|
Publications about Markov Fields
Result of the query in the list of publications :
2 Articles |
1 - Supervised Segmentation of Remote Sensing Images Based on a Tree-Structure MRF Model. G. Poggi and G. Scarpa and J. Zerubia. IEEE Trans. Geoscience and Remote Sensing, 43(8): pages 1901-1911, August 2005. Keywords : Classification, Segmentation, Markov Fields.
@ARTICLE{ieeetgrs_05,
|
author |
= |
{Poggi, G. and Scarpa, G. and Zerubia, J.}, |
title |
= |
{Supervised Segmentation of Remote Sensing Images Based on a Tree-Structure MRF Model}, |
year |
= |
{2005}, |
month |
= |
{August}, |
journal |
= |
{IEEE Trans. Geoscience and Remote Sensing}, |
volume |
= |
{43}, |
number |
= |
{8}, |
pages |
= |
{1901-1911}, |
pdf |
= |
{http://ieeexplore.ieee.org/iel5/36/32001/01487647.pdf?tp=&arnumber=1487647&isnumber=32001}, |
keyword |
= |
{Classification, Segmentation, Markov Fields} |
} |
|
2 - fMRI Signal Restoration Using an Edge Preserving Spatio-temporal Markov Random Field. X. Descombes and F. Kruggel and Y. von Cramon. NeuroImage, 8: pages 340-349, 1998. Keywords : fMRI, Restoration, Markov Fields. Copyright : published in NeuroIMage by Elsevier
||http://www.elsevier.com/wps/find/homepage.cws_home
@ARTICLE{descombes98d,
|
author |
= |
{Descombes, X. and Kruggel, F. and von Cramon, Y.}, |
title |
= |
{fMRI Signal Restoration Using an Edge Preserving Spatio-temporal Markov Random Field}, |
year |
= |
{1998}, |
journal |
= |
{NeuroImage}, |
volume |
= |
{8}, |
pages |
= |
{340-349}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/1998_descombes98d.pdf}, |
keyword |
= |
{fMRI, Restoration, Markov Fields} |
} |
|
top of the page
3 PhD Thesis and Habilitations |
1 - Méthodes stochastiques en analyse d'image : des champs de Markov aux processus ponctuels marqués. X. Descombes. Habilitation à diriger des Recherches, Universite de Nice Sophia Antipolis, February 2004. Keywords : Markov Fields, Stochastic geometry.
@PHDTHESIS{Xdescombes,
|
author |
= |
{Descombes, X.}, |
title |
= |
{Méthodes stochastiques en analyse d'image : des champs de Markov aux processus ponctuels marqués}, |
year |
= |
{2004}, |
month |
= |
{February}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
type |
= |
{Habilitation à diriger des Recherches}, |
url |
= |
{https://hal.inria.fr/tel-00506084}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/HDRdescombes.pdf}, |
keyword |
= |
{Markov Fields, Stochastic geometry} |
} |
|
2 - Analyse de texture dans l'espace hyperspectral par des méthodes probabilistes. G. Rellier. PhD Thesis, Universite de Nice Sophia Antipolis, November 2002. Keywords : Hyperspectral imaging, Texture, Classification, Markov Fields.
