|
Publications about Ginzburg-Landau model
Result of the query in the list of publications :
Article |
1 - Detecting codimension-two objects in an image with Ginzburg-Landau models. G. Aubert and J.F. Aujol and L. Blanc-Féraud. International Journal of Computer Vision, 65(1-2): pages 29-42, November 2005. Keywords : Ginzburg-Landau model, Point Detection, Segmentation, PDE, Biological images, SAR Images.
@ARTICLE{laure-ijcv05,
|
author |
= |
{Aubert, G. and Aujol, J.F. and Blanc-Féraud, L.}, |
title |
= |
{Detecting codimension-two objects in an image with Ginzburg-Landau models}, |
year |
= |
{2005}, |
month |
= |
{November}, |
journal |
= |
{International Journal of Computer Vision}, |
volume |
= |
{65}, |
number |
= |
{1-2}, |
pages |
= |
{29-42}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/GL_IJCV_5.pdf}, |
keyword |
= |
{Ginzburg-Landau model, Point Detection, Segmentation, PDE, Biological images, SAR Images} |
} |
Abstract :
In this paper, we propose a new mathematical model for detecting in an image singularities of codimension greater than or equal to two. This means we want to detect points in a 2-D image or points and curves in a 3-D image. We drew one's inspiration from
Ginzburg-Landau (G-L) models which have proved their efficiency for modeling many phenomena in physics. We introduce the model, state its
mathematical properties and give some experimental results demonstrating its capability in image processing. |
|
top of the page
Technical and Research Report |
1 - Detecting Codimension-two Objects in an Image with Ginzburg-Landau Models. G. Aubert and J.F. Aujol and L. Blanc-Féraud. Research Report 5254, INRIA, France, July 2004. Keywords : Ginzburg-Landau model, Biological images, Segmentation, Partial differential equation.
@TECHREPORT{5254,
|
author |
= |
{Aubert, G. and Aujol, J.F. and Blanc-Féraud, L.}, |
title |
= |
{Detecting Codimension-two Objects in an Image with Ginzburg-Landau Models}, |
year |
= |
{2004}, |
month |
= |
{July}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5254}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070744}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70744/filename/RR-5254.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/07/44/PS/RR-5254.ps}, |
keyword |
= |
{Ginzburg-Landau model, Biological images, Segmentation, Partial differential equation} |
} |
Résumé :
Dans cet article, nous proposons a nouveau modèle mathématique pour détecter dans une image les singularités de codimension supérieure ou égale à deux. Cela signifie que nous voulons détecter des points dans des images 2-D, ou des points et des courbes dans des images 3-D. Nous nous inspirons des modèles de Ginzburg-Landau (GL). Ces derniers se sont révélés efficace pour modéliser de nombreux phénomènes physiques. Nous introduisons le modèle, nous énonçons ses propriétés mathématiques, et nous donnons des résultats expérimentaux illustrant les performances du modèle. |
Abstract :
In this paper, we propose a new mathematical model for detecting in an image singularities of codimension greater than or equal to two. This means we want to detect points in a 2-D image or points and curves in a 3-D image. We drew one's inspiration from Ginzburg-Landau (G-L) models which have proved their efficiency for modeling many phenomena in physics. We introduce the model, state its mathematical properties and give some experimental results demonstrating its capability. |
|
top of the page
These pages were generated by
|