|
Publications about Regularization
Result of the query in the list of publications :
Article |
1 - Régularité et parcimonie pour les problèmes inverses en imagerie : algorithmes et comparaisons. M. Carlavan and P. Weiss and L. Blanc-Féraud. Traitement du Signal, 27(2): pages 189-219, September 2010. Keywords : Inverse Problems, Regularization, Total variation, Wavelets.
@ARTICLE{TSCarlavan2010,
|
author |
= |
{Carlavan, M. and Weiss, P. and Blanc-Féraud, L.}, |
title |
= |
{Régularité et parcimonie pour les problèmes inverses en imagerie : algorithmes et comparaisons}, |
year |
= |
{2010}, |
month |
= |
{September}, |
journal |
= |
{Traitement du Signal}, |
volume |
= |
{27}, |
number |
= |
{2}, |
pages |
= |
{189-219}, |
url |
= |
{http://hal.inria.fr/inria-00503050/fr/}, |
pdf |
= |
{http://www.math.univ-toulouse.fr/~weiss/Publis/TS_Carlavan_Weiss_BlancFeraud_2010.pdf}, |
keyword |
= |
{Inverse Problems, Regularization, Total variation, Wavelets} |
} |
Résumé :
Dans cet article, nous nous intéressons à la régularisation de problèmes inverses reposant sur des critères l1 . Nous séparons ces critères en deux catégories : ceux qui favorisent la régularisation des signaux (à variation totale bornée par exemple) et ceux qui expriment le fait qu'un signal admet une représentation parcimonieuse dans un dictionnaire. Dans une première partie, nous donnons quelques éléments de comparaisons théoriques et pratiques sur les deux a priori, pour aider le lecteur à choisir l'un ou l'autre en fonction de son problème. Pour cette étude, nous utilisons les transformées communément utilisées telles que la variation totale, les ondelettes redondantes ou les curvelets. Dans une deuxième partie, nous proposons un état des lieux des algorithmes de premier ordre adaptés à la minimisation de ces critères. |
|
top of the page
PhD Thesis and Habilitation |
1 - Sur quelques Problèmes Inverses en Traitement d'Image. L. Blanc-Féraud. Habilitation à diriger des Recherches, Universite de Nice Sophia Antipolis, July 2000. Keywords : Partial differential equation, Restoration, Regularization, Gamma Convergence, Variational methods.
@PHDTHESIS{lbf,
|
author |
= |
{Blanc-Féraud, L.}, |
title |
= |
{Sur quelques Problèmes Inverses en Traitement d'Image}, |
year |
= |
{2000}, |
month |
= |
{July}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
type |
= |
{Habilitation à diriger des Recherches}, |
pdf |
= |
{Theses/hdr-blancf-2000.pdf}, |
keyword |
= |
{Partial differential equation, Restoration, Regularization, Gamma Convergence, Variational methods} |
} |
Résumé :
Après une présentation générale des problèmes inverses mal posés en imagerie, les méthodes de régularisation linéaires puis non linéaires sont présentées. La préservation des discontinuités (contours d'une image) est abordée conjointement selon 3 approches: stochastique, variationnelle et EDP. Des résultats sont montrés sur plusieurs applications dont la restauration d'image optique satellitaire, la reconstruction SPECT 2D et 3D en imagerie médicale, la diffraction inverse en imagerie microonde. Nous faisons ensuite le lien entre régularisation et segmentation dans l'approche variationnelle initialement introduite par Munford et Shah. Deux modèles ont été proposé pour approcher numériquement les discontinuités dans le cadre de la régularisation : par suite de fonctionnelles "Gamma-convergentes" et par ensemble de niveaux. Après avoir considéré l'exemple de la restauration d'image, nous avons aussi développé ces deux approches pour le problème de la classification d'image satelllitaire. Enfin, le problème de l'estimation des paramètres des fonctionnnelles est abordée et une méthode d'estimation stochastique est proposée dans le cadre de la restauration d'image floue en optique satellitaire. mots cles : methodes variationelles, diffusion (EDP), problemes inverses, regularisation, discontinuites, segmentation d'image, fonctionnelle de Mumford et Shah, Gamma-convergence, ensembles de niveaux, contours actifs, estimation de parametres, methodes MCMC, restauration d'image, classification d'image, reconstruction SPECT, diffraction inverse en imagerie micro-onde. |
Abstract :
We first describe ill-posed inverse problems in image processing, linear and nonlinear regularisation methods. Discontinuity preservation (edges of the image) is jointly presented following three approaches : stochastic, variational and by diffusion process (solving PDE's). Results are shown on several applications such as optical satellite image restoration, 2D and 3D SPECT reconstruction in medical images, inverse diffraction in microwavimages. Then we rely regularisation and segmentation problem in the variational approach as introduced by Mumford and Shah. Tow models have been proposed in order to numerically compute discontinuities in such models : by minimizing sequence of functionals which "Gamma-converge", and by using level sets models. After considering the restoration case, we have developped such methods for the problem of supervised image classification. Finally we have considered the parameter estimation problem for such fonctionnals and we describe a stochastic estimation method for the problem of satellite image restoration. Key-words : variational methods, diffusion (PDE), inverse problems, regularisation, discontinuities, image segmentation, Mumford and Shah functional, Gamma-convergence, level set methods, active contours, parameter estimation, MCMC methods, image restoration, supervised image classification, SPECT reconstruction, inverse diffraction in microwave images. |
|
top of the page
3 Technical and Research Reports |
1 - Gamma-Convergence of Discrete Functionals with non Convex Perturbation for Image Classification. G. Aubert and L. Blanc-Féraud and R. March. Research Report 4560, Inria, France, September 2002. Keywords : Generalised Gaussians, Classification, Regularization.