@PHDTHESIS{rellier,
|
author |
= |
{Rellier, G.}, |
title |
= |
{Analyse de texture dans l'espace hyperspectral par des méthodes probabilistes}, |
year |
= |
{2002}, |
month |
= |
{November}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
url |
= |
{https://hal.inria.fr/tel-00505898}, |
keyword |
= |
{Hyperspectral imaging, Texture, Classification, Markov Fields} |
} |
Résumé :
Dans cette thèse, on aborde le problème de l'analyse de texture pour l'étude des zones urbaines. La texture est une notion spatiale désignant ce qui, en dehors de la couleur ou du niveau de gris, caractérise l'homogénéité visuelle d'une zone donnée d'une image. Le but de cette étude est d'établir un modèle qui permette une analyse de texture prenant en compte conjointement l'aspect spatial et l'aspect spectral, à partir d'images hyperspectrales. Ces images sont caractérisées par un nombre de canaux largement supérieur à celui des images multispectrales classiques. On désire tirer parti de l'information spectrale pour améliorer l'analyse spatiale. Les textures sont modélisées par un champ de Markov gaussien vectoriel, qui permet de prendre en compte les relations spatiales entre pixels, mais aussi les relations inter-bandes à l'intérieur d'un même pixel. Ce champ est adapté aux images hyperspectrales par une simplification évitant l'apparition de problèmes d'estimation statistique dans des espaces de grande dimension. Dans le but d'éviter ces problèmes, on effectue également une réduction de dimension des données grâce à un algorithme de poursuite de projection. Cet algorithme permet de déterminer un sous-espace de projection dans lequel une grandeur appelée indice de projection est optimisée. L'indice de projection est défini par rapport à la modélisation de texture proposée, de manière à ce que le sous-espace optimal maximise la distance entre les classes prédéfinies, dans le cadre de la classification. La méthode d'analyse de texture est testée dans le cadre d'une classification supervisée. Pour ce faire, on met au point deux algorithmes que l'on compare avec des algorithmes classiques utilisant ou non l'information de texture. Des tests sont réalisés sur des images hyperspectrales AVIRIS. |
Abstract :
In this work, we investigate the problem of texture analysis of urban areas. Texture is a spatial concept that refers to the visual homogeneity characteristics of an image, not taking into account color or grey level. The aim of this research is to define a model which allows a joint spectral and spatial analysis of texture, and then to apply this model to hyperspectral images. These images many more bands than classical multispectral images. We intend to make use of spectral information and improve simple spatial analysis. Textures are modeled by a vectorial Gauss-Markov random field, which allows us to take into account the spatial interactions between pixels as well as inter-band relationships for a single pixel. This field has been adapted to hyperspectral images by a simplification which avoids statistical estimation problems common to high dimensional spaces. In order to avoid these problems, we also reduce the dimensionality of the data, using a projection pursuit algorithm. This algorithm determines a projection subspace in which an index, called projection index, is optimized. This index is defined in relation to the proposed texture model so that, when a classification is being carried out, the optimal subspace maximizes the distance between predefined training samples. This texture analysis method is tested within a supervised classification framework. For this purpose, we propose two classification algorithms that we compare to two classical algorithms, one which uses texture information and one which does not. Tests are carried out on AVIRIS hyperspectral images. |
|
3 - Analyse de Texture par Méthodes Markoviennes et par Morphologie Mathématique : Application à l'Analyse des Zones Urbaines sur des Images Satellitales. A. Lorette. PhD Thesis, Universite de Nice Sophia Antipolis, September 1999. Keywords : Texture, Segmentation, Markov Fields, Mathematical morphology, Urban areas.
@PHDTHESIS{lorette99,
|
author |
= |
{Lorette, A.}, |
title |
= |
{Analyse de Texture par Méthodes Markoviennes et par Morphologie Mathématique : Application à l'Analyse des Zones Urbaines sur des Images Satellitales}, |
year |
= |
{1999}, |
month |
= |
{September}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
pdf |
= |
{Theses/these-lorette.pdf}, |
keyword |
= |
{Texture, Segmentation, Markov Fields, Mathematical morphology, Urban areas} |
} |
Résumé :
Dans cette thèse, nous nous intéressons au problème de l'analyse urbaine à partir d'images satellitales par des méthodes automatiques ou semi-automatiques issues du traitement d'image. Dans le premier chapitre, nous présentons le contexte dans lequel le travail a été effectué. Nous exposons les types de données utilisées, les approches statistiques considérées. Nous donnons également quelques exemples d'applications qui justifient une telle étude. Enfin, un état de l'art des diverses méthodes d'analyse des textures est présenté. Dans les deux chapitres suivants, nous développons une méthode automatique d'extraction d'un masque urbain à partir d'une analyse de la texture de l'image. Des méthodes d'extraction d'un masque urbain sont décrites. Ensuite, nous définissons plus précisemment les huit modèles markoviens gaussiens fondés sur des chaines. Ces modèles sont renormalisés