|
Publications about Sobolev space
Result of the query in the list of publications :
PhD Thesis and Habilitation |
1 - Contribution à l'Analyse de Textures en Traitement d'Images par Méthodes Variationnelles et Equations aux Dérivées Partielles. J.F. Aujol. PhD Thesis, Universite de Nice Sophia Antipolis, June 2004. Keywords : Image decomposition, Classification, Restoration, Fonctional analysis, Bounded Variation Space, Sobolev space.
@PHDTHESIS{JFAujol,
|
author |
= |
{Aujol, J.F.}, |
title |
= |
{Contribution à l'Analyse de Textures en Traitement d'Images par Méthodes Variationnelles et Equations aux Dérivées Partielles}, |
year |
= |
{2004}, |
month |
= |
{June}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
url |
= |
{https://hal.inria.fr/tel-00006303}, |
pdf |
= |
{http://hal.inria.fr/docs/00/04/68/89/PDF/tel-00006303.pdf}, |
keyword |
= |
{Image decomposition, Classification, Restoration, Fonctional analysis, Bounded Variation Space, Sobolev space} |
} |
Résumé :
Cette thèse est un travail en mathématiques appliquées. Elle aborde quelques problèmes en analyse d'images et utilise des outils mathématiques spécifiques.
L'objectif des deux premières parties de cette thèse est de proposer un modèle pour décomposer une image f'en trois composantes : f=u+v+w. Notre approche repose sur l'utilisation d'espaces mathématiques adaptés à chaque composante: l'espace BV des fonctions à variations bornées pour u, un espace G'proche du dual de BV pour les textures, et un espace de Besov d'exposant négatif E'pour le bruit. Nous effectuons l'étude mathématique complète des différents modèles que nous proposons. Nous illustrons notre approche par de nombreux exemples.Dans la troisième et dernière partie de cette thèse, nous nous intéressons spécifiquement à la composante texturée. Nous proposons un algorithme de classification supervisée pour les images texturées. |
Abstract :
This Ph.D. thesis is a work in applied mathematics. It deals with image processing problems, and uses specific mathematical tools.
The aim of the two first parts is to propose a model for decomposing an image f'into three components : f=u+v+w. Our approach relies on the use of mathematical spaces adapted to each component : the space BV of functions with bounded variations for u, a space G'close to the dual space of BV for v, and a negative Besov space E'for w. We carry out the complete mathematical analysis of the different models we propose. We illustrate our approach with many numerical examples. In the third and last part, we only deal with the texture component of an image. We propose a supervised classification algorithm for textured images. |
|
top of the page
2 Technical and Research Reports |
1 - Modeling very Oscillating Signals : Application to Image Processing. G. Aubert and J.F. Aujol. Research Report 4878, INRIA, France, July 2003. Keywords : Bounded Variation Space, Sobolev space, Image decomposition, Optimization, Partial differential equation.
@TECHREPORT{4878,
|
author |
= |
{Aubert, G. and Aujol, J.F.}, |
title |
= |
{Modeling very Oscillating Signals : Application to Image Processing}, |
year |
= |
{2003}, |
month |
= |
{July}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{4878}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071705}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71705/filename/RR-4878.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/17/05/PS/RR-4878.ps}, |
keyword |
= |
{Bounded Variation Space, Sobolev space, Image decomposition, Optimization, Partial differential equation} |
} |
Résumé :
Cet article complète le travail présenté dans cite{Aujol[3]} dans lequel nous avions développé l'analyse numérique d'un modéle variationnel, initialement introduit par L. Rudin, S. Osher and E. Fatemi cite{Rudin[1]}, et revisité depuis par Y. Meyer cite{Meyer[1]}, pour supprimer le bruit et isoler les textures dans une image. Dans un tel modèle, on décompose l'image f en deux composantes (u+v), u et v minimisant une énergie. La première composante u appartient à BV et contient l'information géométrique de l'image, alors que la seconde v appartient à un espace G qui contient les signaux à fortes oscillations, i.e. le bruit et les textures. Dans cite{Meyer[1]}, Y. Meyer effectue son étude dans ^2 entier, et son approche repose principalement sur des outils d'analyse harmonique. Nous nous pla ons dans le cas d'un ouvert borné de ^2, ce qui constitue le cadre adapté au traitement d'images, et notre approche repose sur des arguments d'analyse fonctionnelle. Nous définissons l'espace G dans ce cadre puis donnons quelques unes de ses propriétés. Nous étudions ensuite la fonctionnelle permettant de calculer les composantes u et v. |
Abstract :
This article is a companion paper of a previous work cite{Aujol[3]} where we have developed the numerical analysis of a variational model first introduced by L. Rudin, S. Osher and E. Fatemi cite{Rudin[1]} and revisited by Y. Meyer cite{Meyer[1]} for removing the noise and capturing textures in an image. The basic idea in this model is to decompose f into two components (u+v) and then to search for (u,v) as a minimizer of an energy functional. The first component u belongs to BV and contains geometrical informations while the second one v is sought in a space G which contains signals with large oscillations, i.e. noise and textures. In Y. Meyer carried out his study in the whole ^2 and his approach is rather built on harmonic analysis tools. We place ourselves in the case of a bounded set of ^2 which is the proper setting for image processing and our approach is based upon functional analysis arguments. We define in this context the space G, give some of its properties and then study in this continuous setting the energy functional which allows us to recover the components u and v. model signals with strong oscillations. For instance, in an image, this space models noises and textures. case of a bounded open set of ^2 which is the proper setting for image processing. We give a definition of G adapted to our case, and we show that it still has good properties to model signals with strong oscillations. In cite{Meyer[1]}, the author had also paved the way to a new model to decompose an image into two components: one in BV (the space of bounded variations) which contains the geometrical information, and one in G which consists in the noises ad the textures. An algorithm to perform this decomposition has been proposed in cite{Meyer[1]}. We show here its relevance in a continuous setting. |
|
2 - Mathematical Statement to one Dimensional Phase Unwrapping : a Variational Approach. C. Lacombe and G. Aubert and L. Blanc-Féraud. Research Report 4521, Inria, France, July 2002. Keywords : Sobolev space, Bounded Variation Space, Synthetic Aperture Radar (SAR), Interferometry, Phase unwrapping.
@TECHREPORT{4521,
|
author |
= |
{Lacombe, C. and Aubert, G. and Blanc-Féraud, L.}, |
title |
= |
{Mathematical Statement to one Dimensional Phase Unwrapping : a Variational Approach}, |
year |
= |
{2002}, |
month |
= |
{July}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4521}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00072067}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/72067/filename/RR-4521.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/20/67/PS/RR-4521.ps}, |
keyword |
= |
{Sobolev space, Bounded Variation Space, Synthetic Aperture Radar (SAR), Interferometry, Phase unwrapping} |
} |
Résumé :
Beaucoup d'alogorithmes de déroulement de phase ont été développés et formulés dans le domaine discret durant ces dix dernières années. Nous proposons ici, une formulation variationnelle pour résoudre le problème. Cette étude dans le domaine continu va nous permettre d'imposer quelques contraintes sur la régularité de la solution et de les implémenter efficacement. Cette méthode est présentée dans le cas unidimensionnel, et servira de base pour nos développement futurs pour le cas réel en 2D. |
Abstract :
Over the past ten years, many phase unwrapping algorithms have been developed and formulated in a discrete setting. Here we propose a variational formulatio- n to solve the problem. This continuous framework will allow us to impose some constraints on the smoothness of the solution and to implement them efficiently. This method is presented in the one dimensional case, and will serve as a basis for future developments in the real 2D case. |
|
top of the page
These pages were generated by
|