|
Les Publications
Résultat de la recherche dans la liste des publications :
245 Articles de conférence |
219 - Isotropic properties of some multi-body interaction models. X. Descombes et E. Pechersky. Dans Proc. Fundamental Structural Properties in Image and Pattern Analysis, Budapest, Hongrie, septembre 1999.
@INPROCEEDINGS{xd99f,
|
author |
= |
{Descombes, X. and Pechersky, E.}, |
title |
= |
{Isotropic properties of some multi-body interaction models}, |
year |
= |
{1999}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. Fundamental Structural Properties in Image and Pattern Analysis}, |
address |
= |
{Budapest, Hongrie}, |
url |
= |
{http://www.ercim.eu/publication/Ercim_News/enw40/chetverikov.html}, |
keyword |
= |
{} |
} |
|
220 - Restauration automatique d'images satellitaires par une méthode MCMC. A. Jalobeanu et L. Blanc-Féraud et J. Zerubia. Dans Proc. GRETSI Symposium on Signal and Image Processing, Vannes, France, septembre 1999.
@INPROCEEDINGS{aj99c,
|
author |
= |
{Jalobeanu, A. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Restauration automatique d'images satellitaires par une méthode MCMC}, |
year |
= |
{1999}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. GRETSI Symposium on Signal and Image Processing}, |
address |
= |
{Vannes, France}, |
url |
= |
{http://documents.irevues.inist.fr/handle/2042/12942}, |
keyword |
= |
{} |
} |
|
221 - A Level Set Model for Image Classification. C. Samson et L. Blanc-Féraud et G. Aubert et J. Zerubia. Dans Proc. Scale-Space, Corfu, Grèce, septembre 1999.
@INPROCEEDINGS{cs99d,
|
author |
= |
{Samson, C. and Blanc-Féraud, L. and Aubert, G. and Zerubia, J.}, |
title |
= |
{A Level Set Model for Image Classification}, |
year |
= |
{1999}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. Scale-Space}, |
address |
= |
{Corfu, Grèce}, |
url |
= |
{http://link.springer.com/chapter/10.1007%2F3-540-48236-9_27}, |
keyword |
= |
{} |
} |
|
222 - Metropolis vs Kawasaki dynamic for image segmentation based on Gibbs models. X. Descombes et E. Pechersky. Dans Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), York, UK, juillet 1999.
@INPROCEEDINGS{xd99e,
|
author |
= |
{Descombes, X. and Pechersky, E.}, |
title |
= |
{Metropolis vs Kawasaki dynamic for image segmentation based on Gibbs models}, |
year |
= |
{1999}, |
month |
= |
{juillet}, |
booktitle |
= |
{Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR)}, |
address |
= |
{York, UK}, |
url |
= |
{http://link.springer.com/chapter/10.1007%2F3-540-48432-9_8}, |
keyword |
= |
{} |
} |
|
223 - Graph-matching model using Gibbsian modeling : application to map-SPOT image road networks for map updating. X. Descombes et C. Hivernat et S. Randriamasy et J. Zerubia. Dans Proc. SPIE Conference on Wavelets, Denver, USA, juillet 1999.
@INPROCEEDINGS{xd99i,
|
author |
= |
{Descombes, X. and Hivernat, C. and Randriamasy, S. and Zerubia, J.}, |
title |
= |
{Graph-matching model using Gibbsian modeling : application to map-SPOT image road networks for map updating}, |
year |
= |
{1999}, |
month |
= |
{juillet}, |
booktitle |
= |
{Proc. SPIE Conference on Wavelets}, |
address |
= |
{Denver, USA}, |
url |
= |
{http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=906165}, |
keyword |
= |
{} |
} |
|
224 - Hyperparameter estimation for satellite image restoration by a MCMCML method. A. Jalobeanu et L. Blanc-Féraud et J. Zerubia. Dans Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), York,UK, juillet 1999.
@INPROCEEDINGS{aj99b,
|
author |
= |
{Jalobeanu, A. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Hyperparameter estimation for satellite image restoration by a MCMCML method}, |
year |
= |
{1999}, |
month |
= |
{juillet}, |
booktitle |
= |
{Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR)}, |
address |
= |
{York,UK}, |
url |
= |
{http://link.springer.com/chapter/10.1007%2F3-540-48432-9_9}, |
keyword |
= |
{} |
} |
|
225 - Simultaneous Image Classification and Restoration Using a Variational Approach. C. Samson et L. Blanc-Féraud et G. Aubert et J. Zerubia. Dans Proc. IEEE Computer Vision and Pattern Recognition (CVPR), Fort Collins, Colorado, USA, juin 1999.
@INPROCEEDINGS{cs99c,
|
author |
= |
{Samson, C. and Blanc-Féraud, L. and Aubert, G. and Zerubia, J.}, |
title |
= |
{Simultaneous Image Classification and Restoration Using a Variational Approach}, |
year |
= |
{1999}, |
month |
= |
{juin}, |
booktitle |
= |
{Proc. IEEE Computer Vision and Pattern Recognition (CVPR)}, |
address |
= |
{Fort Collins, Colorado, USA}, |
url |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=784985}, |
keyword |
= |
{} |
} |
|
226 - Déconvolution d'images satellitaires: modèles et estimation de paramètres. A. Jalobeanu et L. Blanc-Féraud et J. Zerubia. Dans Proc. Traitement et Analyse de l'Information - Méthodes et Applications (TAIMA), Hammamet, Tunisie, mars 1999.
@INPROCEEDINGS{aj99a,
|
author |
= |
{Jalobeanu, A. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Déconvolution d'images satellitaires: modèles et estimation de paramètres}, |
year |
= |
{1999}, |
month |
= |
{mars}, |
booktitle |
= |
{Proc. Traitement et Analyse de l'Information - Méthodes et Applications (TAIMA)}, |
address |
= |
{Hammamet, Tunisie}, |
pdf |
= |
{Articles/taima99.pdf}, |
keyword |
= |
{} |
} |
|
227 - Auxiliary functions and optimal scanning for road detection by dynamic programming. N. Merlet et J. Zerubia. Dans Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Phoenix, USA, mars 1999.
@INPROCEEDINGS{jz99d,
|
author |
= |
{Merlet, N. and Zerubia, J.}, |
title |
= |
{Auxiliary functions and optimal scanning for road detection by dynamic programming}, |
year |
= |
{1999}, |
month |
= |
{mars}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
address |
= |
{Phoenix, USA}, |
url |
= |
{http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=757554}, |
keyword |
= |
{} |
} |
|
228 - Qualification automatique des résultats d'une mise en correspondance de réseaux routiers en vue de la mise à jour cartographique. C. Hivernat et S. Randriamasy et X. Descombes et J. Zerubia. Dans Proc. International Society for Photogrammetry and Remote Sensing (ISPRS), Paris, France, 1999.
@INPROCEEDINGS{xd99h,
|
author |
= |
{Hivernat, C. and Randriamasy, S. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Qualification automatique des résultats d'une mise en correspondance de réseaux routiers en vue de la mise à jour cartographique}, |
year |
= |
{1999}, |
booktitle |
= |
{Proc. International Society for Photogrammetry and Remote Sensing (ISPRS)}, |
address |
= |
{Paris, France}, |
keyword |
= |
{} |
} |
|
229 - Classification et Restauration d'Images par Approche Variationnelle. C. Samson et L. Blanc-Féraud et G. Aubert et J. Zerubia. Dans Proc. Journées des jeunes chercheurs en vision par ordinateur, Aussois, France, 1999.