par une méthode de renormalisation de groupe issue de la physique statistique afin de corriger le biais introduit par l'anisotropie du réseau de pixels. L'analyse de texture proposée est comparée avec deux méthodes classiques: les matrices de cooccurrence et les filtres de Gabor. L'image du paramètre de texture est ensuite classifiée avec un algorithme non supervisé de classification floue fondée sur la définition d'un critère entropique. Les paramètres estimés avec cet algorithme sont intégrés dans un modèle markovien de segmentation. Des résultats d'extraction de masques urbains sont finalement présentés sur des images satellitales optiques SPOT3, des simulations SPOT5, et des images radar ERS1. Dans le quatrième chapitre, nous présentons l'analyse granulométrique utilisée pour analyser le paysage urbain. Les outils et définitions de base de la morphologie mathématique sont exposés. Nous nous intéressons plus particulièrement à l'ouverture par reconstruction qui est utilisée comme transformation de base de la granulométrie. L'étape de quantification qui suit tout étape de transformation nous permet d'estimer en chaque pixel une distribution locale de taille qui est intégrée dans le terme d'attache aux données d'un modèle markovien de segmentation. Des tests sont effectués sur des simulations SPOT5. |
Abstract :
In this thesis, we investigate the problem of urban areas analysis from satellite images by automatic or semi-automatic methods coming from image processing. In the first chapter, we describe the context of this work, i.e. the type of used data, the statistical applied methods. We also give some examples of the applications which require such an analysis. Finally, a study of the existing methods of texture analysis is presented. In the second and third chapter, we develop a non supervised method based on texture analysis in order to extract an urban mask. First a study of the existing methods of urban mask extraction is presented. Second we precisely describe the eight chain-based Gaussian Markovian models used to characterize urban texture. These models are normalized through a renormalization group technique derived from statistical physics in order to correct the bias introduced by the anisotropy of the lattice.The above mentionned method of texture analysis is then compared with two classical ones: coocurrences matrix and Gabor filters. The image is then partitionned by an unsupervised fuzzy Cmeans algorithm based on an entropic criterion. The final segmentation is performed by the minimization of an energy derived from a Markovian model. Some results are presented that are obtained from SPOT3 images, SPOT5 simulations and radar ERS1 images. In the fourth chapter, we present the granulometric approach used to segment within the urban area itself. The basic operations and definitions of mathematical morphology are settled. We are particularly interested in opening by reconstruction operation based on geodesic dilatations. In fact this operation is used to define a granulometry. The quantification step that follows the transformation step consists in estimating a local size distribution function for each pixel. These parameters are then integrated in the data term of a Markovian model. Some results on SPOT5 simulations are presented. |
|
top of the page
3 Conference articles |
1 - Classification bayésienne supervisée d’images RSO de zones urbaines à très haute résolution. A. Voisin and V. Krylov and J. Zerubia. In Proc. GRETSI Symposium on Signal and Image Processing, Bordeaux, September 2011. Keywords : SAR Images, Classification, Urban areas, Markov Fields, Hierarchical models.
@INPROCEEDINGS{VoisinGretsi2011,
|
author |
= |
{Voisin, A. and Krylov, V. and Zerubia, J.}, |
title |
= |
{Classification bayésienne supervisée d’images RSO de zones urbaines à très haute résolution}, |
year |
= |
{2011}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. GRETSI Symposium on Signal and Image Processing}, |
address |
= |
{Bordeaux}, |
url |
= |
{http://hal.inria.fr/inria-00623003/fr/}, |
keyword |
= |
{SAR Images, Classification, Urban areas, Markov Fields, Hierarchical models} |
} |
Résumé :
Ce papier présente un modèle de classification bayésienne supervisée d’images acquises par Radar à Synthèse d’Ouverture (RSO) très haute résolution en polarisation simple contenant des zones urbaines, particulièrement affectées par le bruit de chatoiement. Ce modèle prend en compte à la fois une représentation statistique des images RSO par modèle de mélanges finis et de copules, et une modélisation contextuelle
à partir de champs de Markov hiérarchiques. |
Abstract :
This paper deals with the Bayesian classification of single-polarized very high resolution synthetic aperture radar (SAR) images
that depict urban areas. The difficulty of such a classification relies in the significant effects of speckle noise. The model considered here takes into account both statistical modeling of images via finite mixture models and copulas, and contextual modeling thanks to hierarchical Markov random fields |
|
2 - A comparative study of three methods for identifying individual tree crowns in aerial images covering different types of forests. M. Eriksson and G. Perrin and X. Descombes and J. Zerubia. In Proc. International Society for Photogrammetry and Remote Sensing (ISPRS), Marne La Vallee, France, July 2006. Keywords : Region Growing, Marked point process, Markov Fields, Object extraction, Tree Crown Extraction.
