next up previous contents index
Next: kernel Up: Supported functions Previous: exteriorPower   Contents   Index


factor


Usage

factor L


Parameter Type Description
L $\mathbbm{Q}[x,\frac d{dx}]$ A differential operator of order at most 3


Description

Returns one of the following possible results:
(i)
L, in which case L is irreducible in ${\overline \mathbbm{Q}}(x)[d/dx]$.
(ii)
$[m,L_1,\dots,L_n]$ where $m \ge 0$ and $L_i \in \mathbbm{Q}(x)[\frac d{dx}]$, in which case each $L_i$ is irreducible in ${\overline \mathbbm{Q}}(x)[d/dx]$, and L can be expressed in terms of the $L_i$'s depending on $m$ as in the following table:
m L
0 LeftLcm($L_1,\dots,L_n$)
1 $L_1 \cdots L_n$
2 LeftLcm($L_1, L_2 L_3$)
3 $L_1$ LeftLcm($L_2, L_3$)
4 $L_1$ LeftLcm($L_2, L_3$) $L_4$
(iii)
$[m,h(x),a(x,u),b(x,u),f_1(x,u),\dots,f_n(x,u)]$, where $m < 0$, $h(x) \in \mathbbm{Q}[x]$ is irreducible and $a(x,u)$, $b(x,u)$, $f_1(x,u),\dots,f_n(x,u) \in \mathbbm{Q}(x)[u]$, in which case each $f_i(x,D)$ is irreducible in ${\overline \mathbbm{Q}}(x)[d/dx]$, and L can be expressed depending on $m$ as in the following table:
m L
-1 LeftLcm( $D + a(\alpha, x)/b(\alpha, x), f_1(x,D),\dots,f_n(x,D)$)
-4 $f_1(x,D)$ LeftLcm( $D + a(\alpha, x) / b(\alpha, x)$)
-5 $f_1(x,D)$ LeftLcm( $D + a(\alpha, x) / b(\alpha, x)$) $f_2(x,D)$
where $\alpha$ ranges over all the roots of $h(x)$.


Example

We factor the differential equation

\begin{displaymath}
\frac{d^3 y}{dx^3} - x \frac{d^2 y}{dx^2} -
(x^2-1) \frac{dy}{dx} + (x^3-3x) y = 0
\end{displaymath} (5)

as follows:
1 --> L := D^3-x*D^2+(-x^2+1)*D-3*x+x^3;
2 --> v := factor(L);
3 --> tex(v);

\begin{displaymath}
\left[ 2 , D-x , D-x , D+x \right]
\end{displaymath}

This means that the operator of (5) is a least common left multiple of $d/dx - x$ and of the product $(d/dx - x)(d/dx + x)$, which itself is not a least common left multiple of irreducible operators.


Usage within MAPLE


next up previous contents index
Next: kernel Up: Supported functions Previous: exteriorPower   Contents   Index
Manuel Bronstein 2002-09-04