@INPROCEEDINGS{cs99b,
|
author |
= |
{Samson, C. and Blanc-Féraud, L. and Aubert, G. and Zerubia, J.}, |
title |
= |
{Classification et Restauration d'Images par Approche Variationnelle}, |
year |
= |
{1999}, |
booktitle |
= |
{Proc. Journées des jeunes chercheurs en vision par ordinateur}, |
address |
= |
{Aussois, France}, |
pdf |
= |
{Articles/orasis1999.pdf}, |
keyword |
= |
{} |
} |
|
230 - Globally optimal regions and boundaries. I. H. Jermyn et H. Ishikawa. Dans Proc. IEEE International Conference on Computer Vision (ICCV), 1999. Mots-clés : global, optimum, Graphe, Cycle, Ratio, Segmentation. Copyright :
@INPROCEEDINGS{Jermyn99iccv,
|
author |
= |
{Jermyn, I. H. and Ishikawa, H.}, |
title |
= |
{Globally optimal regions and boundaries}, |
year |
= |
{1999}, |
booktitle |
= |
{Proc. IEEE International Conference on Computer Vision (ICCV)}, |
pdf |
= |
{http://www-sop.inria.fr/members/Ian.Jermyn/publications/Jermyn99iccv.pdf}, |
keyword |
= |
{global, optimum, Graphe, Cycle, Ratio, Segmentation} |
} |
Abstract :
We propose a new form of energy functional for the segmentation
of regions in images, and an efficient method for
finding its global optima. The energy can have contributions
from both the region and its boundary, thus combining
the best features of region- and boundary-based approaches
to segmentation. By transforming the region energy
into a boundary energy, we can treat both contributions
on an equal footing, and solve the global optimization
problem as a minimum mean weight cycle problem on
a directed graph. The simple, polynomial-time algorithm
requires no initialization and is highly parallelizable. |
|
231 - Active contour models for segmentation and reconstruction on medical images. S. Teboul et L. Blanc-Féraud et G. Aubert et M. Barlaud. Dans Asilomar Conference, USA, novembre 1998.
@INPROCEEDINGS{lbf98g,
|
author |
= |
{Teboul, S. and Blanc-Féraud, L. and Aubert, G. and Barlaud, M.}, |
title |
= |
{Active contour models for segmentation and reconstruction on medical images}, |
year |
= |
{1998}, |
month |
= |
{novembre}, |
booktitle |
= |
{Asilomar Conference}, |
address |
= |
{USA}, |
keyword |
= |
{} |
} |
|
232 - Image Retrieval and Indexing: A Hierarchical Approach in Computing the Distance between Textured Images. R. Stoica et J. Zerubia et J.M. Francos. Dans Proc. IEEE International Conference on Image Processing (ICIP), Chicago, USA, octobre 1998.
@INPROCEEDINGS{stoica98a,
|
author |
= |
{Stoica, R. and Zerubia, J. and Francos, J.M.}, |
title |
= |
{Image Retrieval and Indexing: A Hierarchical Approach in Computing the Distance between Textured Images}, |
year |
= |
{1998}, |
month |
= |
{octobre}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Chicago, USA}, |
url |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=723675}, |
keyword |
= |
{} |
} |
|
233 - Motion-based segmentation by means of active contours. R. Ciampini et L. Blanc-Féraud et M. Barlaud et E. Salerno. Dans Proc. IEEE International Conference on Image Processing (ICIP), Chicago, USA, octobre 1998.
@INPROCEEDINGS{lbf98f,
|
author |
= |
{Ciampini, R. and Blanc-Féraud, L. and Barlaud, M. and Salerno, E.}, |
title |
= |
{Motion-based segmentation by means of active contours}, |
year |
= |
{1998}, |
month |
= |
{octobre}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Chicago, USA}, |
pdf |
= |
{http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=723613}, |
keyword |
= |
{} |
} |
|
234 - Unsupervised deconvolution of satellite images. M. Khoumri et L. Blanc-Féraud et J. Zerubia. Dans Proc. IEEE International Conference on Image Processing (ICIP), Chicago, USA, octobre 1998.
@INPROCEEDINGS{lbf98d,
|
author |
= |
{Khoumri, M. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Unsupervised deconvolution of satellite images}, |
year |
= |
{1998}, |
month |
= |
{octobre}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Chicago, USA}, |
url |
= |
{http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=723322}, |
keyword |
= |
{} |
} |
|
235 - Segmentation of urban areas in SPOT images using MRF. F. Richard et F. Falzon et J. Zerubia et G. Giraudon. Dans Proc. European Signal Processing Conference (EUSIPCO), Rhodes, septembre 1998.
@INPROCEEDINGS{jz98,
|
author |
= |
{Richard, F. and Falzon, F. and Zerubia, J. and Giraudon, G.}, |
title |
= |
{Segmentation of urban areas in SPOT images using MRF}, |
year |
= |
{1998}, |
month |
= |
{septembre}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{Rhodes}, |
pdf |
= |
{http://www.eurasip.org/Proceedings/Eusipco/Eusipco1998/sessions/F%20A/FA%20P-7/2493/PAPER106.PDF}, |
keyword |
= |
{} |
} |
|
236 - An unsupervised clustering method using the entropy minimization. G. Palubinskas et X. Descombes et F. Kruggel. Dans Proc. International Conference on Pattern Recognition (ICPR), Brisbane, Australia, août 1998.
@INPROCEEDINGS{descombes98a,
|
author |
= |
{Palubinskas, G. and Descombes, X. and Kruggel, F.}, |
title |
= |
{An unsupervised clustering method using the entropy minimization}, |
year |
= |
{1998}, |
month |
= |
{août}, |
booktitle |
= |
{Proc. International Conference on Pattern Recognition (ICPR)}, |
address |
= |
{Brisbane, Australia}, |
url |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=712082}, |
keyword |
= |
{} |
} |
|
237 - Hyperparameter estimation of a variational model using a stochastic gradient. J. Zerubia et L. Blanc-Féraud. Dans Proc. International Symposium on Optical Science, Engineering and Instrumentation, San Diego, USA, juillet 1998.
@INPROCEEDINGS{lbf98b,
|
author |
= |
{Zerubia, J. and Blanc-Féraud, L.}, |
title |
= |
{Hyperparameter estimation of a variational model using a stochastic gradient}, |
year |
= |
{1998}, |
month |
= |
{juillet}, |
booktitle |
= |
{Proc. International Symposium on Optical Science, Engineering and Instrumentation}, |
address |
= |
{San Diego, USA}, |
url |
= |
{http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=958908}, |
keyword |
= |
{} |
} |
|
238 - Real-Time 3D vizualization for medical images reconstruction and segmentation. F. Diard et S. Teboul et L. Blanc-Féraud et M. Barlaud. Dans IEEE Image and MultiDimensional Signal Processing, Autriche, juillet 1998.
@INPROCEEDINGS{lbf98c,
|
author |
= |
{Diard, F. and Teboul, S. and Blanc-Féraud, L. and Barlaud, M.}, |
title |
= |
{Real-Time 3D vizualization for medical images reconstruction and segmentation}, |
year |
= |
{1998}, |
month |
= |
{juillet}, |
booktitle |
= |
{IEEE Image and MultiDimensional Signal Processing}, |
address |
= |
{Autriche}, |
keyword |
= |
{} |
} |
|
239 - On the use of nonlinear regularization in inverse methods for the solar tachocline profile determination. T. Corbard et G. Berthomieu et J. Provost et L. Blanc-Féraud. Dans Structure and Dynamics of the Interior of the Sun and Sun-like Stars, Vol. ESA SP-418, Ed. S.G. Korzennik & A. Wilson, Publ. ESA Publications Division, Noordwijk, The Netherlands, juillet 1998.