@INPROCEEDINGS{eriksson06a,
|
author |
= |
{Eriksson, M. and Perrin, G. and Descombes, X. and Zerubia, J.}, |
title |
= |
{A comparative study of three methods for identifying individual tree crowns in aerial images covering different types of forests}, |
year |
= |
{2006}, |
month |
= |
{July}, |
booktitle |
= |
{Proc. International Society for Photogrammetry and Remote Sensing (ISPRS)}, |
address |
= |
{Marne La Vallee, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_eriksson06a.pdf}, |
keyword |
= |
{Region Growing, Marked point process, Markov Fields, Object extraction, Tree Crown Extraction} |
} |
Abstract :
Most of today's silviculture methods has the goal to optimise the outcome of the forest in stem volume when it is cut. It might also be relevant to save parts of the forest, for instance, to protect a habitat. In order to get a good survey of the forest, remote sensed images are often used. These images are most often manually interpreted in combination with field measurements in order to estimate the forest parameters that are of importance in the decision how to optimally maintain the forest. Among these parameters the most common are stem number, stem volume, and tree species. Interpretation of images are often labour and time consuming. Thus, automatically developed methods for interpretation can lower the work load and speed up the interpretation time.
The interpretation is often done using images captured from a far distance from the ground in order to capture as large area as possible. However, this lower the accuracy of the estimates since it must be done stand wise. Knowledge of where each individual trees in the forest is located together with its size will increase accuracy. It makes it also possible to plan the cutting in detail. With this knowledge in mind, research about finding automatically methods for finding individual tree crowns in aerial images has been a subject for researchers the last decades.
Today's methods are not capable to alone handle all kind of forests. Therefore, comparative studies of different segmentation methods with different types of forests are of importance in order to clarify how much a method is reliable at a certain type of forest. This knowledge can, for instance, be used to build up an expert system which are supposed to be able to find individual tree crowns in any kind of forests. The comparison is done using images covering different types of forests. The types of forests that are included in the study ranges from isolated tree crown where the ground is clearly visible between the crowns to dense forest which is naturally regenerated via planted forest.
In this study we compare three existing segmentation methods for extracting individual tree crowns from aerial images. The first two methods are probabilistic methods which minimises some energy function while the third is a region growing algorithm. The first probabilistic method is based on a Markov Random Field modelling. We define a prior Markov model to segment the image into three classes (background, vegetation and tree centres). The prior model embed a circular shape model of the tree crown with a random radius. The data term allows to well position the tree centres onto the image and to describe the tree shape as fluctuations around the circular template. Besides, some long range interactions models the relations between the trees locations, such as some periodicity in case of plantations.
The second probabilistic method consists in modeling the trees in the forestry images as random configurations of ellipses or ellipsoids, whose points are the positions of the stems and marks their geometric features. The density of this process embeds a regularization term (prior density), which introduces some interactions between the objects, and a data term, which links the objects to the features to be extracted. We estimate the best configuration of an unknown number of objects, from which 2D and 3D vegetation resource parameters can be extracted. To sample this marked point process, we use Monte Carlo dynamics, while the optimization is performed via a Simulated Annealing algorithm, which results in a fully automatic approach. This approach works well on plantations, where there are high spatial relations between the trees, and on isolated trees where 3D parameters can be extracted, but some difficulties remain in dense areas.
