FV > >::cv(), fast_helper< matrix< C, V > >::dd(), det(), binary_helper< matrix< C, V > >::disassemble(), image(), invert(), kernel(), map(), matrix< series< C, V >, U >::matrix(), implementation< matrix_multiply, V, matrix_crt< W > >::mul(), nullary_set(), operator*(), permute_columns(), permute_rows(), range(), rank(), REP_STRUCT_1(), reverse_cols(), row_orthogonalization(), row_orthonormalization(), swap_col(), swap_row(), transpose(), unary_map(), unary_set(), unary_set_scalar(), fast_helper< matrix< C, V > >::uu(), and binary_helper< matrix< C, V > >::write().
{ VERIFY (is_non_scalar (m), "non-scalar matrix expected"); m.secure(); return m->a; }
quotient_series<Series,Monomial> mmx::tail | ( | const quotient_series< Series, Monomial > & | f, |
const list< Monomial > & | l | ||
) |
Definition at line 126 of file quotient_series.hpp.
References Quotient_series.
Referenced by implementation< series_multiply, U, series_fast >::nrelax_mul_series_rep< C, V >::direct_transform(), implementation< series_multiply, U, series_fast >::level_info< C >::level_info(), and implementation< series_multiply, U, series_fast >::level_info< C >::~level_info().
{ return Quotient_series (tail (f->f, stair_mul (1/f->m, l)), f->m); }
Definition at line 124 of file series_elementary.hpp.
Referenced by GLUE_39(), and GLUE_54().
{
return unary_recursive_series<tan_op> (f);
}
Definition at line 709 of file matrix.hpp.
References CF(), is_non_scalar(), and N().
Referenced by GLUE_21(), GLUE_24(), GLUE_38(), and GLUE_83().
{ ASSERT (is_non_scalar (v), "non-scalar vector expected"); ASSERT (is_non_scalar (w), "non-scalar vector expected"); matrix<C> m (promote (0, CF(v)), N(v), N(w)); for (nat i=0; i<N(v); i++) for (nat j=0; j<N(w); j++) m (i, j)= v[i] * w[j]; return m; }
series<C,V> mmx::ternary_scalar_series | ( | const series< C, V > & | f, |
const X & | x, | ||
const Y & | y | ||
) | [inline] |
Definition at line 545 of file series.hpp.
References Series_rep.
{ typedef implementation<series_scalar_abstractions,V> Ser; typedef typename Ser::template ternary_scalar_series_rep<Op,C,V,X,Y> Ternary_rep; return (Series_rep*) new Ternary_rep (f, x, y); }
polynomial<C,typename polynomial_variant_helper< C >::PV > mmx::tevaluate | ( | const vector< C > & | v, |
const vector< C > & | x, | ||
nat | l | ||
) | [inline] |
Definition at line 1173 of file polynomial.hpp.
{
return tevaluate_bis<C,typename Polynomial_variant(C) > (v, x, l);
}
polynomial<C,typename polynomial_variant_helper< C >::PV > mmx::tevaluate | ( | const C & | v, |
const C & | x, | ||
nat | n | ||
) | [inline] |
Definition at line 1151 of file polynomial.hpp.
Referenced by implementation< polynomial_evaluate, V, polynomial_naive >::tevaluate(), and tevaluate_bis().
{
return tevaluate_bis<C,typename Polynomial_variant(C) > (v, x, n);
}
polynomial<C,V> mmx::tevaluate_bis | ( | const C & | v, |
const C & | x, | ||
nat | n | ||
) | [inline] |
Definition at line 1142 of file polynomial.hpp.
References C, Polynomial, and tevaluate().
{ typedef implementation<polynomial_evaluate,V> Pol; nat l= aligned_size<C,V> (n); C* buf= mmx_formatted_new<C> (l, get_format (v)); Pol::tevaluate (v, buf, x, n); return Polynomial (buf, n, l, get_format (v)); }
polynomial<C,V> mmx::tevaluate_bis | ( | const vector< C > & | v, |
const vector< C > & | x, | ||
nat | l | ||
) | [inline] |
Definition at line 1167 of file polynomial.hpp.
{ typedef implementation<polynomial_evaluate,V> Pol; return Pol::template tevaluate<Polynomial> (v, x, l); }
algebraic_number mmx::times_i | ( | const algebraic_number & | z | ) | [inline] |
Definition at line 397 of file algebraic_number.hpp.
Referenced by gaussian(), and GLUE_58().
{
return z * imaginary_cst<algebraic_number> ();
}
Definition at line 1189 of file polynomial.hpp.
Referenced by implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate().
{ typedef implementation<polynomial_evaluate,V> Pol; return Pol::tinterpolate (p, x); }
polynomial<C,V> mmx::tmul | ( | int | d2, |
const polynomial< C, V > & | P1, | ||
const polynomial< C, V > & | P2 | ||
) |
Transposed multiplication. The returned polynomial has degree at most d2.
Definition at line 515 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
Referenced by implementation< polynomial_multiply, V, polynomial_kronecker< W > >::tmul(), implementation< polynomial_multiply, V, polynomial_karatsuba< W > >::tmultiply(), implementation< polynomial_divide, V, polynomial_ring_dicho_inc< W > >::tquo_rem(), and implementation< polynomial_divide, V, polynomial_dicho< BV > >::tquo_rem().
