Publications of Marc-Michel Rohé


  1. Marc-Michel Rohé. Reduced representation of segmentation and tracking in cardiac images for group-wise longitudinal analysis. Theses, Université Côte d'Azur, July 2017. Keyword(s): Medical image analysis, Non-rigid registration, Deep learning, Statistical model reduction, Longitudinal analysis, Analyse d'images médicales, Analyse longitudinale, Réduction statistique de modèle, Apprentissage profond, Recalage non-rigide. [bibtex-entry]

Articles in journal, book chapters

  1. Olivier Bernard, Alain Lalande, Clement Zotti, Frederic Cervenansky, Xin Yang, Pheng-Ann Heng, Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez Ballester, Gerard Sanroma, Sandy Napel, Steffen Petersen, Georgios Tziritas, Elias Grinias, Mahendra Khened, Varghese Alex Kollerathu, Ganapathy Krishnamurthi, Marc-Michel Rohé, Xavier Pennec, Maxime Sermesant, Fabian Isensee, Paul Jager, Klaus H Maier-Hein, Peter M. Full, Ivo Wolf, Sandy Engelhardt, Chrisitan Baumgartner, Lisa Koch, Jelmer Wolterink, Ivana Isgum, Yeonggul Jang, Yoonmi Hong, Jay Patravali, Shubham Jain, Olivier Humbert, and Pierre-Marc Jodoin. Deep Learning Techniques for Automatic MRI Cardiac Multi-structures Segmentation and Diagnosis: Is the Problem Solved?. IEEE Transactions on Medical Imaging, 37(11):2514-2525, May 2018. Keyword(s): MRI, Lleft and right ventricles, Cardiac segmentation and diagnosis, Myocardium, Deep learning. [bibtex-entry]

  2. Marc-Michel Rohé, Maxime Sermesant, and Xavier Pennec. Low-Dimensional Representation of Cardiac Motion Using Barycentric Subspaces: a New Group-Wise Paradigm for Estimation, Analysis, and Reconstruction. Medical Image Analysis, 45:1-12, April 2018. Keyword(s): Cardiac motion, Low-dimensional analysis, Registration, Image synthesis. [bibtex-entry]

  3. Avan A Suinesiaputra, Pierre A Ablin, Xènia A Albà, Martino Alessandrini, Jack A Allen, Wenjia Bai, Serkan Cimen, Peter Claes, Brett R Cowan, Jan d'Hooge, Nicolas Duchateau, Jan Ehrhardt, Alejandro F. Frangi, Ali A Gooya, Vicente Grau, Karim Lekadir, Allen A Lu, Anirban A Mukhopadhyay, Ilkay Oksuz, Nripesh Parajuli, Xavier Pennec, Marco Pereañez, Catarina Pinto, Paolo Piras, Marc-Michel Rohé, Daniel R Rueckert, Dennis Säring, Maxime Sermesant, Kaleem Siddiqi, Mahdi Tabassian, Luciano Teresi, Sotirios A Tsaftaris, Matthias Wilms, Alistair A Young, Xingyu Zhang, and Pau Medrano-Gracia. Statistical shape modeling of the left ventricle: myocardial infarct classification challenge. IEEE Journal of Biomedical and Health Informatics, 22(3):503-515, March 2018. Keyword(s): statistical shape analysis, classification, myocardial infarct, Cardiac modeling. [bibtex-entry]

Conference articles

  1. Shuman Jia, Claudia Camaioni, Marc-Michel Rohé, Pierre Jaïs, Xavier Pennec, Hubert Cochet, and Maxime Sermesant. Prediction of Post-Ablation Outcome in Atrial Fibrillation Using Shape Parameterization and Partial Least Squares Regression. In FIMH 2017 - International Conference on Functional Imaging and Modeling of the Heart, volume 10263 of Lecture Notes in Computer Science, Toronto, Canada, pages 314 - 321, June 2017. Keyword(s): atrial fibrillation, catheter ablation, post-ablation outcome, left atrial remodeling, statistical shape analysis, partial least squares, regression. [bibtex-entry]

  2. Marc-Michel Rohé, Manasi Datar, Tobias Heimann, Maxime Sermesant, and Xavier Pennec. SVF-Net: Learning Deformable Image Registration Using Shape Matching. In MICCAI 2017 - the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, Medical Image Computing and Computer Assisted Intervention -- MICCAI 2017, Québec, Canada, pages 266-274, September 2017. Springer International Publishing. Keyword(s): Deep Learning, Cardiac Imaging, Registration. [bibtex-entry]

  3. Marc-Michel Rohé, Maxime Sermesant, and Xavier Pennec. Automatic Multi-Atlas Segmentation of Myocardium with SVF-Net. In STACOM: Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges, volume 10663 of LNCS, Québec, Canada, pages 170-177, September 2017. [bibtex-entry]

  4. Marc-Michel Rohé, Roch Molléro, Maxime Sermesant, and Xavier Pennec. Highly Reduced Model of the Cardiac Function for Fast Simulation. In IEEE - IVMSP Workshop 2016, Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), 2016 IEEE 12th, Bordeaux, France, pages 5, July 2016. IEEE. Keyword(s): Reduction Order Model, Biomechanical Model, Simulation 3D. [bibtex-entry]

  5. Marc-Michel Rohé, Maxime Sermesant, and Xavier Pennec. Barycentric Subspace Analysis: a new Symmetric Group-wise Paradigm for Cardiac Motion Tracking. In MICCAI 2016 - Medical Image Computing and Computer Assisted Intervention, volume 9902 of MICCAI 2016, Lecture Notes in Computer Science, Athens, Greece, pages 300-307, October 2016. Keyword(s): Medical Image Analysis, Atlas Framework, Registration, Manifold atlas. [bibtex-entry]

  6. Roch Molléro, Dominik Neumann, Marc-Michel Rohé, Manasi Datar, Herve Lombaert, Nicholas Ayache, Dorin Comaniciu, Olivier Ecabert, Marcello Chinali, Gabriele Rinelli, Xavier Pennec, Maxime Sermesant, and Tommaso Mansi. Propagation of Myocardial Fibre Architecture Uncertainty on Electromechanical Model Parameter Estimation: A Case Study. In Functional Imaging and Modeling of the Heart, LNCS., 8th International Conference, FIMH 2015, Maastricht, The Netherlands, June 25-27, 2015. Proceedings, Maastricht, Netherlands, pages 448-456, June 2015. [bibtex-entry]

  7. Marc-Michel Rohé, Nicolas Duchateau, Maxime Sermesant, and Xavier Pennec. Combination of Polyaffine Transformations and Supervised Learning for the Automatic Diagnosis of LV Infarct. In Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2015., volume 9534 of LNCS, Munich, Germany, pages 190-198, 2015. Springer. Keyword(s): Medical Imaging, Cardiac Motion, Machine Learning. [bibtex-entry]



This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Les documents contenus dans ces répertoires sont rendus disponibles par les auteurs qui y ont contribué en vue d'assurer la diffusion à temps de travaux savants et techniques sur une base non-commerciale. Les droits de copie et autres droits sont gardés par les auteurs et par les détenteurs du copyright, en dépit du fait qu'ils présentent ici leurs travaux sous forme électronique. Les personnes copiant ces informations doivent adhérer aux termes et contraintes couverts par le copyright de chaque auteur. Ces travaux ne peuvent pas être rendus disponibles ailleurs sans la permission explicite du détenteur du copyright.

Last modified: Tue Apr 23 00:30:04 2024
Author: epione-publi.

This document was translated from BibTEX by bibtex2html