@INPROCEEDINGS{lbf98h,
|
author |
= |
{Corbard, T. and Berthomieu, G. and Provost, J. and Blanc-Féraud, L.}, |
title |
= |
{On the use of nonlinear regularization in inverse methods for the solar tachocline profile determination}, |
year |
= |
{1998}, |
month |
= |
{juillet}, |
booktitle |
= |
{Structure and Dynamics of the Interior of the Sun and Sun-like Stars}, |
volume |
= |
{ESA SP-418}, |
editor |
= |
{S.G. Korzennik & A. Wilson}, |
publisher |
= |
{ESA Publications Division}, |
address |
= |
{Noordwijk, The Netherlands}, |
url |
= |
{http://arxiv.org/abs/astro-ph/9806359}, |
keyword |
= |
{} |
} |
|
240 - Preprocessing of fMR Datasets. F. Kruggel et X. Descombes et Y. von Cramon. Dans Proc. IEEE Workshop on Biomedical Image Analysi, pages 211-220, Los Alamitos, USA, juin 1998.
@INPROCEEDINGS{descombes98c,
|
author |
= |
{Kruggel, F. and Descombes, X. and von Cramon, Y.}, |
title |
= |
{Preprocessing of fMR Datasets}, |
year |
= |
{1998}, |
month |
= |
{juin}, |
booktitle |
= |
{Proc. IEEE Workshop on Biomedical Image Analysi}, |
pages |
= |
{211-220}, |
address |
= |
{Los Alamitos, USA}, |
url |
= |
{http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=692518}, |
keyword |
= |
{} |
} |
|
241 - A step toward high resolution 3D SAR. B. Pairault et M. Berthod. Dans Proc. European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, mai 1998.
@INPROCEEDINGS{berthod98,
|
author |
= |
{Pairault, B. and Berthod, M.}, |
title |
= |
{A step toward high resolution 3D SAR}, |
year |
= |
{1998}, |
month |
= |
{mai}, |
booktitle |
= |
{Proc. European Conference on Synthetic Aperture Radar}, |
address |
= |
{Friedrichshafen, Germany}, |
keyword |
= |
{} |
} |
|
242 - The two-dimensional Wold decomposition for segmentation and indexing in image libraries. R. Stoica et J. Zerubia et J.M. Francos. Dans Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seattle, USA, mai 1998.
@INPROCEEDINGS{stoica98b,
|
author |
= |
{Stoica, R. and Zerubia, J. and Francos, J.M.}, |
title |
= |
{The two-dimensional Wold decomposition for segmentation and indexing in image libraries}, |
year |
= |
{1998}, |
month |
= |
{mai}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
address |
= |
{Seattle, USA}, |
url |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=678151}, |
keyword |
= |
{} |
} |
|
243 - Denoising by extracting fractional order singularities. H. Shekarforoush et J. Zerubia et M. Berthod. Dans Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seattle, USA, mai 1998.
@INPROCEEDINGS{jz98a,
|
author |
= |
{Shekarforoush, H. and Zerubia, J. and Berthod, M.}, |
title |
= |
{Denoising by extracting fractional order singularities}, |
year |
= |
{1998}, |
month |
= |
{mai}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
address |
= |
{Seattle, USA}, |
url |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=678129}, |
keyword |
= |
{} |
} |
|
244 - Die Vorerarbeitung von fMRI-Daten. F. Kruggel et X. Descombes et Y. von Cramon. Dans Bildverarbeitung für die Medizin, Algorithmen - Systeme - Anwendungen, Universitätsklinikum der RWTH Aachen, Germany, mars 1998.
@INPROCEEDINGS{descombes98b,
|
author |
= |
{Kruggel, F. and Descombes, X. and von Cramon, Y.}, |
title |
= |
{Die Vorerarbeitung von fMRI-Daten}, |
year |
= |
{1998}, |
month |
= |
{mars}, |
booktitle |
= |
{Bildverarbeitung für die Medizin, Algorithmen - Systeme - Anwendungen}, |
address |
= |
{Universitätsklinikum der RWTH Aachen, Germany}, |
pdf |
= |
{Articles/Vorerarbeitung.pdf}, |
keyword |
= |
{} |
} |
|
245 - Fully Bayesian image segmentation-an engineering perspective. R. Morris et X. Descombes et J. Zerubia. Dans Proc. IEEE International Conference on Image Processing (ICIP), Vol. 3, pages 54-57, Santa Barbara, CA, USA, octobre 1997. Mots-clés : Bayes methods, Markov processes, Monte Carlo methods, Image sampling, Image segmentation.
@INPROCEEDINGS{MorrisICIP97,
|
author |
= |
{Morris, R. and Descombes, X. and Zerubia, J.}, |
title |
= |
{ Fully Bayesian image segmentation-an engineering perspective}, |
year |
= |
{1997}, |
month |
= |
{octobre}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
volume |
= |
{3}, |
pages |
= |
{54-57}, |
address |
= |
{Santa Barbara, CA, USA}, |
pdf |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=631978&isnumber=13718}, |
keyword |
= |
{Bayes methods, Markov processes, Monte Carlo methods, Image sampling, Image segmentation} |
} |
Abstract :
Developments in Markov chain Monte Carlo procedures have made it possible to perform fully Bayesian image segmentation. By this we mean that all the parameters are treated identically, be they the segmentation labels, the class parameters or the Markov random field prior parameters. We perform the analysis by sampling from the posterior distribution of all the parameters. Sampling from the MRF parameters has traditionally been considered if not intractable then at least computationally prohibitive. In the statistics literature there are descriptions of experiments showing that the MRF parameters may be sampled by approximating the partition function. These experiments are all, however, on `toy' problems; for the typical size of image encountered in engineering applications the phase transition behaviour of the models becomes a major limiting factor in the estimation of the partition function. Nevertheless, we show that, with some care, fully Bayesian segmentation can be performed on realistic sized images. We also compare the fully Bayesian approach with the approximate pseudolikelihood method |
|
haut de la page
90 Rapports de recherche et Rapports techniques |
1 - Classification of very high resolution SAR images of urban areas. A. Voisin et V. Krylov et G. Moser et S.B. Serpico et J. Zerubia. Rapport de recherche 7758, INRIA, octobre 2011. Mots-clés : Synthetic Aperture Radar (SAR) image, Supervised classification, Bayesian, finite mixture models, hierarchical Markov random fields, wavelet.