@TECHREPORT{4560,
|
author |
= |
{Aubert, G. and Blanc-Féraud, L. and March, R.}, |
title |
= |
{Gamma-Convergence of Discrete Functionals with non Convex Perturbation for Image Classification}, |
year |
= |
{2002}, |
month |
= |
{September}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4560}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00072028}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72028/filename/RR-4560.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/20/28/PS/RR-4560.ps}, |
keyword |
= |
{Generalised Gaussians, Classification, Regularization} |
} |
Résumé :
Ce rapport contient la justification mathématique du modèle variationnel proposé en traitement d'image pour la classification supervisée. A partir des travaux effectués en mécanique des fluides pour les transitions de phase, nous avons développé un modèle de classification par minimisation d'une suite de fonctionnelles. Le résultat est une image de classes formée de régions homogènes séparées par des contours réguliers. Ce modèle diffère de ceux utilisés en mécanique des fluides car la perturbation utilisée n'est pas quadratique mais correspond à une fonction de régularisation d'image préservant les contours. La gamma-convergence de cette nouvelle suite de fonctionnelles est prouvée. |
Abstract :
The purpose of this report is to show the theoretical soundness of a variation- al method proposed in image processing for supervised classification. Based on works developed for phase transitions in fluid mechanics, the classification is obtained by minimizing a sequence of functionals. The method provides an image composed of homogeneous regions with regular boundaries, a region being defined as a set of pixels belonging to the same class. In this paper, we show the gamma-convergence of the sequence of functionals which differ from the ones proposed in fluid mechanics in the sense that the perturbation term is not quadratic but has a finite asymptote at infinity, corresponding to an edge preserving regularization term in image processing. |
|
2 - Adaptive parameter estimation for satellite image deconvolution. A. Jalobeanu and L. Blanc-Féraud and J. Zerubia. Research Report 3956, Inria, June 2000. Keywords : Deconvolution, Regularization, Markov Fields, Likelihood maximum.
@TECHREPORT{jalo00a,
|
author |
= |
{Jalobeanu, A. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Adaptive parameter estimation for satellite image deconvolution}, |
year |
= |
{2000}, |
month |
= |
{June}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3956}, |
url |
= |
{https://hal.inria.fr/inria-00072693}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72693/filename/RR-3956.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/26/93/PS/RR-3956.ps}, |
keyword |
= |
{Deconvolution, Regularization, Markov Fields, Likelihood maximum} |
} |
Résumé :
La déconvolution des images satellitaires floues et bruitées est un problème inverse mal posé, qui peut être régularisé dans un cadre bayésien par l'utilisation d'un modèle a priori de la solution reconstruite. Les modèles de régularisation homogènes ne permettent pas d'obtenir des résultats parfaitement satisfaisants, car les images satellitaires ont des propriétés qui varient spatialement. Nous proposons d'utiliser un modèle inhomogène, et nous étudions différentes méthodes permettant d'estimer les paramètres adaptatifs. L'estimateur que nous avons retenu est le maximum de vraisemblance (MV). Nous montrons que cet estimateur, lorsqu'il est calculé à partir de l'image dégradée, est inutilisable pour la déconvolution d'images, car il n'est pas robuste au bruit. Nous montrons ensuite que l'estimation n'est correcte que si elle est effectuée sur l'image originale. Comme cette image est inconnue, nous devons en calculer une approximation, dont la qualité doit être suffisante pour que les résultats de l'estimation soient utiles pour la restauration. Nous détaillons finalement une méthode hybride, permettant d'estimer les paramètres adaptatifs à partir d'une image déconvoluée par un algorithme utilisant des ondelettes, afin de reconstruire l'image. Les résultats obtenus présentent à la fois des bords francs, des textures nettes, et un très bon rapport signal/bruit dans les zones homogènes, dans la mesure où la technique proposée s'adapte localement aux caractéristiques des données. Une comparaison avec des algorithmes concurrents linéaires et non linéaires est aussi effectuée, pour illustrer son efficacité. |
Abstract :
The deconvolution of blurred and noisy satellite images is an ill-posed inverse problem, which can be regularized within a Bayesian context by using an a priori model of the reconstructed solution. Homogeneous regularizat- ion models do not provide sufficiently satisfactory results, since real satellite data show spatially variant characteristics. We propose here to use an inhomogeneous model, and we study different methods to estimate its space-variant parameters. The chosen estimator is the Maximum Likelihood (ML). We show that this estimator, when computed on the corrupted image, is not suitable for image deconvolution, because it is not robust to noise. Then we show that the estimation is correct only if it is made from the original image. Since this image is unknown, we need to compute an approximati- on of sufficiently good quality to provide useful estimation results. Finally we detail an hybrid method used to estimate the space-variant parameters from an image deconvolved by a wavelet-based algorithm, in order to reconstruct the image. The obtained results simultaneously exhibit sharp edges, correctly restored textures and a high SNR in homogeneous areas, since the proposed technique adapts to the local characteristics of the data. A comparison with linear and non-linear concurrent algorithms is also presented to illustrate the efficiency of the proposed method. |
|
3 - Estimation d'hyperparamètres pour la restauration d'images satellitaires par une méthode MCMCML. A. Jalobeanu and L. Blanc-Féraud and J. Zerubia. Research Report 3469, Inria, August 1998. Keywords : Markov Fields, Regularization, Variational methods, Likelihood maximum.