{ typedef implementation<polynomial_multiply,V> Pol; nat n2 = max (0, d2 + 1), n1= N(P1), n= N(P2); if (n1 == 0 || n2 == 0) return Polynomial (CF(P1)); ASSERT (n < n1 + n2, "bad dimension in tmul"); nat l2= aligned_size<C,V> (n2); C* r= mmx_formatted_new<C> (l2, CF(P1)); if (n != n1 + n2 - 1) { nat l= aligned_size<C,V> (n1+n2-1); C* s2= mmx_formatted_new<C> (l, CF(P1)); Pol::copy (s2, seg (P2), n); Pol::clear (s2 + n, n1+n2-n-1); Pol::tmul (r, seg (P1), s2, n1, n2); mmx_delete<C> (s2, l); } else Pol::tmul (r, seg (P1), seg (P2), n1, n2); return Polynomial (r, n2, l2, CF(P1)); }
series< modular<modulus<Lift_type(M)>, modular_global_series_carry_monoblock <M,s,BV> > ,BV> mmx::to_monoblock | ( | const series< M, V > & | f, |
const series_carry_monoblock_transformer< M, V, s, BV > & | blocker | ||
) |
Definition at line 179 of file series_carry_blocks.hpp.
Referenced by binary_scalar_recursive_monoblock_series_rep< Op, M, V, s, BV, t, X >::Increase_order(), truncate_mul_monoblock_series_rep< M, V, s, BV, t >::Increase_order(), binary_monoblock_series_rep< Op, M, V, s, BV, t >::Increase_order(), and implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::mul_series_rep< M, V >::mul_series_rep().
{
return blocker.to_monoblock (f);
}
polynomial<C,V> mmx::tquo | ( | int | d1, |
const polynomial< C, V > & | P1, | ||
const polynomial< C, V > & | P2 | ||
) |
Transposed quotient in the division in degree d1 by P2.
Definition at line 644 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
{ typedef implementation<polynomial_divide,V> Pol; nat n1= max (0, d1+1), n= N(P1), n2= N(P2); ASSERT (n <= n1-n2+1, "bad dimension in tquo"); if (n1 < n2 || n2 == 0) return Polynomial (CF(P1)); nat l= aligned_size<C,V> (n1); C* q= mmx_formatted_new<C> (l, CF(P1)); C* r= mmx_formatted_new<C> (l, CF(P1)); Pol::clear (r, n1); Pol::copy (r+n2-1, seg (P1), n); Pol::tquo_rem (q, r, seg (P2), n1, n2); mmx_delete<C> (r, l); return Polynomial (q, n1, l, CF(P1)); }
Definition at line 813 of file matrix.hpp.
References CF(), cols(), is_a_scalar(), Matrix, rows(), and tab().
Referenced by bareiss_image(), bareiss_kernel(), GLUE_14(), GLUE_16(), GLUE_17(), GLUE_31(), join(), and row_echelon().
{ typedef implementation<matrix_linear,V> Mat; if (is_a_scalar (m)) return m; nat nrows= rows (m), ncols= cols (m); nat l= aligned_size<C,V> (nrows * ncols); C* r= mmx_formatted_new<C> (l, CF(m)); Mat::transpose (r, tab (m), nrows, ncols); return Matrix (r, ncols, nrows, CF(m)); }
permutation transposition | ( | nat | i, |
nat | j, | ||
nat | n | ||
) |
Definition at line 20 of file permutation.cpp.
References id_vector().
Referenced by GLUE_3().
{ vector<nat> v= id_vector (n); v[i]= j; v[j]= i; return permutation (v); }
polynomial<C,V> mmx::trem | ( | int | d1, |
const polynomial< C, V > & | P1, | ||
const polynomial< C, V > & | P2 | ||
) |
Transposed remainder in the division in degree d1 by P2.
Definition at line 697 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
{ typedef implementation<polynomial_divide,V> Pol; nat n1= max (0, d1+1), n= N(P1), n2= N(P2); ASSERT (n <= n2-1, "bad dimension in trem"); if (n1 < n2 || n2 == 0) return P1; nat l= aligned_size<C,V> (n1); C* q= mmx_formatted_new<C> (l, CF(P1)); C* r= mmx_formatted_new<C> (l, CF(P1)); Pol::copy (r, seg (P1), n); Pol::clear (r+n, n1-n); Pol::tquo_rem (q, r, seg (P2), n1, n2); mmx_delete<C> (r, l); return Polynomial (q, n1, l, CF(P1)); }
series<C,V> series<C,V> series<vector<C,W>,V> mmx::trig | ( | const series< vector< C, W >, V > & | f | ) | [inline] |
Definition at line 104 of file series_elementary.hpp.
Referenced by cos_sin().
{
return unary_recursive_series<trig_op> (f);
}
Extension mmx::trivial_extension | ( | const format< C > & | fm | ) | [inline] |
Definition at line 54 of file algebraic.hpp.
References trivial_extension_helper< FT, C, Extension >::ext().
{ typedef typename format<C>::FT FT; return trivial_extension_helper<FT,C,Extension>::ext (fm); }
Extension mmx::trivial_extension | ( | ) | [inline] |
Definition at line 48 of file algebraic.hpp.
References trivial_extension_helper< FT, C, Extension >::ext().
{ typedef typename format<C>::FT FT; return trivial_extension_helper<FT,C,Extension>::ext (); }
polynomial<C, typename series_polynomial_helper<C,V>::PV> mmx::truncate | ( | const series< C, V > & | f, |
nat | n | ||
) |
Definition at line 226 of file series.hpp.
References C, CF(), and Polynomial.
Referenced by binary_scalar_recursive_monoblock_series_rep< Op, M, V, s, BV, t, X >::Increase_order().
{ typedef typename series_polynomial_helper<C,V>::PV PV; nat l= aligned_size<C,PV> (n); C* coeffs= mmx_formatted_new<C> (l, CF(f)); if (n>0) (void) f[n-1]; for (nat i=0; i<n; i++) coeffs[i]= f[i]; return Polynomial (coeffs, n, l, CF(f)); }
series<C,V> mmx::truncate_mul | ( | const series< C, V > & | f, |
const series< C, V > & | g, | ||
nat | nf, | ||
nat | ng | ||
) | [inline] |
Definition at line 1068 of file series.hpp.