@TECHREPORT{RR-7758,
|
author |
= |
{Voisin, A. and Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{Classification of very high resolution SAR images of urban areas}, |
year |
= |
{2011}, |
month |
= |
{octobre}, |
institution |
= |
{INRIA}, |
type |
= |
{Rapport de recherche}, |
number |
= |
{7758}, |
url |
= |
{http://hal.inria.fr/docs/00/63/10/38/PDF/RR-7758.pdf}, |
keyword |
= |
{Synthetic Aperture Radar (SAR) image, Supervised classification, Bayesian, finite mixture models, hierarchical Markov random fields, wavelet} |
} |
Résumé :
Dans le cadre d’une approche face aux risques environnementaux, nous proposons une nouvelle méthode de classification bayésienne supervisée. Celle-ci combine une modélisation statistique des images avec une prise en compte contextuelle via des champs de Markov hiérarchiques. Ce rapport de recherche vise à détailler plus amplement cette modélisation contextuelle, à savoir expliciter le modèle mathématique sur quad-arbre et l’obtention des observations par décomposition en ondelettes de l’image originale. Il met également en exergue certaines modifications apportées en
vue d’améliorer la classification finale. |
Abstract :
In the framework of the assessment of environmental risks, we propose herein a new supervised Bayesian classification method. It combines statistical image modeling with a contextual approach via hierarchical Markov random fields. This research report aims to further focus on this kind of contextual classification approach by detailing both the quad-tree mathematical model and the statistics of the observations, obtained by wavelet transform. We therefore introduce modifications to a classical Markovian single-scale algorithm that lead to more accurate classification results. |
|
2 - On the Method of Logarithmic Cumulants for Parametric Probability Density Function Estimation. V. Krylov et G. Moser et S.B. Serpico et J. Zerubia. Rapport de Recherche 7666, INRIA, juillet 2011. Mots-clés : Probability density function, Parameter estimation, generalized gamma distribution, K-distribution, Radar a Ouverture Synthetique (SAR), Classification. Copyright : INRIA/ARIANA
@TECHREPORT{RR-7666,
|
author |
= |
{Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{On the Method of Logarithmic Cumulants for Parametric Probability Density Function Estimation}, |
year |
= |
{2011}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7666}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00605274/en/}, |
keyword |
= |
{Probability density function, Parameter estimation, generalized gamma distribution, K-distribution, Radar a Ouverture Synthetique (SAR), Classification} |
} |
Résumé :
L'estimation de paramètres de fonctions de densité de probabilité est une étape majeure dans le domaine du traitement statistique du signal et des images. Dans ce rapport, nous étudions les propriétés et les limites de l'estimation de paramètres par la méthode des cumulants logarithmiques (MoLC), qui est une alternative à la fois au maximum de vraisemblance (MV) classique et à la méthode des moments. Nous dérivons la condition générale suffisante de consistance forte de l'estimation par la méthode MoLC, qui représente une propriété asymptotique importante de tout estimateur statistique. Grâce à cela, nous démontrons la consistance forte de l'estimation par la méthode MoLC pour une sélection de familles de distributions particulièrement adaptées (mais non restreintes) au traitement d'images acquises par radar à synthèse d'ouverture (RSO). Nous dérivons ensuite les conditions analytiques d'applicabilité de la méthode MoLC à des échantillons générés qui suivent les lois des différentes familles de distribution de notre sélection. Enfin, nous testons la méthode MoLC sur des données synthétiques et réelles afin de comparer les différentes propriétés inhérentes aux différents types d'images, l'applicabilité de la méthode et les effets d'un nombre restreint d'échantillons. Nous avons, en particulier, considéré les distributions gamma généralisée et K. Comme exemple d'application, nous avons réalisé des classifications supervisées d'images médicales à ultrason ainsi que d'images de télédétection acquises par des capteurs RSO. Les résultats obtenus montrent que la méthode MoLC est une bonne alternative à la méthode des moments, bien qu'elle contienne certaines limitations. Elle est particulièrement utile lorsqu'une approche directe par MV n'est pas possible. |
Abstract :
Parameter estimation of probability density functions is one of the major steps in the mainframe of statistical image and signal processing. In this report we explore the properties and limitations of the recently proposed method of logarithmic cumulants (MoLC) parameter estimation approach which is an alternative to the classical maximum likelihood (ML) and method of moments (MoM) approaches. We derive the general sufficient condition of strong consistency of MoLC estimates which represents an important asymptotic property of any statistical estimator. With its help we demonstrate the strong consistency of MoLC estimates for a selection of widely used distribution families originating (but not restricted to) synthetic aperture radar (SAR) image processing. We then derive the analytical conditions of applicability of MoLC to samples generated from several distribution families in our selection. Finally, we conduct various synthetic and real data experiments to assess the comparative properties, applicability and small sample performance of MoLC notably for the generalized gamma and K family of distributions. Supervised image classification experiments are considered for medical ultrasound and remote sensing SAR imagery. The obtained results suggest MoLC to be a feasible yet not universally applicable alternative to MoM that can be considered when the direct ML approach turns out to be unfeasible. |
|
3 - Unsupervised amplitude and texture based classification of SAR images with multinomial latent model. K. Kayabol et J. Zerubia. Rapport de Recherche 7700, INRIA, juillet 2011. Mots-clés : High resolution SAR, Classification, Texture.
@TECHREPORT{Kayabol11,
|
author |
= |
{Kayabol, K. and Zerubia, J.}, |
title |
= |
{Unsupervised amplitude and texture based classification of SAR images with multinomial latent model}, |
year |
= |
{2011}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7700}, |
url |
= |
{http://hal.archives-ouvertes.fr/hal-00612491/fr/}, |
keyword |
= |
{High resolution SAR, Classification, Texture} |
} |
Abstract :
We combine both amplitude and texture statistics of the Synthetic Aperture Radar (SAR) images using Products of Experts (PoE) approach for classification purpose. We use Nakagami density to model the class amplitudes and a non-Gaussian Markov Random Field (MRF) texture model with t-distributed regression error to model the textures of the classes. A non-stationary Multinomial Logistic (MnL) latent class label model is used as a mixture density to obtain spatially smooth class segments. The Classification Expectation-Maximization (CEM) algorithm is performed to estimate the class parameters and to classify the pixels. We resort to Integrated Classification Likelihood (ICL) criterion to determine the number of classes in the model. We obtained some classification results of water, land and urban areas in both supervised and unsupervised cases on TerraSAR-X, as well as COSMO-SkyMed data.
|
|
4 - Restoration mehod for spatially variant blurred images. S. Ben Hadj et L. Blanc-Féraud. Rapport de Recherche 7654, INRIA, juin 2011. Mots-clés : Deconvolution, energy minimization, spatially-variant PSF, Variation totale.
@TECHREPORT{RR_SBH_11,
|
author |
= |
{Ben Hadj, S. and Blanc-Féraud, L.}, |
title |
= |
{Restoration mehod for spatially variant blurred images}, |
year |
= |
{2011}, |
month |
= |
{juin}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7654}, |
url |
= |
{ http://hal.inria.fr/inria-00602650/fr/}, |
keyword |
= |
{Deconvolution, energy minimization, spatially-variant PSF, Variation totale} |
} |
|
5 - Complex wavelet regularization for 3D confocal microscopy deconvolution. M. Carlavan et L. Blanc-Féraud. Rapport de Recherche 7366, INRIA, août 2010. Mots-clés : 3D confocal microscopy, Deconvolution, complex wavelet regularization, discrepancy principle, Alternating Direction technique.
@TECHREPORT{RR-7366,
|
author |
= |
{Carlavan, M. and Blanc-Féraud, L.}, |
title |
= |
{Complex wavelet regularization for 3D confocal microscopy deconvolution}, |
year |
= |
{2010}, |
month |
= |
{août}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7366}, |
url |
= |
{http://hal.inria.fr/inria-00509447/fr/}, |
keyword |
= |
{3D confocal microscopy, Deconvolution, complex wavelet regularization, discrepancy principle, Alternating Direction technique} |
} |
Abstract :
Confocal microscopy is an increasingly popular technique for 3D
imaging of biological specimens which gives images with a very good resolution
(several tenths of micrometers), even though degraded by both blur and Poisson
noise. Deconvolution methods have been proposed to reduce these degradations,
some of them being regularized on a Total Variation prior, which gives
good results in image restoration but does not allow to retrieve the thin details
(including the textures) of the specimens. We rst propose here to use instead
a wavelet prior based on the Dual-Tree Complex Wavelet transform to retrieve
the thin details of the object. As the regularizing prior eciency also depends
on the choice of its regularizing parameter, we secondly propose a method to
select the regularizing parameter following a discrepancy principle for Poisson
noise. Finally, in order to implement the proposed deconvolution method, we
introduce an algorithm based on the Alternating Direction technique which allows
to avoid inherent stability problems of the Richardson-Lucy multiplicative
algorithm which is widely used in 3D image restoration. We show some results
on real and synthetic data, and compare these results to the ones obtained with
the Total Variation and the Curvelets priors. We also give preliminary results
on a modication of the wavelet transform allowing to deal with the anisotropic
sampling of 3D confocal images. |
|
6 - Estimation des paramètres de modèles de processus ponctuels marqués pour l'extraction d'objets en imagerie spatiale et aérienne haute résolution . S. Ben Hadj et F. Chatelain et X. Descombes et J. Zerubia. Rapport de recherche 7350, INRIA, juillet 2010. Mots-clés : Processus ponctuels marques, RJMCMC, Recuit Simule, EM Stochastique (SEM), pseudo-vraisemblance, Extraction d'objets.
