|
Publications about hierarchical Markov random fields
Result of the query in the list of publications :
Technical and Research Report |
1 - Classification of very high resolution SAR images of urban areas. A. Voisin and V. Krylov and G. Moser and S.B. Serpico and J. Zerubia. Rapport de recherche 7758, INRIA, October 2011. Keywords : Synthetic Aperture Radar (SAR) image, Supervised classification, Bayesian, finite mixture models, hierarchical Markov random fields, wavelet.
@TECHREPORT{RR-7758,
|
author |
= |
{Voisin, A. and Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{Classification of very high resolution SAR images of urban areas}, |
year |
= |
{2011}, |
month |
= |
{October}, |
institution |
= |
{INRIA}, |
type |
= |
{Rapport de recherche}, |
number |
= |
{7758}, |
url |
= |
{http://hal.inria.fr/docs/00/63/10/38/PDF/RR-7758.pdf}, |
keyword |
= |
{Synthetic Aperture Radar (SAR) image, Supervised classification, Bayesian, finite mixture models, hierarchical Markov random fields, wavelet} |
} |
Résumé :
Dans le cadre d’une approche face aux risques environnementaux, nous proposons une nouvelle méthode de classification bayésienne supervisée. Celle-ci combine une modélisation statistique des images avec une prise en compte contextuelle via des champs de Markov hiérarchiques. Ce rapport de recherche vise à détailler plus amplement cette modélisation contextuelle, à savoir expliciter le modèle mathématique sur quad-arbre et l’obtention des observations par décomposition en ondelettes de l’image originale. Il met également en exergue certaines modifications apportées en
vue d’améliorer la classification finale. |
Abstract :
In the framework of the assessment of environmental risks, we propose herein a new supervised Bayesian classification method. It combines statistical image modeling with a contextual approach via hierarchical Markov random fields. This research report aims to further focus on this kind of contextual classification approach by detailing both the quad-tree mathematical model and the statistics of the observations, obtained by wavelet transform. We therefore introduce modifications to a classical Markovian single-scale algorithm that lead to more accurate classification results. |
|
top of the page
These pages were generated by
|