|
Publications about Rare event
Result of the query in the list of publications :
Article |
1 - Détection de feux de forêt par analyse statistique d'évènements rares à partir d'images infrarouges thermiques. F. Lafarge and X. Descombes and J. Zerubia and S. Mathieu. Traitement du Signal, 24(1), 2007. Note : copyright Traitement du Signal Keywords : Gaussian Field, Rare event, DT-caracteristic, Intensity peak.
@ARTICLE{lafarge_ts06,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Mathieu, S.}, |
title |
= |
{Détection de feux de forêt par analyse statistique d'évènements rares à partir d'images infrarouges thermiques}, |
year |
= |
{2007}, |
journal |
= |
{Traitement du Signal}, |
volume |
= |
{24}, |
number |
= |
{1}, |
note |
= |
{copyright Traitement du Signal}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_lafarge_ts06.pdf}, |
keyword |
= |
{Gaussian Field, Rare event, DT-caracteristic, Intensity peak} |
} |
|
top of the page
Conference article |
1 - Détection de feux de forêt à partir d'images satellitaires IRT par analyse statistique d'évènements rares. F. Lafarge and X. Descombes and J. Zerubia and S. Mathieu-Marni. In Proc. GRETSI Symposium on Signal and Image Processing, Louvain-la-Neuve, Belgique, September 2005. Keywords : Rare event, Forest fires, Gaussian Field.
@INPROCEEDINGS{lafarge_gretsi05,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Mathieu-Marni, S.}, |
title |
= |
{Détection de feux de forêt à partir d'images satellitaires IRT par analyse statistique d'évènements rares}, |
year |
= |
{2005}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. GRETSI Symposium on Signal and Image Processing}, |
address |
= |
{Louvain-la-Neuve, Belgique}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2005_lafarge_gretsi05.pdf}, |
keyword |
= |
{Rare event, Forest fires, Gaussian Field} |
} |
|
top of the page
2 Technical and Research Reports |
1 - Détection de Feux de Forêt par Analyse Statistique de la Radiométrie d'Images Satellitaires. F. Lafarge and X. Descombes and J. Zerubia. Research Report 5369, INRIA, France, December 2004. Keywords : Forest fires, Gaussian Field, Rare event.
@TECHREPORT{5369,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Détection de Feux de Forêt par Analyse Statistique de la Radiométrie d'Images Satellitaires}, |
year |
= |
{2004}, |
month |
= |
{December}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5369}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070634}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70634/filename/RR-5369.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/06/34/PS/RR-5369.ps}, |
keyword |
= |
{Forest fires, Gaussian Field, Rare event} |
} |
Résumé :
Nous proposons, dans ce rapport, une méthode de détection des feux de forêt par imagerie satellitaire fondée sur la théorie des champs aléatoires. L'idée consiste à modéliser l'image par une réalisation d'un champ gaussien afin d'en extraire, par une analyse statistique, les éléments étrangers pouvant correspondre aux feux.
Le canal IRT (InfraRouge Thermique) contient des longueurs d'onde particulièrement sensibles à l'émission de chaleur. L'intensité d'un pixel d'une image IRT est donc d'autant plus forte que la température de la zone associée à ce pixel est élevée. Les feux de forêt peuvent alors être caractérisés par des pics d'intensité sur ce type d'images. Nous proposons une méthode de classification non supervisée et automatique fondée sur la théorie des champs gaussiens. Pour ce faire, nous modélisons dans un premier temps l'image par une réalisation d'un champ gaussien. Les zones de feux, minoritaires et de fortes intensités sont considérées comme des éléments étrangers à ce champ : ce sont des évènements rares. Ensuite, par une analyse statistique, nous déterminons un jeu de probabilités définissant, pour une zone donnée de l'image, un degré d'appartenance au champ gaussien, et par complémentarité aux zones potentiellement en feux. |
Abstract :
We present in this report a method for forest fire detection in satellite images based on random field theory. The idea is to model the image as a realization of a gaussian field in order to extract the rare events, which are potential fires, by a statistical analysis.
