BACK TO INDEX
Publications of Yann Fraboni
-
Yann Fraboni.
Reliability and robustness of federated learning in practical applications.
Theses,
Université Côte d'Azur,
May 2023.
Keyword(s): Federated learning,
Heterogeneous data,
Privacy,
Distributed optimization,
Bias,
Apprentissage fédéré,
Données hétérogènes,
Protection des données,
Optimisation distribuée,
Biais.
[bibtex-entry]
Articles in journal, book chapters |
-
Yann Fraboni,
Richard Vidal,
Laetitia Kameni,
and Marco Lorenzi.
A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates.
Journal of Machine Learning Research,
24:1-43,
March 2023.
Note: Code is available https://github.com/Accenture/Labs-Federated-Learning/tree/asynchronous_FL.
[bibtex-entry]
-
Yann Fraboni,
Lucia Innocenti,
Michela Antonelli,
Richard Vidal,
Laetitia Kameni,
Sebastien Ourselin,
and Marco Lorenzi.
Validation of Federated Unlearning on Collaborative Prostate Segmentation.
In DECAF MICCAI 2023 Workshops,
volume 14393 of Lecture Notes in Computer Science,
Toronto, Canada,
pages 322-333,
October 2023.
Medical Image Computing and Computer Assisted Intervention,
Springer Nature Switzerland.
Keyword(s): federated unlearning,
prostate cancer,
segmentation,
Medical imaging.
[bibtex-entry]
-
Yann Fraboni,
Richard Vidal,
Laetitia Kameni,
and Marco Lorenzi.
A General Theory for Client Sampling in Federated Learning.
In International Workshop on Trustworthy Federated Learning in Conjunction with IJCAI 2022 (FL-IJCAI'22),
Vienna, Austria,
July 2022.
[bibtex-entry]
-
Yann Fraboni,
Richard Vidal,
Laetitia Kameni,
and Marco Lorenzi.
Clustered Sampling: Low-Variance and Improved Representativity for Clients Selection in Federated Learning.
In ICML 2021 - 38th International Conference on Machine Learning,
online, United States,
July 2021.
Keyword(s): Client sampling,
federated learning,
sampling variance,
data representativity.
[bibtex-entry]
-
Yann Fraboni,
Richard Vidal,
and Marco Lorenzi.
Free-rider Attacks on Model Aggregation in Federated Learning.
In AISTATS 2021 - 24th International Conference on Artificial Intelligence and Statistics,
San Diego, United States,
April 2021.
[bibtex-entry]
-
Yann Fraboni,
Richard Vidal,
Laetitia Kameni,
and Marco Lorenzi.
Sequential Informed Federated Unlearning: Efficient and Provable Client Unlearning in Federated Optimization.
Note: Working paper or preprint,
January 2023.
[bibtex-entry]
BACK TO INDEX
Disclaimer:
This material is presented to ensure timely dissemination of
scholarly and technical work. Copyright and all rights therein
are retained by authors or by other copyright holders.
All person copying this information are expected to adhere to
the terms and constraints invoked by each author's copyright.
In most cases, these works may not be reposted
without the explicit permission of the copyright holder.
Les documents contenus dans ces répertoires sont rendus disponibles
par les auteurs qui y ont contribué en vue d'assurer la diffusion
à temps de travaux savants et techniques sur une base non-commerciale.
Les droits de copie et autres droits sont gardés par les auteurs
et par les détenteurs du copyright, en dépit du fait qu'ils présentent
ici leurs travaux sous forme électronique. Les personnes copiant ces
informations doivent adhérer aux termes et contraintes couverts par
le copyright de chaque auteur. Ces travaux ne peuvent pas être
rendus disponibles ailleurs sans la permission explicite du détenteur
du copyright.
Last modified: Sun Dec 8 12:30:04 2024
Author: epione-publi.
This document was translated from BibTEX by
bibtex2html