|
Publications about Bayesian restoration
Result of the query in the list of publications :
Technical and Research Report |
1 - Parametric blind deconvolution for confocal laser scanning microscopy-proof of concept. P. Pankajakshan and L. Blanc-Féraud and B. Zhang and Z. Kam and J.C. Olivo-Marin and J. Zerubia. Research Report 6493, INRIA, April 2008. Keywords : Confocal Laser Scanning Microscopy, Bayesian restoration, Blind Deconvolution, point spread function, Richardson-Lucy algorithm, Total variation. Copyright : ARIANA/INRIA
@TECHREPORT{ppankajakshan08b,
|
author |
= |
{Pankajakshan, P. and Blanc-Féraud, L. and Zhang, B. and Kam, Z. and Olivo-Marin, J.C. and Zerubia, J.}, |
title |
= |
{Parametric blind deconvolution for confocal laser scanning microscopy-proof of concept}, |
year |
= |
{2008}, |
month |
= |
{April}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6493}, |
url |
= |
{https://hal.inria.fr/inria-00269265}, |
pdf |
= |
{http://hal.inria.fr/docs/00/27/02/92/PDF/report.pdf}, |
keyword |
= |
{Confocal Laser Scanning Microscopy, Bayesian restoration, Blind Deconvolution, point spread function, Richardson-Lucy algorithm, Total variation} |
} |
Résumé :
Nous proposons une méthode de restauration itérative d’images de fluorescence
CLSM et d’estimation paramétrique de la fonction de flou (PSF) du système d’acquisition.
Le CLSM est un microscope qui balaye un échantillon en 3D et utilise une sténopée pour
rejeter la lumière en dehors du point de focalisation. Néanmoins, la qualité des images
souffre de deux limitations physiques. La première est due à la diffraction due au système
optique et la seconde est due à la quantité réduite de lumière détectée par le tube
photo-multiplicateur (PMT). Ces limitations induisent respectivement un flou et du bruit
de comptage de photons. Les images peuvent alors bénéficier d’un post-traitement de
restauration fondé sur la déconvolution. Le problème à traiter est l’estimation simultanée
de la distribution 3D de l’échantillon des sources fluorescentes et de la PSF du microscope
(i.e. de déconvolution aveugle). En utilisant un modèle de processus physique
d’acquisition d’images microscopiques (CLSM), on réduit le nombre de paramètres libres
décrivant la PSF et on introduit des contraintes. On introduit aussi des connaissances a
priori sur l’échantillon ce qui permet de stabiliser le processus d’estimation et de favoriser
la convergence. Des expériences sur des données synthétiques montrent que la PSF peut
être estimée avec précision. Des expériences sur des données réelles montrent de bons
resultats de déconvolution en comparaison avec le modèle théorique de la PSF du microscope. |
Abstract :
We propose a method for the iterative restoration of fluorescence Confocal Laser Scanning Microscope (CLSM) images with parametric estimation of the acquisition system’s Point Spread Function (PSF). The CLSM is an optical fluorescence microscope that scans a specimen in 3D and uses a pinhole to reject most of the out-of-focus light. However, the quality of the image suffers from two primary physical limitations. The first is due to the diffraction-limited nature of the optical system and the second is due to the reduced amount of light detected by the photomultiplier tube (PMT). These limitations cause blur and photon counting noise respectively. The images can hence benefit from post-processing restoration methods based on deconvolution. An efficient method for parametric blind image deconvolution involves the simultaneous estimation of the specimen 3D distribution of fluorescent sources and the microscope PSF. By using a model for the microscope image acquisition physical process, we reduce the number of free parameters describing the PSF and introduce constraints. The parameters of the PSF may vary during the course of experimentation, and so they have to be estimated directly from the observation data. We also introduce a priori knowledge of the specimen that permits stabilization of the estimation process and favorizes the convergence. Experiments on simulated data show that the PSF could be estimatedwith a higher degree of accuracy and those done on real data show very good deconvolution results in comparison to the theoretical microscope PSF model. |
|
top of the page
These pages were generated by
|