The TIR (Thermical InfraRed) channel has a wavelength sensitive to the emission of heat : the higher the heat of a area, the higher the intensity of the corresponding pixel of the image. Then a forest fire can be characterized by peak intensity in TIR images. We present an fully automatic unsupervised classification method based on Gaussian field theory. First we model the image as a realization of a Gaussian field. The fire areas, which have high intensity and are supposed to be a minority, are considered as foreign elements of that field : they are rare events. Then we determine by a statistical analysis a set of probabilities which characterizes the degree of belonging to the Gaussian field of a small area of the image. So, we estimate the probability that the area is a potential fire. |
|
2 - On Bayesian Estimation in Manifolds. I. H. Jermyn. Research Report 4607, Inria, France, November 2002. Keywords : Rare event, Bayesian estimation, Invariant.
@TECHREPORT{4607,
|
author |
= |
{Jermyn, I. H.}, |
title |
= |
{On Bayesian Estimation in Manifolds}, |
year |
= |
{2002}, |
month |
= |
{November}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{4607}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071978}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71978/filename/RR-4607.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/19/78/PS/RR-4607.ps}, |
keyword |
= |
{Rare event, Bayesian estimation, Invariant} |
} |
Résumé :
Il est fréquemment dit que les estimées au sens du maximum a posteriori (MAP) et du minimum de l'erreur quadratique moyenne (MMSE) d'un paramètre continu ne sont pas invariantes relativement aux «reparamètrisations» de l'espace des paramètres . Ce rapport clarifie les questions autour de ce problème, en soulignant la différence entre l'invariance aux changements de coordonnées, qui est une condition sine qua non pour un problème mathématiq- uement bien défini, et l'invariance aux difféomorphismes, qui est une question significative, et fournit une solution. On montre d'abord que la présence d'une structure métrique sur peut être utilisée pour définir les estimées aux sens du MAP et du MMSE qui sont invariantes aux changements de coordonnées, et on explique pourquoi cela est la fa on naturelle et nécessaire pour le faire. Le problème de l'estimation et les quantités géométriques qui y sont associées sont tous définis d'une fa on clairement invariante aux changements de coordonnées. On montre que la même estimée au sens du MAP est obtenue en utilisant soit la `maximisation d'une densité' soit une fonction de perte delta, définie de fa on invariante. Puis, on discute le choix d'une métrique pour . En imposant un critère d'invariance qui est naturel dans le cadre bayesien, on montre que ce choix est unique. Il ne correspond pas nécessairement à un choix de coordonnées. L'estimée au sens du MAP qui en résulte coincide avec l'estimée fondée sur la longueur minimum de message (MML), mais la demonstration n'utilise pas de discrétisation ou d'approximation. |
Abstract :
It is frequently stated that the maximum a posteriori (MAP) and minimum mean squared error (MMSE) estimates of a continuous parameter are not invariant to arbitrary «reparametrizations» of the parameter space . This report clarifies the issues surrounding this problem, by pointing out the difference between coordinate invariance, which is a sine qua non for a mathematically well-defined problem, and diffeomorphism invariance, which is a substantial issue, and provides a solution. We first show that the presence of a metric structure on can be used to define coordinate-invari- ant MAP and MMSE estimates, and we argue that this is the natural and necessary way to proceed. The estimation problem and related geometrical quantities are all defined in a manifestly coordinate-invariant way. We show that the same MAP estimate results from `density maximization' or from using an invariantly-defined delta function loss. We then discuss the choice of a metric structure on . By imposing an invariance criterion natural within a Bayesian framework, we show that this choice is essentially unique. It does not necessarily correspond to a choice of coordinates. The resulting MAP estimate coincides with the minimum message length (MML) estimate, but no discretization or approximation is used in its derivation. |
|
top of the page
These pages were generated by
|