Referenced by truncate_mul_monoblock_series_rep< M, V, s, BV, t >::Increase_order(), implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::mul_series_rep< M, V >::mul_series_rep(), truncate_mul_monoblock_series_rep< M, V, s, BV, t >::truncate_mul_monoblock_series_rep(), and implementation< series_multiply, U, series_carry_lift< W > >::truncate_mul_series_rep< M, V >::truncate_mul_series_rep().
{ // Product of the only nf first terms of f by the ng first ones of g typedef implementation<series_multiply,V> Ser; return Ser::ser_truncate_mul (f, g, nf, ng); }
series<M,V> mmx::truncate_mul_monoblock_series | ( | const series< M, V > & | f, |
const series< M, V > & | g, | ||
nat | nf, | ||
nat | ng | ||
) | [inline] |
Definition at line 271 of file series_carry_blocks.hpp.
References Series_rep.
{ typedef truncate_mul_monoblock_series_rep<M,V,s,BV,t> Mul_rep; return (Series_rep*) new Mul_rep (f, g, nf, ng); }
nat mmx::unary_hash | ( | const matrix< C, V > & | m | ) |
nat mmx::unary_hash | ( | const unknown< C, V > & | c | ) |
Definition at line 125 of file series_implicit.hpp.
{ register nat i, h= 78460; if (c->i1 == c->i2) return Op::op (c->b) ^ h; h += (c->i1 << 3) ^ Op::op (c->b); for (i=0; i<c->i2 - c->i1; i++) h= (h<<1) ^ (h<<5) ^ (h>>27) ^ Op::op (c->s[i]); return h; }
nat mmx::unary_hash | ( | const polynomial< C, V > & | p | ) |
Definition at line 267 of file polynomial.hpp.
References N().
{ register nat i, h= 642531, n= N(p); for (i=0; i<n; i++) h= (h<<1) ^ (h<<5) ^ (h>>27) ^ Op::op (p[i]); return h; }
Definition at line 275 of file series.hpp.
{ register nat i, h= 7531; for (i=0; i< Series::get_cancel_order (); i++) h= (h<<1) ^ (h<<5) ^ (h>>27) ^ Op::op (s[i]); return h; }
polynomial<Unary_return_type(Op,C),V> mmx::unary_map | ( | const polynomial< C, V > & | p | ) |
Definition at line 1308 of file polynomial.hpp.
References C, CF(), N(), seg(), and Unary_return_type().
{ typedef implementation<vector_linear,V> Vec; typedef Unary_return_type(Op,C) T; nat n= N(p); nat l= aligned_size<T,V> (n); format<T> fm= unary_map<Op> (CF(p)); T* r= mmx_formatted_new<T> (l, fm); Vec::template vec_unary<Op> (r, seg (p), n); return polynomial<T,V> (r, n, l, fm); }
Definition at line 412 of file matrix.hpp.
References C, CF(), cols(), is_a_scalar(), rows(), matrix< C, V >::scalar(), tab(), and Unary_return_type().
{ typedef implementation<vector_linear,V> Vec; typedef Unary_return_type(Op,C) T; format<T> fm= unary_map<Op> (CF(m)); if (is_a_scalar (m)) return matrix<T,V> (Op::op (m.scalar())); nat nrows= rows (m); nat ncols= cols (m); nat l= aligned_size<T,V> (nrows * ncols); T* r= mmx_formatted_new<T> (l, fm); Vec::template vec_unary<Op> (r, tab (m), nrows*ncols); return matrix<T,V> (r, nrows, ncols, fm); }
Definition at line 557 of file series.hpp.
References Series_rep.
{ typedef implementation<series_map_as_abstractions,V> Ser; typedef typename Ser:: template unary_map_as_series_rep<Op,C,V,S,SV> Map_as_rep; return (Series_rep*) new Map_as_rep (f); }
Definition at line 615 of file series.hpp.
References recursive(), Series, and Series_rep.
{ typedef implementation<series_recursive_abstractions,V> Ser; typedef typename Ser::template unary_recursive_series_rep<Op,C,V> Unary; Series_rep* rep= new Unary (f); return recursive (Series (rep)); }
Definition at line 623 of file series.hpp.
References recursive(), Series, and Series_rep.
{ typedef implementation<series_recursive_abstractions,V> Ser; typedef typename Ser::template unary_recursive_series_rep<Op,C,V> Unary; Series_rep* rep= new Unary (f, c); return recursive (Series (rep)); }
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , |
abs_op | , | ||
polynomial< C, V > | , | ||
polynomial< Abs_type(C), V > | |||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , |
center_op | , | ||
polynomial< C, V > | , | ||
polynomial< Center_type(C), V > | |||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename NT, typename DT > | , |
numerator_op | , | ||
quotient< NT, DT > | , | ||
NT | |||
) |
mmx::UNARY_RETURN_TYPE | ( | STMPL | , |
abs_op | , | ||
algebraic_number | , | ||
algebraic_real | |||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , |
abs_op | , | ||
matrix< C, V > | , | ||
matrix< Abs_type(C), V > | |||
) |
mmx::UNARY_RETURN_TYPE | ( | STMPL | , |
Re_op | , | ||
algebraic_number | , | ||
algebraic_real | |||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , |
Re_op | , | ||
matrix< C, V > | , | ||
matrix< Real_type(C), V > | |||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , |
radius_op | , | ||
matrix< C, V > | , | ||
matrix< Radius_type(C), V > | |||
) |
Unary_return_type | ( | Op | , |
C | |||
) | const |
Referenced by unary_map().
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , |
center_op | , | ||
matrix< C, V > | , | ||
matrix< Center_type(C), V > | |||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , |
radius_op | , | ||
polynomial< C, V > | , | ||
polynomial< Radius_type(C), V > | |||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , |
Re_op | , | ||
polynomial< C, V > | , | ||
polynomial< Real_type(C), V > | |||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename NT, typename DT > | , |
denominator_op | , | ||
quotient< NT, DT > | , | ||
DT | |||
) |
Definition at line 661 of file series.hpp.
