The problem presented here is for a robot described in the previous
section. We have seen that the hand of the robot was moving with
respect to its base by using linear actuators that allow to change the
distance between the pairs of points . But in practice these
actuators have a limited stroke and consequently the distance
between
the points has to lie within a given range:
Assume now that the hand has to follow a time-dependent trajectory: it
is clearly important to verify that all the points of this trajectory
lie within the workspace of the robot.
The trajectory is defined in the following manner: the
position/orientation parameter are written as analytic function of the
time T (which is assumed to lie in the range [0,1] without lack of
generality). Using the solution of the inverse kinematics (see the
previous section) it is then possible to express the distance
as functions of the time. For the trajectory to lie in the workspace
we have to verify the 12 inequalities:
This can easily be done with interval analysis
(see [9] for a detailed version). First we define the
trajectory in Maple and compute the analytical form of (and
of any other constraint that may limit the workspace of the robot). We
get a set of inequalities that has to be satisfied for any T in [0,1]
if the trajectory
lie within the workspace. The analytical form of these inequalities
are written in a file: this allow their interval evaluation for any T
range by using the ALIAS parser. Then the general solving
procedure of ALIAS may be used to determine if there is a T such
that at least one constraint is violated.
An important point is that the algorithm allow to deal with the
uncertainties in the problem. A first uncertainty occurs when
controlling the robot along its nominal trajectory. Indeed the robot
controller is not perfect and there will be a positioning error: for a
nominal value of the position/orientation parameters the
reached pose will be
where
can be bounded.
A second uncertainty source is due to the differences between the
theoretical geometrical model of the robot and its real
geometry. Indeed to solve the inverse kinematics we use the
coordinates of the
in the reference frame and of the
in
the model frame. In practice however these coordinates are known only
up to a given accuracy: hence these coordinates for the real robot may
have any value within given ranges.
Hence the inequalities of the problem have not fixed value
coefficients but interval coefficients.
But this no problem for interval analysis as the general solving
procedures may deal with such inequalities. Hence if the algorithm
find out that all inequalities are verified for any T in [0,1], then
this means that whatever is the real robot and the positioning error
of the robot controller the trajectory followed by the robot will fully
lie within the robot workspace.