@TECHREPORT{jaloRR98,
|
author |
= |
{Jalobeanu, A. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Estimation d'hyperparamètres pour la restauration d'images satellitaires par une méthode MCMCML}, |
year |
= |
{1998}, |
month |
= |
{August}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3469}, |
url |
= |
{https://hal.inria.fr/inria-00073221}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/73221/filename/RR-3469.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/32/21/PS/RR-3469.ps}, |
keyword |
= |
{Markov Fields, Regularization, Variational methods, Likelihood maximum} |
} |
Résumé :
Le problème que nous abordons ici est la déconvolution d'images satellitaires, qui sont dégradées par l'optique et l'électronique utilisées pour leur acquisition. Les dégradations sont connues : les images sont convoluées par un opérateur H, et la variance du bruit N additif, blanc et gaussien, est connue. Nous utilisons un modèle de régularisation introduisant une fonction de potentiel phi, qui interdit l'amplification du bruit lors de la restauration tout en préservant les discontinuités. Ce modèle admet deux hyperparamètres lambda et delta. Nous nous intéressons ici à l'estimation des hyperparamètres optimaux afin d'effectuer la déconvolution de manière automatique. Nous proposons pour cela d'utiliser l'estimateur du maximum de vraisemblance appliqué à l'image observée. Cet estimateur constitue le critère que nous allons optimiser. Pour évaluer ses dérivées, nous devons estimer des espérances calculées sur des échantillon- s, tenant compte des données observées et de l'a priori imposé. Cette probabilité faisant intervenir l'opérateur de convolution, il est très difficile d'utiliser un échantillonneur classique. Nous avons développé un algorithme de type Geman-Yang modifié, utilisant une variable auxiliaire, ainsi qu'une transformée en cosinus. Nous présentons à cette occasion un nouvel algorithme de déconvolution, rapide, qui est dérivé de cette méthode d'échantillonnage. Nous proposons un algorithme "MCMCML" permettant d'effectuer simultanément l'estimation des hyperparamètres lambda et delta et la restauration de l'image dégradée. Une étude des échantillonneurs (y compris ceux de Gibbs et Metropolis), portant sur la vitesse de convergence et les difficultés de calcul liées à l'attache aux données, a également été réalisée. |
Abstract :
This report deals with satellite image restoration. These images are corrupted by an optical blur and electronic noise, due to the physics of the sensors. The degradation model is known : blurring is modeled by convolution, with a linear operator H, and the noise is supposed to be additive, white and Gaussian, with a known variance. The recovery problem is ill-posed and therefore must be regularized. We use a regularization model which introduces a phi function, which avoids noise amplification while preserving image discontinuities (ie. edges) of the restored image. This model exhibits two hyperparameters (lambda and delta). Our goal is to estimate the optimal parameters in order to reconstruct images automatically. Herein, we propose to use the Maximum Likelihood estimator, applied to the observed image. To optimize this criterion, we must estimate expectations by sampling (samples are extracted from a Markov chain) to evaluate its derivatives. These samples are images whose probability takes into account the convolution operator. Thus, it is very difficult to obtain them directly by using a standard sampler. We have developped a modified Geman-Yang algorithm, using an auxiliary variable and a cosine transform. We also present a new reconstruc- tion method based on this sampling algorithm. We detail the MCMCML algorithm which ables to simultaneously estimate lambda and delta parameters, and to reconstruct the corrupted image. An experimental study of samplers (including Gibbs and Metropolis algorithms), with respect to the rate of convergence and the difficulties of dependent data sampling, is also presented in this report. |
|
top of the page
These pages were generated by
|