@TECHREPORT{RR-7350,
|
author |
= |
{Ben Hadj, S. and Chatelain, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Estimation des paramètres de modèles de processus ponctuels marqués pour l'extraction d'objets en imagerie spatiale et aérienne haute résolution }, |
year |
= |
{2010}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Rapport de recherche}, |
number |
= |
{7350}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00508431/fr/}, |
keyword |
= |
{Processus ponctuels marques, RJMCMC, Recuit Simule, EM Stochastique (SEM), pseudo-vraisemblance, Extraction d'objets} |
} |
|
7 - Building Extraction and Change Detection in Multitemporal Aerial and Satellite Images in a Joint Stochastic Approach. C. Benedek et X. Descombes et J. Zerubia. Rapport de Recherche 7143, INRIA, Sophia Antipolis, décembre 2009. Mots-clés : Change detection, Building extraction, Processus ponctuels marques, MAP, multiple birth-and-death dynamics.
@TECHREPORT{benedekRR_09,
|
author |
= |
{Benedek, C. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Building Extraction and Change Detection in Multitemporal Aerial and Satellite Images in a Joint Stochastic Approach}, |
year |
= |
{2009}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7143}, |
address |
= |
{Sophia Antipolis}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00426615}, |
keyword |
= |
{Change detection, Building extraction, Processus ponctuels marques, MAP, multiple birth-and-death dynamics} |
} |
Résumé :
Dans ce rapport, nous proposons une nouvelle méthode probabiliste qui intègre l'extraction de bâtiments et la détection de changements à partir de paires d'images de télédétection. Un algorithme d'optimisation globale permet de trouver la configuration optimale de bâtiments en considérant des observations, des connaissances a priori et des interactions entre des parties voisines de bâtiments. La précision est assurée par une vérification d'un modèle objet bayésien; le coût du calcul est considérablement réduit en utilisant un processus stochastique non-uniforme de naissance d'objets fondé sur des caractéristiques bas-niveaux des images, qui génère des objets pertinents ayant une grande probabilité. |
Abstract :
In this report we introduce a new probabilistic method which integrates building extraction with change detection in remotely sensed image pairs. A global optimization process attempts to find the optimal configuration of buildings, considering the observed data, prior knowledge, and interactions between the neighboring building parts. The accuracy is ensured by a Bayesian object model verification, meanwhile the computational cost is significantly decreased by a non-uniform stochastic object birth process, which proposes relevant objects with higher probability based on low-level image features. |
|
8 - Space non-invariant point-spread function and its estimation in fluorescence microscopy. P. Pankajakshan et L. Blanc-Féraud et Z. Kam et J. Zerubia. Research Report 7157, INRIA, décembre 2009. Mots-clés : Confocal Laser Scanning Microscopy, point spread function, Estimation bayesienne, Estimation MAP, Deconvolution, fluorescence microscopy.
@TECHREPORT{ppankajakshan09c,
|
author |
= |
{Pankajakshan, P. and Blanc-Féraud, L. and Kam, Z. and Zerubia, J.}, |
title |
= |
{Space non-invariant point-spread function and its estimation in fluorescence microscopy}, |
year |
= |
{2009}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7157}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00438719/en/}, |
keyword |
= |
{Confocal Laser Scanning Microscopy, point spread function, Estimation bayesienne, Estimation MAP, Deconvolution, fluorescence microscopy} |
} |
Résumé :
Dans ce rapport de recherche, nous rappelons brièvement comment la nature limitée de diffraction de l'objectif d'un microscope optique, et le bruit
intrinsèque peuvent affecter la résolution d'une image observée. Un algorithme de déconvolution aveugle a été proposé en vue de restaurer les fréquences manquants au delà de la limite de diffraction. Cependant, sous d'autres conditions, l'approximation du systéme imageur l'imagerie sans aberration n'est plus valide et donc les aberrations de la phase du front d'onde émergeant d'un médium ne sont plus ignorées. Dans la deuxième partie de
ce rapport de recherche, nous montrons que la distribution d'intensité originelle et la localisation d'un objet peuvent être retrouvées uniquement en obtenant de la phase du front d'onde
réfracté, à partir d'images d'intensité observées. Nous démontrons cela par obtention de la fonction de ou a partir d'une microsphère imagée. Le bruit et l'influence de la taille de la
microsphère peuvent être diminués et parfois complètement supprimes des images observées en utilisant un estimateur maximum a posteriori. Néanmoins, a cause de l'incohérence du système d'acquisition, une récupération de phase a partir d'intensités observées n'est possible que si la restauration de la phase est contrainte. Nous avons utilisé l'optique géométrique
pour modéliser la phase du front d'onde réfracté, et nous avons teste l'algorithme sur des images simulées. |
Abstract :
In this research report, we recall briefly how the diffraction-limited nature of an optical microscope's objective, and the intrinsic noise can affect the observed images' resolution. A blind deconvolution algorithm can restore the lost frequencies beyond the diffraction limit. However, under other imaging conditions, the approximation of aberration-free imaging, is not applicable, and the phase aberrations of the emerging wavefront from a specimen immersion medium cannot be ignored any more. We show that an object's location and its original intensity distribution can be recovered by retrieving the refracted wavefront's phase from the observed intensity images. We demonstrate this by retrieving the point-spread function from an imaged microsphere. The noise and the influence of the microsphere size can be mitigated and sometimes completely removed from the observed images by using a maximum a posteriori estimate. However, due to the incoherent nature of the acquisition system, phase retrieval from the observed intensities will be possible only if the phase is constrained. We have used geometrical optics to model the phase of the refracted wavefront, and tested the algorithm on some simulated images. |
|
9 - High resolution SAR-image classification. V. Krylov et J. Zerubia. Research Report 7108, INRIA, novembre 2009. Mots-clés : SAR image classification, Dictionnaire, amplitude probability density, EM Stochastique (SEM), Markov random field, copula. Copyright : INRIA/ARIANA, 2009
@TECHREPORT{RR-7108,
|
author |
= |
{Krylov, V. and Zerubia, J.}, |
title |
= |
{High resolution SAR-image classification}, |
year |
= |
{2009}, |
month |
= |
{novembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7108}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00433036/en/}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/44/81/40/PDF/RR-7108.pdf}, |
keyword |
= |
{SAR image classification, Dictionnaire, amplitude probability density, EM Stochastique (SEM), Markov random field, copula} |
} |
Résumé :
Dans ce rapport, nous proposons une nouvelle approche pour la classification des images de type Radar à Synthèse d’Ouverture (RSO) haute résolution. Cette approche combine la méthode des champs Markoviens (MRF) pour la classification bayésienne et un modèle de mélange fini pour l’estimation des densités de probabilité. Ce modèle de mélange fini est realisé grace à une approche fondée sur une espérance-maximisation stochastique, à partir d'un dictionnaire, pour l’estimation des densités de probabilité d’amplitude. Cette approche semi-automatique est étendue au cas important des images RSO avec plusieurs polarisations, en utilisant des copulas pour modéliser les distributions jointes. Des résultats expérimentaux, sur plusieurs images RSO réelles (Dual-Pol TerraSAR-X et Single-Pol COSMO-SkyMed), pour la classification de zones humides, sont présentés pour montrer l’efficacité de l’algorithme proposé. |
Abstract :
In this report we propose a novel classification algorithm for high and very high resolution synthetic aperture radar (SAR) amplitude images that combines the Markov random field approach to Bayesian image classification and a finite mixture technique for probability density function estimation. The finite mixture modeling is done by dictionary-based stochastic expectation maximization amplitude histogram estimation approach. The developed semiautomatic algorithm is extended to an important case of multi-polarized SAR by modeling the joint distributions of channels via copulas. The accuracy of the proposed algorithm is validated for the application of wet soil classification on several high resolution SAR images acquired by TerraSAR-X and COSMO-SkyMed. |
|
10 - A formal Gamma-convergence approach for the detection of points in 2-D images. D. Graziani et L. Blanc-Féraud et G. Aubert. Rapport de Recherche 7038, INRIA, mai 2009. Note : to appear Siam Journal of Imaging Science Mots-clés : points detection, curvature-depending functionals, divergence-measure fields, Gamma-convergence, biological 2-D images.