References Series_rep.
{ typedef implementation<series_abstractions,V> Ser; typedef typename Ser::template unary_series_rep<Op,C,V> Unary; return (Series_rep*) new Unary (f); }
Definition at line 469 of file matrix.hpp.
References cols(), extend(), is_a_scalar(), is_non_scalar(), rows(), matrix< C, V >::scalar(), and tab().
{ typedef implementation<vector_linear,V> Vec; if (is_a_scalar (m) || is_a_scalar (n)) { if (is_non_scalar (m)) return unary_set<Op> (m, extend (n, m)); else if (is_non_scalar (n)) m= extend (m, n); else { Op::set_op (m.scalar(), n.scalar()); return m; } } nat nrows= rows (m); nat ncols= cols (m); ASSERT (rows (n) == nrows, "unequal number of rows"); ASSERT (cols (n) == ncols, "unequal number of columns"); Vec::template vec_unary<Op> (tab (m), tab (n), nrows*ncols); return m; }
Definition at line 490 of file matrix.hpp.
References cols(), is_a_scalar(), rows(), matrix< C, V >::scalar(), and tab().
{ typedef implementation<vector_linear,V> Vec; if (is_a_scalar (m)) { Op::set_op (m.scalar(), x); return m; } nat nrows= rows (m); nat ncols= cols (m); Vec::template vec_unary_scalar<Op> (tab (m), x, nrows*ncols); return m; }
Definition at line 346 of file series_implicit.hpp.
References USeries_rep.
Referenced by solver_series_rep< C, V >::me().
{ return (USeries_rep*) new unknown_series_rep<C> (f, k); }
algebraic_extension<C> mmx::upgrade | ( | const algebraic_extension< C > & | ext1, |
const algebraic_extension< C > & | ext2, | ||
typename algebraic_extension< C >::El & | p1, | ||
typename algebraic_extension< C >::El & | p2 | ||
) |
algebraic_number_extension<C,Ball> mmx::upgrade | ( | const algebraic_number_extension< C, Ball > & | ext1, |
const algebraic_number_extension< C, Ball > & | ext2, | ||
typename algebraic_number_extension< C, Ball >::El & | p1, | ||
typename algebraic_number_extension< C, Ball >::El & | p2 | ||
) |
void mmx::upgrade | ( | algebraic< C, Extension > & | a1, |
algebraic< C, Extension > & | a2 | ||
) | [inline] |
Definition at line 166 of file algebraic.hpp.
References Algebraic, Element, Extension, field(), hard_neq(), and value().
Referenced by operator*(), operator+(), operator-(), and operator/().
polynomial<Center_type(C),V> mmx::upper | ( | const polynomial< C, V > & | p | ) |
Definition at line 1404 of file polynomial.hpp.
{
return unary_map<upper_op> (p); }
Definition at line 680 of file matrix.hpp.
{
return unary_map<upper_op> (m); }
int mmx::val | ( | const polynomial< C, V > & | P | ) |
Definition at line 354 of file polynomial.hpp.
References N().
Referenced by cols(), divides(), REP_STRUCT_1(), rows(), implementation< polynomial_subresultant_base, V, polynomial_naive >::subresultant_sequence(), and val().
{ for (nat i=0; i<N(P); i++) if (P[i] != 0) return (int) i; return (int) (((nat) (-1)) >> 1); }
int mmx::val | ( | const series< C, V > & | f | ) |
Definition at line 330 of file series.hpp.
{ for (nat n=0; n< Series::get_cancel_order (); n++) if (f[n] != 0) return n; return (int) (((nat) (-1)) >> 1); }
int mmx::val | ( | const quotient_series< Series, Monomial > & | f, |
const typename Series::variable_type & | v | ||
) | [inline] |
Definition at line 117 of file quotient_series.hpp.
References val().
{ return val (f->f, v) * f->m[v]; }
Extension::El mmx::value | ( | const algebraic< C, Extension > & | x | ) | [inline] |
Definition at line 95 of file algebraic.hpp.
Referenced by abs(), annihilator(), as_ball(), conj(), binary_helper< algebraic< C, Extension > >::disassemble(), exact_eq(), exact_hash(), probable_prime_sequence_int< s >::extend(), fft_prime_sequence_int< s >::extend(), flatten(), hard_eq(), hard_hash(), hash(), invert(), is_zero(), modulus_multiplier_int_preinverse_helper< size >::mul(), normalize(), operator*(), operator+(), operator-(), operator/(), Re(), modulus_multiplier_int_preinverse_helper< size >::set(), sign(), size_bound_in_base_helper< C, I >::size(), square(), upgrade(), and binary_helper< algebraic< C, Extension > >::write().
{ return x.p; }
Definition at line 729 of file matrix.hpp.
References CF(), is_non_scalar(), and N().
Referenced by GLUE_22(), GLUE_25(), GLUE_39(), and GLUE_84().
generic mmx::var | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 300 of file polynomial.hpp.
Referenced by flatten().
{
(void) P; return Polynomial::get_variable_name (); }
generic mmx::var | ( | const series< C, V > & | f | ) | [inline] |
Definition at line 167 of file series.hpp.
{
(void) f; return Series::get_variable_name ();
}
table<bool, typename Series::variable_type > mmx::variables | ( | const quotient_series< Series, Monomial > & | f | ) | [inline] |
Definition at line 115 of file quotient_series.hpp.
Definition at line 794 of file matrix.hpp.
References CF(), cols(), is_non_scalar(), Matrix, and rows().
Referenced by GLUE_16(), GLUE_18(), GLUE_19(), GLUE_33(), and krylov().
