1 - Hierarchical Multiple Markov Chain Model for Unsupervised Texture Segmentation. G. Scarpa and R. Gaetano and M. Haindl and J. Zerubia. IEEE Trans. on Image Processing, 18(8): pages 1830-1843, August 2009. Keywords : Hierarchical Image Models, Markov Process, Pattern Analysis.
@ARTICLE{ScarpaTIP09,
|
author |
= |
{Scarpa, G. and Gaetano, R. and Haindl, M. and Zerubia, J.}, |
title |
= |
{ Hierarchical Multiple Markov Chain Model for Unsupervised Texture Segmentation}, |
year |
= |
{2009}, |
month |
= |
{August}, |
journal |
= |
{IEEE Trans. on Image Processing}, |
volume |
= |
{18}, |
number |
= |
{8}, |
pages |
= |
{1830-1843}, |
url |
= |
{http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=5161445&arnumber=4914796&count=21&index=11}, |
keyword |
= |
{Hierarchical Image Models, Markov Process, Pattern Analysis} |
} |
Abstract :
In this paper, we present a novel multiscale texture model and a related algorithm for the unsupervised segmentation of color images. Elementary textures are characterized by their spatial interactions with neighboring regions along selected directions. Such interactions are modeled, in turn, by means of a set of Markov chains, one for each direction, whose parameters are collected in a feature vector that synthetically describes the texture. Based on the feature vectors, the texture are then recursively merged, giving rise to larger and more complex textures, which appear at different scales of observation: accordingly, the model is named Hierarchical Multiple Markov Chain (H-MMC). The Texture Fragmentation and Reconstruction (TFR) algorithm, addresses the unsupervised segmentation problem based on the H-MMC model. The “fragmentation” step allows one to find the elementary textures of the model, while the “reconstruction” step defines the hierarchical image segmentation based on a probabilistic measure (texture score) which takes into account both region scale and inter-region interactions. The performance of the proposed method was assessed through the Prague segmentation benchmark, based on mosaics of real natural textures, and also tested on real-world natural and remote sensing images. |
|