@TECHREPORT{GRAZIANI_GAMMA_POINTS,
|
author |
= |
{Graziani, D. and Blanc-Féraud, L. and Aubert, G.}, |
title |
= |
{A formal Gamma-convergence approach for the detection of points in 2-D images}, |
year |
= |
{2009}, |
month |
= |
{mai}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7038}, |
note |
= |
{to appear Siam Journal of Imaging Science}, |
url |
= |
{https://hal.inria.fr/inria-00418526}, |
keyword |
= |
{points detection, curvature-depending functionals, divergence-measure fields, Gamma-convergence, biological 2-D images} |
} |
|
11 - Modeling the statistics of high resolution SAR images. V. Krylov et G. Moser et S.B. Serpico et J. Zerubia. Research Report 6722, INRIA, novembre 2008. Mots-clés : Synthetic Aperture Radar (SAR) image, Probability density function, parametric estimation, finite mixture models, EM Stochastique (SEM). Copyright : INRIA/ARIANA, 2008
@TECHREPORT{krylovDSEM08,
|
author |
= |
{Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{Modeling the statistics of high resolution SAR images}, |
year |
= |
{2008}, |
month |
= |
{novembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6722}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00342681/en/}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/35/76/27/PDF/RR-6722.pdf}, |
keyword |
= |
{Synthetic Aperture Radar (SAR) image, Probability density function, parametric estimation, finite mixture models, EM Stochastique (SEM)} |
} |
Abstract :
In the context of remotely sensed data analysis, a crucial problem is represented by the need to develop accurate models for the statistics of pixel intensities. In this work, we develop a parametric finite mixture model for modelling the statistics of intensities in high resolution Synthetic Aperture Radar (SAR) images. Along with the models we design an efficient parameter estimation scheme by integrating the Stochastic Expectation Maximization scheme and the Method of log-cumulants with an automatic technique to select, for each mixture component, an optimal parametric model taken from a predefined dictionary of parametric probability density functions (pdf). In particular, the proposed dictionary consists of eight most efficient state-of-the-art SAR-specific pdfs: Nakagami, log-normal, generalized Gaussian Rayleigh, Heavy-tailed Rayleigh, Weibull, K-root, Fisher and generalized Gamma. The experiment results with a set of several real SAR (COSMO-SkyMed) images demonstrate the high accuracy of the designed algorithm, both from the viewpoint of a visual comparison of the histograms, and from the viewpoint of quantitive measures such as correlation coefficient (always above 99,5%) . We stress, in particular, that the method proves to be effective on all the considered images, remaining accurate for multimodal and highly heterogeneous images. |
|
12 - Parametric blind deconvolution for confocal laser scanning microscopy-proof of concept. P. Pankajakshan et L. Blanc-Féraud et B. Zhang et Z. Kam et J.C. Olivo-Marin et J. Zerubia. Rapport de Recherche 6493, INRIA, avril 2008. Mots-clés : Confocal Laser Scanning Microscopy, Bayesian restoration, Blind Deconvolution, point spread function, Richardson-Lucy algorithm, Variation totale. Copyright : ARIANA/INRIA
@TECHREPORT{ppankajakshan08b,
|
author |
= |
{Pankajakshan, P. and Blanc-Féraud, L. and Zhang, B. and Kam, Z. and Olivo-Marin, J.C. and Zerubia, J.}, |
title |
= |
{Parametric blind deconvolution for confocal laser scanning microscopy-proof of concept}, |
year |
= |
{2008}, |
month |
= |
{avril}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6493}, |
url |
= |
{https://hal.inria.fr/inria-00269265}, |
pdf |
= |
{http://hal.inria.fr/docs/00/27/02/92/PDF/report.pdf}, |
keyword |
= |
{Confocal Laser Scanning Microscopy, Bayesian restoration, Blind Deconvolution, point spread function, Richardson-Lucy algorithm, Variation totale} |
} |
Résumé :
Nous proposons une méthode de restauration itérative d’images de fluorescence
CLSM et d’estimation paramétrique de la fonction de flou (PSF) du système d’acquisition.
Le CLSM est un microscope qui balaye un échantillon en 3D et utilise une sténopée pour
rejeter la lumière en dehors du point de focalisation. Néanmoins, la qualité des images
souffre de deux limitations physiques. La première est due à la diffraction due au système
optique et la seconde est due à la quantité réduite de lumière détectée par le tube
photo-multiplicateur (PMT). Ces limitations induisent respectivement un flou et du bruit
de comptage de photons. Les images peuvent alors bénéficier d’un post-traitement de
restauration fondé sur la déconvolution. Le problème à traiter est l’estimation simultanée
de la distribution 3D de l’échantillon des sources fluorescentes et de la PSF du microscope
(i.e. de déconvolution aveugle). En utilisant un modèle de processus physique
d’acquisition d’images microscopiques (CLSM), on réduit le nombre de paramètres libres
décrivant la PSF et on introduit des contraintes. On introduit aussi des connaissances a
priori sur l’échantillon ce qui permet de stabiliser le processus d’estimation et de favoriser
la convergence. Des expériences sur des données synthétiques montrent que la PSF peut
être estimée avec précision. Des expériences sur des données réelles montrent de bons
resultats de déconvolution en comparaison avec le modèle théorique de la PSF du microscope. |
Abstract :
We propose a method for the iterative restoration of fluorescence Confocal Laser Scanning Microscope (CLSM) images with parametric estimation of the acquisition system’s Point Spread Function (PSF). The CLSM is an optical fluorescence microscope that scans a specimen in 3D and uses a pinhole to reject most of the out-of-focus light. However, the quality of the image suffers from two primary physical limitations. The first is due to the diffraction-limited nature of the optical system and the second is due to the reduced amount of light detected by the photomultiplier tube (PMT). These limitations cause blur and photon counting noise respectively. The images can hence benefit from post-processing restoration methods based on deconvolution. An efficient method for parametric blind image deconvolution involves the simultaneous estimation of the specimen 3D distribution of fluorescent sources and the microscope PSF. By using a model for the microscope image acquisition physical process, we reduce the number of free parameters describing the PSF and introduce constraints. The parameters of the PSF may vary during the course of experimentation, and so they have to be estimated directly from the observation data. We also introduce a priori knowledge of the specimen that permits stabilization of the estimation process and favorizes the convergence. Experiments on simulated data show that the PSF could be estimatedwith a higher degree of accuracy and those done on real data show very good deconvolution results in comparison to the theoretical microscope PSF model. |