{ ASSERT (is_non_scalar (m1) || is_non_scalar (m2), "non-scalar matrix expected"); if (!is_non_scalar (m1)) return vertical_join (Matrix (m1.scalar(), cols (m2), cols (m2)), m2); if (!is_non_scalar (m2)) return vertical_join (m1, Matrix (m2.scalar(), cols (m1), cols (m1))); ASSERT (cols (m1) == cols (m2), "unequal number of columns"); Matrix r (promote (0, CF(m1)), rows (m1) + rows (m2), cols (m1)); for (nat j=0; j<cols(m1); j++) { for (nat i=0; i<rows(m1); i++) r(i,j)= m1(i,j); for (nat i=0; i<rows(m2); i++) r(i+rows(m1),j)= m2(i,j); } return r; }
mmx::WRAP_BINARY_IMPL | ( | STMPL | , |
permutation | , | ||
vector< nat > | , | ||
"Per" | , | ||
"Permutation" | |||
) | const |
vector< generic > wrap_column_reduced_echelon_with_permutation | ( | const matrix< C > & | m | ) |
Definition at line 48 of file glue_matrix_generic.cpp.
References column_reduced_echelon().
Referenced by GLUE_108(), GLUE_38(), and GLUE_63().
{ permutation permut; generic tp=as<generic> (column_reduced_echelon (m, permut)); return vec (tp, as<generic> (permut)); }
vector< generic > wrap_column_reduced_echelon_with_transform | ( | const matrix< C > & | m | ) |
Definition at line 55 of file glue_matrix_generic.cpp.
References column_reduced_echelon().
Referenced by GLUE_107(), GLUE_37(), and GLUE_62().
{ matrix<C> k; generic tp=as<generic> (column_reduced_echelon (m, k)); return vec (tp, as<generic> (k)); }
vector< generic > wrap_row_reduced_echelon_with_transform | ( | const matrix< C > & | m | ) |
Definition at line 62 of file glue_matrix_generic.cpp.
References row_reduced_echelon().
Referenced by GLUE_106(), GLUE_36(), and GLUE_61().
{ matrix<C> k; generic tp=as<generic> (row_reduced_echelon (m, k)); return vec (tp, as<generic> (k)); }
vector< generic > wrap_subresultants | ( | const polynomial< C > & | f, |
const polynomial< C > & | g | ||
) |
Definition at line 20 of file glue_algebraic_generic.cpp.
References subresultants().
Referenced by GLUE_27(), GLUE_33(), GLUE_35(), and GLUE_86().
{ return as<vector<generic> > (subresultants (f, g)); }
mmx::WRAP_WRAPPED_IMPL | ( | template< typename C > | inline, |
multiplier< C > | |||
) |
mmx::WRAP_WRAPPED_IMPL | ( | inline | , |
permutation | |||
) |
Definition at line 918 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
{ if (is_exact_zero (f)) return Series (CF(f)); return (Series_rep*) new xderive_series_rep<C,V> (f); }
Definition at line 313 of file quotient.hpp.
References denominator(), numerator(), Quotient, square(), and xderive().
{ return Quotient (xderive (numerator (x)) * denominator (x) - numerator (x) * xderive (denominator (x)), square (denominator (x)), true); }
polynomial<C,V> mmx::xderive | ( | const polynomial< C, V > & | P | ) |
Definition at line 1031 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Referenced by xderive_series_rep< C, V >::expression(), GLUE_122(), GLUE_17(), GLUE_18(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_75(), GLUE_96(), and xderive().
{ typedef implementation<polynomial_linear,V> Pol; nat n= N(P); nat l= aligned_size<C,V> (n); C* r= mmx_formatted_new<C> (l, CF(P)); Pol::xderive (r, seg (P), n); return Polynomial (r, n, l, CF(P)); }
static polynomial_carry_variant_helper< mmx_modular(integer) >::PV & arg_1 |
Definition at line 69 of file glue_p_adic_modular_integer.cpp.
Referenced by GLUE_1(), GLUE_10(), GLUE_100(), GLUE_101(), GLUE_102(), GLUE_103(), GLUE_104(), GLUE_105(), GLUE_106(), GLUE_107(), GLUE_108(), GLUE_109(), GLUE_11(), GLUE_110(), GLUE_111(), GLUE_112(), GLUE_114(), GLUE_116(), GLUE_118(), GLUE_119(), GLUE_12(), GLUE_120(), GLUE_121(), GLUE_122(), GLUE_123(), GLUE_124(), GLUE_125(), GLUE_126(), GLUE_128(), GLUE_129(), GLUE_13(), GLUE_130(), GLUE_131(), GLUE_132(), GLUE_133(), GLUE_134(), GLUE_135(), GLUE_136(), GLUE_137(), GLUE_138(), GLUE_139(), GLUE_140(), GLUE_141(), GLUE_142(), GLUE_143(), GLUE_144(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_42(), GLUE_43(), GLUE_46(), GLUE_47(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_56(), GLUE_57(), GLUE_58(), GLUE_59(), GLUE_6(), GLUE_60(), GLUE_61(), GLUE_62(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_67(), GLUE_68(), GLUE_69(), GLUE_7(), GLUE_70(), GLUE_71(), GLUE_72(), GLUE_73(), GLUE_74(), GLUE_75(), GLUE_76(), GLUE_77(), GLUE_78(), GLUE_79(), GLUE_8(), GLUE_80(), GLUE_81(), GLUE_82(), GLUE_83(), GLUE_84(), GLUE_85(), GLUE_86(), GLUE_87(), GLUE_88(), GLUE_89(), GLUE_9(), GLUE_90(), GLUE_91(), GLUE_92(), GLUE_93(), GLUE_94(), GLUE_95(), GLUE_96(), GLUE_97(), GLUE_98(), and GLUE_99().
const int& arg_2 |
Definition at line 111 of file glue_matrix_modular_integer.cpp.
