|
Publications about probability-density-function estimation
Result of the query in the list of publications :
Article |
1 - Enhanced Dictionary-Based SAR Amplitude Distribution Estimation and Its Validation With Very High-Resolution Data. V. Krylov and G. Moser and S.B. Serpico and J. Zerubia. IEEE-Geoscience and Remote Sensing Letters, 8(1): pages 148-152, January 2011. Keywords : finite mixture models, parametric estimation, probability-density-function estimation, Stochastic EM (SEM), synthetic aperture radar. Copyright : IEEE
@ARTICLE{krylovGRSL2011,
|
author |
= |
{Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{Enhanced Dictionary-Based SAR Amplitude Distribution Estimation and Its Validation With Very High-Resolution Data}, |
year |
= |
{2011}, |
month |
= |
{January}, |
journal |
= |
{IEEE-Geoscience and Remote Sensing Letters}, |
volume |
= |
{8}, |
number |
= |
{1}, |
pages |
= |
{148-152}, |
url |
= |
{http://dx.doi.org/10.1109/LGRS.2010.2053517}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/inria-00503893/en/}, |
keyword |
= |
{finite mixture models, parametric estimation, probability-density-function estimation, Stochastic EM (SEM), synthetic aperture radar} |
} |
Abstract :
In this letter, we address the problem of estimating the amplitude probability density function (pdf) of single-channel synthetic aperture radar (SAR) images. A novel flexible method is developed to solve this problem, extending the recently proposed dictionary-based stochastic expectation maximization approach (developed for a medium-resolution SAR) to very high resolution (VHR) satellite imagery, and enhanced by introduction of a novel procedure for estimating the number of mixture components, that permits to reduce appreciably its computational complexity. The specific interest is the estimation of heterogeneous statistics, and the developed method is validated in the case of the VHR SAR imagery, acquired by the last-generation satellite SAR systems, TerraSAR-X and COSMO-SkyMed. This VHR imagery allows the appreciation of various ground materials resulting in highly mixed distributions, thus posing a difficult estimation problem that has not been addressed so far. We also conduct an experimental study of the extended dictionary of state-of-the-art SAR-specific pdf models and consider the dictionary refinements. |
|
top of the page
These pages were generated by
|