|
13 - On the illumination invariance of the level lines under directed light. Application to change detection. P. Weiss et A. Fournier et L. Blanc-Féraud et G. Aubert. Rapport de Recherche 6612, INRIA, 2008. Mots-clés : Level Lines, illumination invariance, topographic map, Change detection, remote sensing, Zones urbaines. Copyright :
@TECHREPORT{RR-6612,
|
author |
= |
{Weiss, P. and Fournier, A. and Blanc-Féraud, L. and Aubert, G.}, |
title |
= |
{On the illumination invariance of the level lines under directed light. Application to change detection}, |
year |
= |
{2008}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6612}, |
url |
= |
{https://hal.archives-ouvertes.fr/inria-00310383}, |
pdf |
= |
{http://hal.inria.fr/docs/00/31/03/83/PDF/RR-6612.pdf}, |
keyword |
= |
{Level Lines, illumination invariance, topographic map, Change detection, remote sensing, Zones urbaines} |
} |
Abstract :
We analyze the illumination invariance of the level lines of an image. We show that if the scene surface has Lambertian reflectance and the light is directed, then a necessary condition for the level lines to be illumination invariant is that the 3D scene be developable and that its albedo satisfies some geometrical constraints. We then show that the level lines are ``almost'' invariant for piecewise developable surfaces. Such surfaces fit most of the urban structures. In a second part, this allows us to devise a very fast algorithm that detects changes between pairs of remotely sensed images of urban areas, independently of the lighting conditions. We show the effectiveness of the algorithm both on synthetic OpenGL scenes and real Quickbird images. We compare the efficiency of the proposed algorithm with other classical approaches and show that it is superior both in practice and in theory. |
|
14 - Reconstruction d'images satellitaires à partir d'un échantillonnage irrégulier. M. Carlavan et P. Weiss et L. Blanc-Féraud et J. Zerubia. Rapport de Recherche 6732, INRIA, 2008. Mots-clés : l1 norm, nesterov scheme, total variation minimization, wavelet. Copyright :
@TECHREPORT{RR-6732,
|
author |
= |
{Carlavan, M. and Weiss, P. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Reconstruction d'images satellitaires à partir d'un échantillonnage irrégulier}, |
year |
= |
{2008}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6732}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00340975/fr/}, |
pdf |
= |
{http://hal.inria.fr/docs/00/34/09/75/PDF/RR-6732.pdf}, |
keyword |
= |
{l1 norm, nesterov scheme, total variation minimization, wavelet} |
} |
|
15 - Support Vector Machines for burnt area discrimination. O. Zammit et X. Descombes et J. Zerubia. Rapport de Recherche 6343, INRIA, novembre 2007. Mots-clés : Feux de foret, Zones brûlées, Imagerie satellitaire, Support Vector Machines, Classification.
@TECHREPORT{zammit_RR_07,
|
author |
= |
{Zammit, O. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Support Vector Machines for burnt area discrimination}, |
year |
= |
{2007}, |
month |
= |
{novembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6343}, |
url |
= |
{http://hal.inria.fr/inria-00185101/fr/}, |
pdf |
= |
{http://hal.inria.fr/inria-00185101/fr/}, |
keyword |
= |
{Feux de foret, Zones brûlées, Imagerie satellitaire, Support Vector Machines, Classification} |
} |
Résumé :
Ce rapport aborde le problème de l'évaluation des dégâts après un feux de forêt. La détection est effectuée à partir d'une seule image satellite (SPOT 5) acquise après le feu. Afin de détecter les zones brûlées, nous utilisons une approche récente de classification nommée SVM (Séparateurs à Vaste Marge). Cette méthode est comparée aux algorithmes de classification plus conventionnels comme les K-moyennes ou les K-plus proches voisins, qui sont régulièrement utilisés en traitement d'image. Nous proposons également une méthode de classification non supervisée combinant les K-moyennes et les SVM. Les résultats fournis par les différentes techniques sont comparés à des vérités de terrain sur diverses zones brûlées. |
Abstract :
This report addresses the problem of burnt area discrimination using remote sensing images. The detection is based on a single post-fire image acquired by SPOT 5 satellite. To delineate the burnt areas, we use a recent classification method called Support Vectors Machines (SVM). This approach is compared to more conventional classifiers such as K-means or K-nearest neighbours which are widely used in image processing. We also proposed a new automatic classification approach combining K-means and SVM. The results given by the different methods are finally compared to ground truths on various burnt areas |
|
16 - Détection de flamants roses par processus ponctuels marqués pour l'estimation de la taille des populations. S. Descamps et X. Descombes et A. Béchet et J. Zerubia. Research Report 6328, INRIA, octobre 2007. Mots-clés : Extraction d'objets, modélisation stochastique , Processus ponctuels marques, dynamique de naissance/mort, environnement, flamants roses.
@TECHREPORT{Descamps-Descombes,
|
author |
= |
{Descamps, S. and Descombes, X. and Béchet, A. and Zerubia, J.}, |
title |
= |
{Détection de flamants roses par processus ponctuels marqués pour l'estimation de la taille des populations}, |
year |
= |
{2007}, |
month |
= |
{octobre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6328}, |
url |
= |
{http://hal.inria.fr/inria-00180811}, |
pdf |
= |
{http://hal.inria.fr/docs/00/18/08/93/PDF/RR-Desc-Desc-Bech-Zeru.pdf}, |
keyword |
= |
{Extraction d'objets, modélisation stochastique , Processus ponctuels marques, dynamique de naissance/mort, environnement, flamants roses} |
} |
|
17 - An adaptive simulated annealing cooling schedule for object detection in images. M. Ortner et X. Descombes et J. Zerubia. Rapport de Recherche 6336, INRIA, octobre 2007. Mots-clés : Traitement d'image, Shape extraction, Spatial point process, Recuit Simule, Adaptive cooling schedule.
@TECHREPORT{Ortner-Descombes,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{An adaptive simulated annealing cooling schedule for object detection in images}, |
year |
= |
{2007}, |
month |
= |
{octobre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6336}, |
url |
= |
{https://hal.inria.fr/inria-00181764}, |
pdf |
= |
{https://hal.inria.fr/inria-00181764}, |
keyword |
= |
{Traitement d'image, Shape extraction, Spatial point process, Recuit Simule, Adaptive cooling schedule} |
} |
|
18 - Efficient schemes for total variation minimization under constraints in image processing. P. Weiss et L. Blanc-Féraud et G. Aubert. Rapport de Recherche 6260, INRIA, juillet 2007. Mots-clés : l1 norm, total variation minimization, duality lp norms, gradient and subgradient descent, nesterov scheme, texture + geometry decomposition.