Referenced by GLUE_1(), GLUE_10(), GLUE_100(), GLUE_107(), GLUE_11(), GLUE_110(), GLUE_111(), GLUE_112(), GLUE_113(), GLUE_114(), GLUE_115(), GLUE_116(), GLUE_117(), GLUE_118(), GLUE_12(), GLUE_126(), GLUE_127(), GLUE_128(), GLUE_129(), GLUE_13(), GLUE_130(), GLUE_131(), GLUE_132(), GLUE_134(), GLUE_14(), GLUE_146(), GLUE_148(), GLUE_15(), GLUE_150(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_56(), GLUE_57(), GLUE_59(), GLUE_6(), GLUE_61(), GLUE_62(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_67(), GLUE_68(), GLUE_69(), GLUE_7(), GLUE_70(), GLUE_71(), GLUE_72(), GLUE_73(), GLUE_74(), GLUE_75(), GLUE_77(), GLUE_78(), GLUE_79(), GLUE_8(), GLUE_80(), GLUE_81(), GLUE_82(), GLUE_83(), GLUE_84(), GLUE_85(), GLUE_86(), GLUE_87(), GLUE_88(), GLUE_89(), GLUE_9(), GLUE_90(), GLUE_91(), GLUE_92(), GLUE_93(), GLUE_94(), GLUE_95(), GLUE_96(), GLUE_97(), GLUE_98(), and GLUE_99().
Definition at line 106 of file series.hpp.
Referenced by implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::_half_gcd(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::_multi_rem(), implementation< polynomial_evaluate, V, polynomial_naive >::annulator(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::annulator(), as_p_expansion(), binary_helper< matrix< C, V > >::assemble(), bareiss_triangulate(), big_add(), binary_map_scalar(), implementation< matrix_vectorial, V, matrix_naive >::clear_range(), implementation< matrix_linear, V, matrix_naive >::col_combine_sub(), implementation< matrix_echelon, V, matrix_ring_naive< W > >::col_echelon(), implementation< matrix_echelon, V, matrix_naive >::col_echelon(), implementation< matrix_linear, V, matrix_naive >::col_is_zero(), implementation< matrix_orthogonalization, V, matrix_naive >::col_orthogonalize(), implementation< matrix_orthogonalization, V, matrix_naive >::col_orthonormalize(), implementation< crt_transform, V, crt_dicho< W > >::combine(), combine_crt(), implementation< polynomial_compose, V, polynomial_naive >::compose(), compose(), fft_threads_transformer< C, FFTER, thr >::copy(), moduli_signed_integer_helper< short int, M, W >::covering(), moduli_unsigned_integer_helper< unsigned int, M, W >::covering(), crt_naive_transformer< C, S, V >::crt_naive_transformer(), as_helper< polynomial< modular< modulus< C, U1 >, U2 >, V >, Lift_type(modular< modulus< C, U1 >, U2 >)>::cv(), fast_helper< series< C, V > >::dd(), decode_kronecker(), decode_modular_int(), ser_separable_root_op::def(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_ducos_inc< BV > >::defected_prem(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_naive_inc< W > >::defected_prem(), DEFINE_VARIANT(), root_modular_naive::degree_one_factorization(), fft_blocks_transformer< C, FFTER, log2_outer_block_size, log2_block_number, log2_inner_block_size, threshold >::delocate(), derive(), implementation< matrix_determinant, V, matrix_ring_naive< W > >::det(), implementation< matrix_determinant, V, matrix_naive >::det(), fft_naive_transformer< C, V >::dfft(), fft_blocks_transformer< C, FFTER, log2_outer_block_size, log2_block_number, log2_inner_block_size, threshold >::dfft(), dilate(), implementation< base_transform, V, base_signed< W > >::direct(), implementation< base_transform, V, base_naive >::direct(), implementation< base_transform, V, base_dicho< W > >::direct(), fkt_package< V >::direct_fkt(), implementation< series_multiply, U, series_fast >::nrelax_mul_series_rep< C, V >::direct_transform(), crt_naive_transformer< C, S, V >::direct_transform(), crt_dicho_transformer< C, S, V >::direct_transform(), implementation< polynomial_exact_divide, V, polynomial_polynomial< W > >::div(), implementation< polynomial_exact_divide, V, polynomial_naive >::div(), encode_kronecker(), implementation< polynomial_euclidean, V, polynomial_naive >::euclidean_sequence(), implementation< polynomial_evaluate, V, polynomial_naive >::evaluate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::evaluate(), fft_threads_transformer< C, FFTER, thr >::outer_fft_task_rep::execute(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::expand(), expand(), coprime_moduli_sequence_polynomial::extend(), fft_prime_sequence_int< s >::extend(), extract_mod(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::factorials(), fft_threads_transformer< C, FFTER, thr >::fft(), flatten(), series_carry_monoblock_transformer< M, W, s, BV >::from_monoblock(), binary_polynomial_helper< C, V >::full_type_name(), binary_helper< matrix< C, V > >::full_type_name(), binary_helper< algebraic_number_extension< C, Ball > >::full_type_name(), binary_helper< algebraic_extension< C > >::full_type_name(), binary_helper< algebraic< C, Extension > >::full_type_name(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::gcd(), implementation< polynomial_gcd, V, polynomial_naive >::gcd(), implementation< polynomial_euclidean, V, polynomial_naive >::gcd(), implementation< polynomial_euclidean, V, polynomial_dicho< BV > >::gcd(), gcd(), get_matrix_format(), get_vector_format(), implementation< polynomial_graeffe, V, polynomial_unrolled< W, m > >::graeffe(), implementation< polynomial_graeffe, V, polynomial_naive >::graeffe(), graeffe(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::half_subresultant(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::half_subresultant_rec(), fft_naive_transformer< C, V >::ifft(), fft_blocks_transformer< C, FFTER, log2_outer_block_size, log2_block_number, log2_inner_block_size, threshold >::ifft(), implementation< matrix_image, V, matrix_naive >::image(), implementation< series_compose, U, series_naive >::reverse_series_rep< C, V >::initialize(), implementation< series_divide, U, series_carry_naive >::div_series_rep< M, V >::initialize(), implementation< series_divide, U, series_carry_naive >::rdiv_sc_series_rep< M, V, X >::initialize(), integrate(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::interpolate(), implementation< crt_transform, V, crt_dicho< W > >::inverse(), implementation< base_transform, V, base_dicho< W > >::inverse(), inverse_base(), inverse_crt(), fkt_package< V >::inverse_fkt(), fkt_package< V >::inverse_fkt_step(), fft_triadic_threads_transformer< C, FFTER, thr >::inverse_transform_triadic(), implementation< matrix_invert, V, matrix_naive >::invert(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::invert_hi(), invert_hi(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::invert_lo(), invert_lo(), implementation< matrix_invert, V, matrix_naive >::invert_lower_triangular(), implementation< polynomial_gcd, X, polynomial_series< BV > >::invert_mod(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::invert_mod(), implementation< polynomial_gcd, V, polynomial_naive >::invert_mod(), join(), implementation< matrix_kernel, V, matrix_naive >::kernel(), root_modular_naive::linear_splitting(), lshiftz(), implementation< matrix_multiply_base, V, matrix_strassen< W > >::mat_load(), implementation< matrix_multiply_base, V, matrix_strassen< W > >::mat_save(), matrix< series< C, V >, U >::matrix(), matrix_mul_quo(), matrix_new(), implementation< polynomial_multiply, V, polynomial_balanced_tft< W > >::mul(), implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_tangent< CV > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_triadic_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_inc< W, Th, Th_rec > >::mul(), implementation< polynomial_multiply, V, polynomial_quotient< W > >::mul(), implementation< polynomial_multiply, V, polynomial_modular< W > >::mul(), implementation< polynomial_multiply, V, polynomial_kronecker< W > >::mul(), implementation< polynomial_multiply, V, polynomial_complex< CV > >::mul(), implementation< polynomial_multiply, V, polynomial_balanced< W > >::mul(), modulus_multiplier_int_preinverse_helper< size >::multiplier_helper< C, void, m >::mul(), modulus_multiplier_int_preinverse_helper< size >::multiplier_helper< C, D, m >::mul(), implementation< matrix_multiply, V, matrix_quotient< W > >::mul(), implementation< matrix_multiply, V, matrix_crt< W > >::mul(), implementation< matrix_multiply, V, matrix_complex< CV > >::mul(), implementation< matrix_multiply, V, matrix_balanced< W > >::mul(), mul_kronecker(), implementation< polynomial_multiply, V, polynomial_schonhage_triadic_inc< W, Th > >::mul_triadic(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_mod(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_rem(), implementation< polynomial_multiply, V, polynomial_karatsuba< W > >::multiply(), carry_special_add_series_rep< C, V >::next(), carry_add_quorem_series_rep< C, V >::next(), carry_mul_quorem_series_rep< C, V, X >::next(), vector_access_series_rep< C, V, W >::next(), implementation< series_multiply, U, series_relaxed< W > >::mul_series_rep< C, V >::next(), implementation< series_multiply, U, series_naive >::truncate_mul_series_rep< C, V >::next(), implementation< series_multiply, U, series_naive >::mul_series_rep< C, V >::next(), implementation< series_map_as_abstractions, U, series_naive >::unary_map_as_series_rep< Op, C, V, S, SV >::next(), lshiftz_series_matrix_rep< C, V, U >::next(), matrix_series_rep< C, V, U >::next(), solver_series_rep< C, V >::next(), unknown_series_rep< C, V >::next(), implementation< series_multiply, U, series_fast >::nrelax_mul_series_rep< C, V >::next(), implementation< series_multiply, U, series_carry_relaxed< W > >::mul_series_rep< M, V >::next(), q_difference_series_rep< C, V >::next(), shift_series_rep< C, V >::next(), iterator_series_rep< C, V >::next(), implementation< series_multiply, U, series_carry_modular_int_naive< W > >::mul_series_rep< M, V >::next(), REP_STRUCT< Series, Monomial >::normalize(), nth_roots(), nullary_recursive_series(), polynomial_quo_rem_helper< V, C >::op(), primitive_root_helper< C >::op(), operator*(), operator+(), operator-(), operator/(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::pade(), implementation< polynomial_gcd, V, polynomial_naive >::pade(), implementation< polynomial_euclidean, V, polynomial_naive >::pade(), implementation< polynomial_euclidean, V, polynomial_dicho< BV > >::pade(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::pinvert_hi(), polynomial< series< C, V >, U >::polynomial(), pquo(), implementation< polynomial_divide, V, polynomial_ring_dicho_inc< W > >::pquo_rem(), implementation< polynomial_divide, V, polynomial_naive >::pquo_rem(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::pquo_rem(), prem(), primitive_part(), implementation< matrix_iterate, V, matrix_naive >::project_iterate_mul(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::q_binomial(), q_difference(), quo(), implementation< polynomial_divide, V, polynomial_ring_dicho_inc< W > >::quo_rem(), implementation< polynomial_divide, V, polynomial_naive >::quo_rem(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::quo_rem(), range(), implementation< matrix_image, V, matrix_ring_naive< W > >::rank(), implementation< matrix_image, V, matrix_naive >::rank(), binary_helper< polynomial< C, V > >::read(), binary_helper< matrix< C, V > >::read(), reduce(), fft_blocks_transformer< C, FFTER, log2_outer_block_size, log2_block_number, log2_inner_block_size, threshold >::relocate(), rem(), REP_STRUCT_1(), resultant(), reverse(), root_modular_naive::roots(), implementation< matrix_linear, V, matrix_naive >::row_combine_sub(), implementation< matrix_linear, V, matrix_naive >::row_is_zero(), implementation< matrix_orthogonalization, V, matrix_naive >::row_orthogonalize(), implementation< matrix_orthogonalization, V, matrix_naive >::row_orthonormalize(), implementation< series_separable_root, U, series_naive >::sep_root(), separable_roots(), modulus_multiplier_int_preinverse_helper< size >::multiplier_helper< C, void, m >::set(), implementation< series_multiply, U, series_fast >::nrelax_mul_series_rep< C, V >::Set_order(), implementation< matrix_vectorial, V, matrix_naive >::set_range(), crt_dicho_transformer< C, S, V >::setup_inverse(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::shift(), shift(), binary_polynomial_helper< C, V >::short_type_name(), binary_helper< matrix< C, V > >::short_type_name(), binary_helper< algebraic_number_extension< C, Ball > >::short_type_name(), binary_helper< algebraic_extension< C > >::short_type_name(), binary_helper< algebraic< C, Extension > >::short_type_name(), matrix_crt_multiply_helper< C >::size(), skew_div(), solve_lde(), implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::square(), implementation< polynomial_multiply, V, polynomial_tangent< CV > >::square(), implementation< polynomial_multiply, V, polynomial_quotient< W > >::square(), implementation< polynomial_multiply, V, polynomial_modular< W > >::square(), implementation< polynomial_multiply, V, polynomial_kronecker< W > >::square(), implementation< polynomial_multiply, V, polynomial_karatsuba< W > >::square(), implementation< polynomial_multiply, V, polynomial_complex< CV > >::square(), square(), square_kronecker(), implementation< polynomial_subresultant_base, V, polynomial_ring_naive< W > >::subresultant(), subresultant(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::subresultant_compose(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_ducos_inc< BV > >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_naive_inc< W > >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_ring_naive< W > >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_naive >::subresultant_sequence(), subresultants(), substitute(), implementation< polynomial_evaluate, V, polynomial_naive >::tevaluate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tevaluate(), tevaluate_bis(), implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate(), tmul(), implementation< polynomial_multiply, V, polynomial_karatsuba< W > >::tmultiply(), tquo(), implementation< polynomial_divide, V, polynomial_ring_dicho_inc< W > >::tquo_rem(), implementation< polynomial_divide, V, polynomial_naive >::tquo_rem(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::tquo_rem(), trem(), truncate(), unary_map(), unknown_series_rep< C, V >::unknown_series_rep(), implementation< series_pth_root, U, series_carry_p_adic< W > >::unsep_root(), fast_helper< polynomial< C, V > >::uu(), fast_helper< matrix< C, V > >::uu(), implementation< vector_abstractions, Z, vector_aligned< V, W > >::vec_unary_big(), and xderive().
series<C,V> COMPARE_INT_SUGAR(template< typename C, typename V >, series< C, V >)template< typename C |
polynomial<C,V> C COMPARE_SCALAR_SUGAR(template< typename C, typename V >, polynomial< C, V >,C) EQUAL_INT_SUGAR(template< typename C |
polynomial<C,V> COMPARE_SUGAR(template< typename C, typename V >, polynomial< C, V >) EQUAL_SCALAR_SUGAR(template< typename C |
Definition at line 88 of file quotient.hpp.
Referenced by binary_helper< quotient< NT, DT > >::full_type_name(), operator*(), operator+(), operator-(), operator/(), quotient< NT, DT >::quotient(), binary_helper< quotient< NT, DT > >::read(), and binary_helper< quotient< NT, DT > >::short_type_name().
series<C,V> INV_HYPER_SUGAR(template< typename C, typename V >, series< C, V >) ARG_HYPER_SUGAR(template< typename C |
Definition at line 87 of file quotient_series.hpp.
Referenced by operator+(), operator-(), operator/(), and operator==().
Definition at line 88 of file quotient.hpp.
Referenced by binary_helper< quotient< NT, DT > >::full_type_name(), operator+(), operator-(), operator/(), binary_helper< quotient< NT, DT > >::read(), and binary_helper< quotient< NT, DT > >::short_type_name().
polynomial<C,V> polynomial< C, V > |
Definition at line 390 of file polynomial.hpp.
Definition at line 88 of file quotient.hpp.
quotient_series< Series, Monomial > |
Definition at line 87 of file quotient_series.hpp.
Definition at line 88 of file quotient.hpp.
Definition at line 106 of file series.hpp.
nat str |
Definition at line 53 of file matrix_quotient.hpp.
Definition at line 58 of file polynomial_schonhage.hpp.
Referenced by implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul_negative_cyclic(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul_negative_cyclic_truncated(), implementation< polynomial_multiply, V, polynomial_schonhage_triadic_inc< W, Th > >::mul_triadic(), and implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::square().
Definition at line 622 of file matrix.hpp.
Referenced by as_p_expansion(), nullary_recursive_series(), and implementation< series_separable_root, U, series_naive >::sep_root().
Definition at line 58 of file polynomial_schonhage.hpp.
Referenced by coprime_moduli_sequence_polynomial::extend(), implementation< polynomial_gcd, X, polynomial_series< BV > >::invert_mod(), matrix_mul_nocarry(), implementation< matrix_multiply_base, V, matrix_modular< MV > >::mul(), implementation< series_separable_root, U, series_carry_monoblock< W, s, BV, t > >::sep_root(), implementation< series_separable_root, U, series_carry_monoblock< W, s, BV, t > >::sep_root_init(), and implementation< series_pth_root_reg, U, series_carry_monoblock< W, s, BV, t > >::unsep_root_reg().