Next: About this document ...
Up: ALIAS-C++
Previous: Contents
Contents
- 1
-
Coleman R.
La méthode de weyl pour le calcul simulatané des racines d'un
polynome.
Research Report 881-M, IMAG,
4January February March
April May June July August September October
November December Summer 1992.
- 2
-
Collavizza M., F. Deloble, and Rueher M.
Comparing partial consistencies.
Reliable Computing, 5:1-16, 1999.
- 3
-
Démidovitch B. and Maron I.
Eléments de calcul numérique.
Mir, 1979.
- 4
-
Durand E.
Solution numérique des équations algébriques.
Masson, 1960.
- 5
-
Hansen E.
Global optimization using interval analysis.
Marcel Dekker, 1992.
- 6
-
Jaulin L., Kieffer M., Didrit O., and Walter E.
Applied Interval Analysis.
Springer-Verlag, 2001.
- 7
-
Kearfott R.B. and Manuel N. III.
INTBIS, a portable interval Newton/Bisection package.
ACM Trans. on Mathematical Software, 16(2):152-157,
6January February March
April May June July August September October
November December Summer 1990.
- 8
-
Krawczyk R.
Newton-algorithmen zur bestimmung von Nullstellen mit
Fehlerschranken.
Computing, 4:187-201, 1969.
- 9
-
Merlet J-P.
A parser for the interval evaluation of analytical functions and its
applications to engineering problems.
J. Symbolic Computation, 31(4):475-486, 2001.
- 10
-
Merlet J-P.
Solving the forward kinematics of a Gough-type parallel manipulator
with interval analysis.
Int. J. of Robotics Research, 23(3):221-236, 2004.
- 11
-
Merlet J-P.
Determination of 6D workspaces of Gough-type parallel manipulator
and comparison between different geometries.
Int. J. of Robotics Research, 18(9):902-916,
10January February March
April May June July August September October
November December Summer 1999.
- 12
-
Merlet J-P. and Daney D.
A formal-numerical approach to determine the presence of singularity
within the workspace of a parallel robot.
In F.C. Park C.C. Iurascu, editor, Computational Kinematics,
pages 167-176. EJCK, Seoul,
5January, February, March,
April, May, June, July, August, September, October,
November, December, Summer 20-22, 2001.
- 13
-
Mignotte M.
Mathématiques pour le calcul formel.
PUF, 1989.
- 14
-
Mineur H.
Technique de calcul numérique.
Dunod, 1966.
- 15
-
Miranda C.
Un' osservatione su un theorema di Brouwer.
Bulletino Unione Mathematica Italiana, pages 5-7, 1940.
- 16
-
Moore R.E.
A test for the existence of solution to nonlinear systems.
SIAM J. of Numerical Analysis, 14:611-615, 1977.
- 17
-
Moore R.E.
Methods and Applications of Interval Analysis.
SIAM Studies in Applied Mathematics, 1979.
- 18
-
Neumaier A.
Interval methods for systems of equations.
Cambridge University Press, 1990.
- 19
-
Neumaier A.
Introduction to Numerical Analysis.
Cambridge Univ. Press, 2001.
- 20
-
Neumaier A. and Merlet J-P.
Solving real-life robotics problems with interval techniques.
In SIAM Workshop on Validated Computing, page 148, Toronto,
5January, February, March,
April, May, June, July, August, September, October,
November, December, Summer 23-25, 2002.
- 21
-
Ratscheck H. and Rokne J.
Interval methods.
In Horst R. and Pardalos P.M., editors, Handbook of global
optimization, pages 751-819. Kluwer, 1995.
- 22
-
Rex G. and Rohn J.
Sufficient conditions for regularity and singularity of interval
matrices.
SIAM Journal on Matrix Analysis and Applications,
20(2):437-445, 1998.
- 23
-
Stiefel E.L.
An introduction to numerical mathematics.
Academic Press, 1963.
- 24
-
Van Hentenryck P., Michel L., and Deville Y.
Numerica: A Modeling Language for Global Optimization.
The MIT Press, 1997.
- 25
-
Yamamura K., Kawata H., and Tokue A.
Interval solution of nonlinear equations using linear programming.
BIT, 38(1):186-199, 1998.
- 26
-
Zippel R.
Effective polynomial computation.
Kluwer, 1993.
In the index keywords in typeset font indicate variable that are used
either in the C++ library
(with the exception of
the C++ procedure of BIAS/Profil that are displayed in normal
font)
or in the Maple library. In the later case
if the keyword is, for example, permute the name of the Maple
variable is
`ALIAS/permute`.
Jean-Pierre Merlet
2012-12-20