@TECHREPORT{RR-6260,
|
author |
= |
{Weiss, P. and Blanc-Féraud, L. and Aubert, G.}, |
title |
= |
{Efficient schemes for total variation minimization under constraints in image processing}, |
year |
= |
{2007}, |
month |
= |
{juillet}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6260}, |
url |
= |
{http://hal.inria.fr/inria-00166096/fr/}, |
pdf |
= |
{http://hal.inria.fr/docs/00/26/16/35/PDF/RR-6260.pdf}, |
ps |
= |
{http://hal.inria.fr/docs/00/26/16/35/PS/RR-6260.ps}, |
keyword |
= |
{l1 norm, total variation minimization, duality lp norms, gradient and subgradient descent, nesterov scheme, texture + geometry decomposition} |
} |
Résumé :
Ce papier présente de nouveaux algorithmes pour minimiser la variation totale, et plus généralement des normes l^1, sous des contraintes convexes. Ces algorithmes proviennent d'une avancée récente en optimisation convexe proposée par Yurii Nesterov. Suivant la régularité de l'attache aux données, nous résolvons soit un problème primal, soit un problème dual. Premièrement, nous montrons que les schémas standard de premier ordre permettent d'obtenir des solutions de précision epsilon en O(frac1epsilon^2) itérations au pire des cas. Pour une contrainte convexe quelconque, nous proposons un schéma qui permet d'obtenir une solution de précision epsilon en O(frac1epsilon) itérations. Pour une contrainte fortement convexe, nous résolvons un problème dual avec un schéma qui demande O(frac1sqrtepsilon) itérations pour obtenir une solution de précision epsilon. Suivant la contrainte, nous gagnons donc un à deux ordres dans la rapidité de convergence par rapport à des approches standard. Finalement, nous faisons quelques expériences numériques qui confirment les résultats théoriques sur de nombreux problèmes. |
Abstract :
This paper presents new algorithms to minimize total variation and more generally l^1-norms under a general convex constraint. The algorithms are based on a recent advance in convex optimization proposed by Yurii Nesterov citeNESTEROV. Depending on the regularity of the data fidelity term, we solve either a primal problem, either a dual problem. First we show that standard first order schemes allow to get solutions of precision epsilon in O(frac1epsilon^2) iterations at worst. For a general convex constraint, we propose a scheme that allows to obtain a solution of precision epsilon in O(frac1epsilon) iterations. For a strongly convex constraint, we solve a dual problem with a scheme that requires O(frac1sqrtepsilon) iterations to get a solution of precision epsilon. Thus, depending on the regularity of the data term, we gain from one to two orders of magnitude in the convergence rates with respect to standard schemes. Finally we perform some numerical experiments which confirm the theoretical results on various problems. |
|
19 - A Three-layer MRF model for Object Motion Detection in Airborne Images. C. Benedek et T. Szirányi et Z. Kato et J. Zerubia. Rapport de Recherche 6208, INRIA, juin 2007. Mots-clés : Aerial images, Change detection, Camera motion, MRF.
@TECHREPORT{benedek_INRIARR07,
|
author |
= |
{Benedek, C. and Szirányi, T. and Kato, Z. and Zerubia, J.}, |
title |
= |
{A Three-layer MRF model for Object Motion Detection in Airborne Images}, |
year |
= |
{2007}, |
month |
= |
{juin}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6208}, |
url |
= |
{https://hal.inria.fr/inria-00150805}, |
pdf |
= |
{https://hal.inria.fr/inria-00150805}, |
keyword |
= |
{Aerial images, Change detection, Camera motion, MRF} |
} |
|
20 - Object extraction using a stochastic birth-and-death dynamics in continuum. X. Descombes et R. Minlos et E. Zhizhina. Rapport de Recherche 6135, INRIA, 2007. Mots-clés : birth and death process, Stochastic modeling, Ondelettes.
@TECHREPORT{RR-6135,
|
author |
= |
{Descombes, X. and Minlos, R. and Zhizhina, E.}, |
title |
= |
{Object extraction using a stochastic birth-and-death dynamics in continuum}, |
year |
= |
{2007}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6135}, |
url |
= |
{https://hal.inria.fr/inria-00133726}, |
pdf |
= |
{http://hal.inria.fr/inria-00133726}, |
keyword |
= |
{birth and death process, Stochastic modeling, Ondelettes} |
} |
Abstract :
We define a new birth and death dynamics dealing with configurations of discs in the plane. We prove the convergence of the continuous process and propose a discrete scheme converging to the continuous case. This framework is developed to address image processing problems consisting in extracting objects. The derived algorithm is applied for tree crown extraction and bird detection from aerial images. The performance of this approach is shown on real data. |
|
21 - Hierarchical finite-state modeling for texture segmentation with application to forest classification. G. Scarpa et M. Haindl et J. Zerubia. Research Report 6066, INRIA, INRIA, France, décembre 2006. Mots-clés : Texture, Segmentation, Co-occurrence matrix, Approche structurelle, MCMC, Synthesis.
@TECHREPORT{scarparr06,
|
author |
= |
{Scarpa, G. and Haindl, M. and Zerubia, J.}, |
title |
= |
{Hierarchical finite-state modeling for texture segmentation with application to forest classification}, |
year |
= |
{2006}, |
month |
= |
{décembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6066}, |
address |
= |
{INRIA, France}, |
url |
= |
{https://hal.inria.fr/inria-00118420}, |
keyword |
= |
{Texture, Segmentation, Co-occurrence matrix, Approche structurelle, MCMC, Synthesis} |
} |
Abstract :
In this research report we present a new model for texture representation which is particularly well suited for image analysis and segmentation. Any image is first discretized and then a hierarchical finite-state region-based model is automatically coupled with the data by means of a sequential optimization scheme, namely the Texture Fragmentation and Reconstruction (TFR) algorithm. The TFR algorithm allows to model both intra- and inter-texture interactions, and eventually addresses the segmentation task in a completely unsupervised manner. Moreover, it provides a hierarchical output, as the user may decide the scale at which the segmentation has to be given. Tests were carried out on both natural texture mosaics provided by the Prague Texture Segmentation Datagenerator Benchmark and remote-sensing data of forest areas provided by the French National Forest Inventory (IFN). |
|
22 - A higher-order active contour model of a `gas of circles' and its application to tree crown extraction. P. Horvath et I. H. Jermyn et Z. Kato et J. Zerubia. Research Report 6026, INRIA, France, novembre 2006. Mots-clés : Extraction de Houppiers, Aerial images, Ordre superieur, Contour actif, Gaz de cercles, Forme.
@TECHREPORT{Horvath05,
|
author |
= |
{Horvath, P. and Jermyn, I. H. and Kato, Z. and Zerubia, J.}, |
title |
= |
{A higher-order active contour model of a `gas of circles' and its application to tree crown extraction}, |
year |
= |
{2006}, |
month |
= |
{novembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6026}, |
address |
= |
{France}, |
url |
= |
{http://hal.inria.fr/inria-00115631}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_Horvath05.pdf}, |
keyword |
= |
{Extraction de Houppiers, Aerial images, Ordre superieur, Contour actif, Gaz de cercles, Forme} |
} |
Abstract :
Many image processing problems involve identifying the region in the image domain occupied by a given entity in the scene. Automatic solution of these problems requires models that incorporate significant prior knowledge about the shape of the region. Many methods for including such knowledge run into difficulties when the topology of the region is unknown a priori, for example when the entity is composed of an unknown number of similar objects. Higher-order active contours (HOACs) represent one method for the modelling of non-trivial prior knowledge about shape without necessarily constraining region topology, via the inclusion of non-local interactions between region boundary points in the energy defining the model. The case of an unknown number of circular objects arises in a number of domains, \eg medical, biological, nanotechnological, and remote sensing imagery. Regions composed of an a priori unknown number of circles may be referred to as a `gas of circles'. In this report, we present a HOAC model of a `gas of circles'. In order to guarantee stable circles, we conduct a stability analysis via a functional Taylor expansion of the HOAC energy around a circular shape. This analysis fixes one of the model parameters in terms of the others and constrains the rest. In conjunction with a suitable likelihood energy, we apply the model to the extraction of tree crowns from aerial imagery, and show that the new model outperforms other techniques. |
|
23 - A structural approach for 3D building reconstruction. F. Lafarge et X. Descombes et J. Zerubia et M. Pierrot-Deseilligny. Research Report 6048, INRIA, novembre 2006. Mots-clés : Reconstruction en 3D, Approche structurelle, Building, RJMCMC, Viterbi.
@TECHREPORT{Lafarge_rr_6048,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{A structural approach for 3D building reconstruction}, |
year |
= |
{2006}, |
month |
= |
{novembre}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6048}, |
url |
= |
{https://hal.inria.fr/inria-00114338}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_Lafarge_rr_6048.pdf}, |
keyword |
= |
{Reconstruction en 3D, Approche structurelle, Building, RJMCMC, Viterbi} |
} |
|
haut de la page
Ces pages sont générées par
|