|
Publications about Denoising
Result of the query in the list of publications :
2 Technical and Research Reports |
1 - Restauration d'Images Biologiques 3D en Microscopie Confocale par Transformée en Ondelettes Complexes. G. Pons Bernad and L. Blanc-Féraud and J. Zerubia. Research Report 5507, INRIA, France, February 2005. Keywords : Confocal microscopy, Complex 3D Wavelet Transform, Restoration, Denoising, Deconvolution.
@TECHREPORT{5507,
|
author |
= |
{Pons Bernad, G. and Blanc-Féraud, L. and Zerubia, J.}, |
title |
= |
{Restauration d'Images Biologiques 3D en Microscopie Confocale par Transformée en Ondelettes Complexes}, |
year |
= |
{2005}, |
month |
= |
{February}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5507}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070500}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70500/filename/RR-5507.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/05/00/PS/RR-5507.ps}, |
keyword |
= |
{Confocal microscopy, Complex 3D Wavelet Transform, Restoration, Denoising, Deconvolution} |
} |
Résumé :
La microscopie confocale est une méthode puissante pour l'imagerie 3D de spécimens biologiques. Néanmoins, les images acquises sont dégradées non seulement par du flou dû à la lumière provenant de zones non focalisées du spécimen, mais aussi par un bruit de Poisson dû à la détection. Plusieurs algorithmes de déconvolution ont été proposés pour réduire ces dégradations. Un des plus utilisés est l'algorithme itératif de Richardson-Lucy, qui calcule un maximum de vraisemblance adapté à une statistique poissonienne. Mais cet algorithme tend à amplifier le bruit. Une solution consiste alors à introduire une contrainte de régularisation (par exemple, fondée sur la Variation Totale). Ici, nous nous concentrons sur des méthodes fondées sur l'analyse par ondelettes, en particulier sur des méthodes de débruitage via la transformée en ondelettes, qui semblent être plus appropriées à la microscopie en fluorescence 3D. Nous développons dans ce rapport un algorithme de Transformation en Ondelettes Complexes 3D introduit par N. Kingsbury. Celui-ci permet une décomposition invariante par translation et rotation et une sélectivité directionnelle des coefficients en ondelettes. Nous montrons sur des images synthétiques et sur des images réelles les résultats de cet algorithme de débruitage. Ce dernier est ensuite inséré dans le processus de déconvolution. |
Abstract :
Confocal laser scanning microscopy is a powerful technique for 3D imaging of biological specimens. However the acquired images are degraded by blur from out-of-focus light and Poisson noise. Several deconvolution algorithms have been proposed to reduce these degradations, including the Richardson-Lucy iterative algorithm, which computes a maximum likelihood estimation adapted to Poisson statistics. Nevertheless, this algorithm tends to amplify noise. Other solutions exist which combine Richardson-Lucy algorithm and regularization (for example with a Total Variation constraint). In this report, we will concentrate on methods based on wavelet analysis, in particular on wavelet denoising methods, which turn out to be very effective in application to 3D confocal images. To obtain a translation and rotation invariant decomposition algorithm, we have developped the 3D Complex Wavelet Transform introduced by Nick Kingsbury. These wavelets allow moreover a directional selectivity of the wavelet coefficients. We show on simulated and real images the denoising results. This algorithm is then used for the deconvolution purpose. |
|
2 - Image Denoising using Stochastic Differential Equations. X. Descombes and E. Zhizhina. Research Report 4814, INRIA, France, May 2003. Keywords : Denoising.
@TECHREPORT{4814,
|
author |
= |
{Descombes, X. and Zhizhina, E.}, |
title |
= |
{Image Denoising using Stochastic Differential Equations}, |
year |
= |
{2003}, |
month |
= |
{May}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{4814}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00071772}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/71772/filename/RR-4814.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/17/72/PS/RR-4814.ps}, |
keyword |
= |
{Denoising} |
} |
Résumé :
Ce rapport concerne le problème de la restauration d'image avec une approche par Équation Différentielle Stochastique. Nous considérons un processus de diffusion convergeant vers une mesure de Gibbs. L'hamiltonien de la mesure de Gibbs contient un terme d'interactions, apportant des contraintes de lissage sur la solution, et un terme d'attache aux données. Nous étudions deux schémas d'approximation discrète de la dynamique de Langevin associée à ce processus de diffusion : les approximation d'Euler et explicite forte de Taylor. La vitesse de convergence des algorithmes correspondants est comparée à celle de l'algorithme de Metropolis-Hasting. Des résultats sont montrés sur des images de synthèse et réelles. Il montrent la supériorité de l'approche proposée lorsque l'on considère un faible nombre d'itérations. |
Abstract :
We address the problem of image denoising using a Stochastic Differential Equation approach. We consider a diffusion process which converges to a Gibbs measure. The Hamiltonian of the Gibbs measure embeds an interaction term, providing smoothing properties, and a data term. We study two discrete approximations of the Langevin dynamics associated with this diffusion process: the Euler and the Explicit Strong Taylor approximations. We compare the convergence speed of the associated algorithms and the Metropolis-Hasting algorithm. Results are shown on synthetic and real data. They show that the proposed approach provides better results when considering a small number of iterations. |
|
top of the page
These pages were generated by
|