|
Publications about Parameter estimation
Result of the query in the list of publications :
Article |
1 - Unsupervised parallel image classification using Markovian models. Z. Kato and J. Zerubia and M. Berthod. Pattern Recognition, 32(4): pages 591-604, 1999. Keywords : Markov random field model, Hierarchical model, Parameter estimation, Parallel unsupervised image classification.
@ARTICLE{jz99a,
|
author |
= |
{Kato, Z. and Zerubia, J. and Berthod, M.}, |
title |
= |
{Unsupervised parallel image classification using Markovian models}, |
year |
= |
{1999}, |
journal |
= |
{Pattern Recognition}, |
volume |
= |
{32}, |
number |
= |
{4}, |
pages |
= |
{591-604}, |
pdf |
= |
{http://dx.doi.org/10.1016/S0031-3203(98)00104-6}, |
keyword |
= |
{Markov random field model, Hierarchical model, Parameter estimation, Parallel unsupervised image classification} |
} |
Abstract :
This paper deals with the problem of unsupervised classification of images modeled by Markov random fields (MRF). If the model parameters are known then we have various methods to solve the segmentation problem (simulated annealing (SA), iterated conditional modes (ICM), etc). However, when the parameters are unknown, the problem becomes more difficult. One has to estimate the hidden label field parameters only from the observed image. Herein, we are interested in parameter estimation methods related to monogrid and hierarchical MRF models. The basic idea is similar to the expectation–maximization (EM) algorithm: we recursively look at the maximum a posteriori (MAP) estimate of the label field given the estimated parameters, then we look at the maximum likelihood (ML) estimate of the parameters given a tentative labeling obtained at the previous step. The only parameter supposed to be known is the number of classes, all the other parameters are estimated. The proposed algorithms have been implemented on a Connection Machine CM200. Comparative experiments have been performed on both noisy synthetic data and real images. |
|
top of the page
Conference article |
1 - Regularizing parameter estimation for Poisson noisy image restoration. M. Carlavan and L. Blanc-Féraud. In International ICST Workshop on New Computational Methods for Inverse Problems, Paris, France, May 2011. Keywords : Parameter estimation, discrepancy principle, Poisson noise.
@INPROCEEDINGS{NCMIP11,
|
author |
= |
{Carlavan, M. and Blanc-Féraud, L.}, |
title |
= |
{Regularizing parameter estimation for Poisson noisy image restoration}, |
year |
= |
{2011}, |
month |
= |
{May}, |
booktitle |
= |
{International ICST Workshop on New Computational Methods for Inverse Problems}, |
address |
= |
{Paris, France}, |
url |
= |
{http://hal.inria.fr/inria-00590906/fr/}, |
keyword |
= |
{Parameter estimation, discrepancy principle, Poisson noise} |
} |
Abstract :
Deblurring images corrupted by Poisson noise is a challeng- ing process which has devoted much research in many ap- plications such as astronomical or biological imaging. This problem, among others, is an ill-posed problem which can be regularized by adding knowledge on the solution. Several methods have therefore promoted explicit prior on the im- age, coming along with a regularizing parameter to moder- ate the weight of this prior. Unfortunately, in the domain of Poisson deconvolution, only a few number of methods have been proposed to select this regularizing parameter which is most of the time set manually such that it gives the best visual results. In this paper, we focus on the use of l1 -norm prior and present two methods to select the regularizing pa- rameter. We show some comparisons on synthetic data using classical image fidelity measures. |
|
top of the page
Technical and Research Report |
1 - On the Method of Logarithmic Cumulants for Parametric Probability Density Function Estimation. V. Krylov and G. Moser and S.B. Serpico and J. Zerubia. Research Report 7666, INRIA, July 2011. Keywords : Probability density function, Parameter estimation, generalized gamma distribution, K-distribution, Synthetic Aperture Radar (SAR), Classification. Copyright : INRIA/ARIANA
@TECHREPORT{RR-7666,
|
author |
= |
{Krylov, V. and Moser, G. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{On the Method of Logarithmic Cumulants for Parametric Probability Density Function Estimation}, |
year |
= |
{2011}, |
month |
= |
{July}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7666}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00605274/en/}, |
keyword |
= |
{Probability density function, Parameter estimation, generalized gamma distribution, K-distribution, Synthetic Aperture Radar (SAR), Classification} |
} |
Résumé :
L'estimation de paramètres de fonctions de densité de probabilité est une étape majeure dans le domaine du traitement statistique du signal et des images. Dans ce rapport, nous étudions les propriétés et les limites de l'estimation de paramètres par la méthode des cumulants logarithmiques (MoLC), qui est une alternative à la fois au maximum de vraisemblance (MV) classique et à la méthode des moments. Nous dérivons la condition générale suffisante de consistance forte de l'estimation par la méthode MoLC, qui représente une propriété asymptotique importante de tout estimateur statistique. Grâce à cela, nous démontrons la consistance forte de l'estimation par la méthode MoLC pour une sélection de familles de distributions particulièrement adaptées (mais non restreintes) au traitement d'images acquises par radar à synthèse d'ouverture (RSO). Nous dérivons ensuite les conditions analytiques d'applicabilité de la méthode MoLC à des échantillons générés qui suivent les lois des différentes familles de distribution de notre sélection. Enfin, nous testons la méthode MoLC sur des données synthétiques et réelles afin de comparer les différentes propriétés inhérentes aux différents types d'images, l'applicabilité de la méthode et les effets d'un nombre restreint d'échantillons. Nous avons, en particulier, considéré les distributions gamma généralisée et K. Comme exemple d'application, nous avons réalisé des classifications supervisées d'images médicales à ultrason ainsi que d'images de télédétection acquises par des capteurs RSO. Les résultats obtenus montrent que la méthode MoLC est une bonne alternative à la méthode des moments, bien qu'elle contienne certaines limitations. Elle est particulièrement utile lorsqu'une approche directe par MV n'est pas possible. |
Abstract :
Parameter estimation of probability density functions is one of the major steps in the mainframe of statistical image and signal processing. In this report we explore the properties and limitations of the recently proposed method of logarithmic cumulants (MoLC) parameter estimation approach which is an alternative to the classical maximum likelihood (ML) and method of moments (MoM) approaches. We derive the general sufficient condition of strong consistency of MoLC estimates which represents an important asymptotic property of any statistical estimator. With its help we demonstrate the strong consistency of MoLC estimates for a selection of widely used distribution families originating (but not restricted to) synthetic aperture radar (SAR) image processing. We then derive the analytical conditions of applicability of MoLC to samples generated from several distribution families in our selection. Finally, we conduct various synthetic and real data experiments to assess the comparative properties, applicability and small sample performance of MoLC notably for the generalized gamma and K family of distributions. Supervised image classification experiments are considered for medical ultrasound and remote sensing SAR imagery. The obtained results suggest MoLC to be a feasible yet not universally applicable alternative to MoM that can be considered when the direct ML approach turns out to be unfeasible. |
|
top of the page
These pages were generated by
|