|
Publications about Multinomial logistic
Result of the query in the list of publications :
Article |
1 - Unsupervised amplitude and texture classification of SAR images with multinomial latent model. K. Kayabol and J. Zerubia. IEEE Trans. on Image Processing, 22(2): pages 561-572, February 2013. Keywords : COSMOSkyMed, Classification EM, High resolution SAR, Jensen-Shannon criterion, Classification, Multinomial logistic.
@ARTICLE{KorayTIP2013,
|
author |
= |
{Kayabol, K. and Zerubia, J.}, |
title |
= |
{Unsupervised amplitude and texture classification of SAR images with multinomial latent model}, |
year |
= |
{2013}, |
month |
= |
{February}, |
journal |
= |
{IEEE Trans. on Image Processing}, |
volume |
= |
{22}, |
number |
= |
{2}, |
pages |
= |
{561-572}, |
url |
= |
{http://hal.inria.fr/hal-00745387}, |
keyword |
= |
{COSMOSkyMed, Classification EM, High resolution SAR, Jensen-Shannon criterion, Classification, Multinomial logistic} |
} |
|
top of the page
Conference article |
1 - SAR image classification with non- stationary multinomial logistic mixture of amplitude and texture densities. K. Kayabol and A. Voisin and J. Zerubia. In Proc. IEEE International Conference on Image Processing (ICIP), pages 173-176, Brussels, Belgium, September 2011. Keywords : High resolution SAR images, Classification, Texture, Multinomial logistic, Classification EM algorithm.
@INPROCEEDINGS{inria-00592252,
|
author |
= |
{Kayabol, K. and Voisin, A. and Zerubia, J.}, |
title |
= |
{SAR image classification with non- stationary multinomial logistic mixture of amplitude and texture densities}, |
year |
= |
{2011}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
pages |
= |
{173-176}, |
address |
= |
{Brussels, Belgium}, |
url |
= |
{http://hal.inria.fr/inria-00592252/en/}, |
keyword |
= |
{High resolution SAR images, Classification, Texture, Multinomial logistic, Classification EM algorithm} |
} |
Abstract :
We combine both amplitude and texture statistics of the Synthetic Aperture Radar (SAR) images using Products of Experts (PoE) approach for classification purpose. We use Nakagami density to model the class amplitudes. To model the textures of the classes, we exploit a non-Gaussian Markov Random Field (MRF) texture model with t-distributed regression error. Non-stationary Multinomial Logistic (MnL) latent class label model is used as a mixture density to obtain spatially smooth class segments. We perform the classification Expectation-Maximization (CEM) algorithm to estimate the class parameters and classify the pixels. We obtained some classification results of water, land and urban areas in both supervised and semi-supervised cases on TerraSAR-X data. |
|
top of the page
These pages were generated by
|