The third method, the region growing algorithm, relies as all region growing methods on good seed points, i.e. in this case approximate locations of the tree crowns. From the seed points the segments are grown according to a grey level value of the neighbouring pixels. The larger the value is the sooner it is connected to the neighbouring segment. The segments stops to grow when all pixels belongs to a segment. This method, contrary the others, will have as a result, segments that have captured the actual shape of the tree crown if the forest is not too sparse. If the forest is too sparse such that the ground is visible, there are problems of finding the seed points. In the cases when the forest is sparse, there are difficulties to separate the tree crowns from the ground. Even if the seed points would be located only at the tree crowns the result will contain a lot of errors since all pixels most belong to a segment, i.e. even the ground pixels must be connected to a segment in this case. |
|
3 - Textural Kernel for SVM Classification in Remote Sensing : Application to Forest Fire Detection and Urban Area Extraction. F. Lafarge and X. Descombes and J. Zerubia. In Proc. IEEE International Conference on Image Processing (ICIP), Genoa, Italy, September 2005. Keywords : Support Vector Machines, Learning base, Markov Fields, Forest fires, Urban areas. Copyright : IEEE
@INPROCEEDINGS{lafarge_icip05,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Textural Kernel for SVM Classification in Remote Sensing : Application to Forest Fire Detection and Urban Area Extraction}, |
year |
= |
{2005}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Genoa, Italy}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2005_lafarge_icip05.pdf}, |
keyword |
= |
{Support Vector Machines, Learning base, Markov Fields, Forest fires, Urban areas} |
} |
|
top of the page
14 Technical and Research Reports |
1 - Tree Crown Extraction using a Three States Markov Random Field. X. Descombes and E. Pechersky. Research Report 5982, INRIA, September 2006. Keywords : Markov Fields, Tree Crown Extraction.
@TECHREPORT{Descombes-Pechersky,
|
author |
= |
{Descombes, X. and Pechersky, E.}, |
title |
= |
{Tree Crown Extraction using a Three States Markov Random Field}, |
year |
= |
{2006}, |
month |
= |
{September}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5982}, |
url |
= |
{https://hal.inria.fr/inria-00097555}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_Descombes-Pechersky.pdf}, |
keyword |
= |
{Markov Fields, Tree Crown Extraction} |
} |
|
2 - Noyaux Texturaux pour les Problèmes de Classification par SVM en Télédétection. F. Lafarge and X. Descombes and J. Zerubia. Research Report 5370, INRIA, France, December 2004. Keywords : Support Vector Machines, Classification, Forest fires, Urban areas, Learning base, Markov Fields.
@TECHREPORT{5370,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Noyaux Texturaux pour les Problèmes de Classification par SVM en Télédétection}, |
year |
= |
{2004}, |
month |
= |
{December}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5370}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070633}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70633/filename/RR-5370.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/06/33/PS/RR-5370.ps}, |
keyword |
= |
{Support Vector Machines, Classification, Forest fires, Urban areas, Learning base, Markov Fields} |
} |
Résumé :
Nous détaillons dans ce rapport la construction de deux noyaux texturaux s'utilisant dans les problèmes de classification par «Support Vector Machines» en télédétection. Les SVM constituent une méthode de classification supervisée particulièrement bien adaptée pour traiter des données de grande dimension telles que les images satellitaires. Par cette méthode, nous souhaitons réaliser l'apprentissage de paramètres qui permettent la différenciation entre deux ensembles de pixels connexes non-identiques. Nous travaillons pour cela sur des fonctions noyaux, fonctions caractérisant une certaine similarité entre deux données. Dans notre cas, cette similarité sera fondée à la fois sur une notion radiométrique et sur une notion texturale. La principale difficulté rencontrée dans cette étude réside dans l'élaboration de paramètres texturaux pertinents qui modélisent au mieux l'homogénéité d'un ensemble de pixels connexes. Nous appliquons les noyaux proposés à deux problèmes de télédétection: la détection de feux de forêt et la détection de zones urbaines à partir d'images satellitaires haute résolusion. |
Abstract :
We present in this report two textural kernels for «Support Vector Machines» classification applied to remote sensing problems. SVMs constitute a method of supervised classification well adapted to deal with data of high dimension, such as images. We would like to learn parameters which allow the differentiation between two sets of connected pixels. We also introduce kernel functions which characterize a notion of similarity between two pieces of data. In our case this similarity is based on a radiometric charateristic and a textural characteristic. The main difficulty is to elaborate textural parameters which are pertinent and characterize as well as possible the homogeneity of a set of connected pixels. We apply this method to remote sensing problems : the detection of forest fires and the extraction of urban areas in high resolution satellite images. |
|
top of the page
These pages were generated by
|