|
Publications about Shape extraction
Result of the query in the list of publications :
2 Articles |
1 - Geometric Feature Extraction by a Multi-Marked Point Process . F. Lafarge and G. Gimel'farb and X. Descombes. IEEE Trans. Pattern Analysis and Machine Intelligence, 32(9): pages 1597-1609, September 2010. Keywords : Shape extraction, Spatial point process, Stochastic geometry, fast optimization, Texture, remote sensing.
@ARTICLE{pami09b_lafarge,
|
author |
= |
{Lafarge, F. and Gimel'farb, G. and Descombes, X.}, |
title |
= |
{Geometric Feature Extraction by a Multi-Marked Point Process }, |
year |
= |
{2010}, |
month |
= |
{September}, |
journal |
= |
{IEEE Trans. Pattern Analysis and Machine Intelligence}, |
volume |
= |
{32}, |
number |
= |
{9}, |
pages |
= |
{1597-1609}, |
url |
= |
{http://dx.doi.org/10.1109/TPAMI.2009.152}, |
keyword |
= |
{Shape extraction, Spatial point process, Stochastic geometry, fast optimization, Texture, remote sensing} |
} |
Abstract :
This paper presents a new stochastic marked point process for describing images in terms of a finite library of geometric objects. Image analysis based on conventional marked point processes has already produced convincing results but at the expense of parameter tuning, computing time, and model specificity. Our more general multimarked point process has simpler parametric setting, yields notably shorter computing times, and can be applied to a variety of applications. Both linear and areal primitives extracted from a library of geometric objects are matched to a given image using a probabilistic Gibbs model, and a Jump-Diffusion process is performed to search for the optimal object configuration. Experiments with remotely sensed images and natural textures show that the proposed approach has good potential. We conclude with a discussion about the insertion of more complex object interactions in the model by studying the compromise between model complexity and efficiency. |
|
2 - Insertion of 3D-primitives in mesh-based representations: Towards compact models preserving the details. F. Lafarge and R. Keriven and M. Brédif. IEEE Trans. Image Processing, 19(7): pages 1683-1694, July 2010. Keywords : 3-D reconstruction, Graph-cut , Shape extraction, urban scenes.
@ARTICLE{lafarge_tip2010,
|
author |
= |
{Lafarge, F. and Keriven, R. and Brédif, M.}, |
title |
= |
{Insertion of 3D-primitives in mesh-based representations: Towards compact models preserving the details}, |
year |
= |
{2010}, |
month |
= |
{July}, |
journal |
= |
{IEEE Trans. Image Processing}, |
volume |
= |
{19}, |
number |
= |
{7}, |
pages |
= |
{1683-1694}, |
url |
= |
{http://dx.doi.org/10.1109/TIP.2010.2045695}, |
keyword |
= |
{3-D reconstruction, Graph-cut , Shape extraction, urban scenes} |
} |
Abstract :
We propose an original hybrid modeling process of urban scenes that represents 3-D models as a combination of mesh-based surfaces and geometric 3-D-primitives. Meshes describe details such as ornaments and statues, whereas 3-D-primitives code for regular shapes such as walls and columns. Starting from an 3-D-surface obtained by multiview stereo techniques, these primitives are inserted into the surface after being detected. This strategy allows the introduction of semantic knowledge, the simplification of the modeling, and even correction of errors generated by the acquisition process. We design a hierarchical approach exploring different scales of an observed scene. Each level consists first in segmenting the surface using a multilabel energy model optimized by -expansion and then in fitting 3-D-primitives such as planes, cylinders or tori on the obtained partition where relevant. Experiments on real meshes, depth maps and synthetic surfaces show good potential for the proposed approach. |
|
top of the page
Conference article |
1 - Parameter estimation for a marked point process within a framework of multidimensional shape extraction from remote sensing images. S. Ben Hadj and F. Chatelain and X. Descombes and J. Zerubia. In Proc. ISPRS Technical Commission III Symposium on Photogrammetry Computer Vision and Image Analysis (PCV), Paris, France, September 2010. Keywords : Shape extraction, Marked point process, RJMCMC, Simulated Annealing, Stochastic EM (SEM).
@INPROCEEDINGS{sbenhadj10a,
|
author |
= |
{Ben Hadj, S. and Chatelain, F. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Parameter estimation for a marked point process within a framework of multidimensional shape extraction from remote sensing images}, |
year |
= |
{2010}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. ISPRS Technical Commission III Symposium on Photogrammetry Computer Vision and Image Analysis (PCV)}, |
address |
= |
{Paris, France}, |
url |
= |
{http://hal.archives-ouvertes.fr/docs/00/52/63/45/PDF/ISPRS_SBH_FC_XD_JZ_Final2.pdf}, |
keyword |
= |
{Shape extraction, Marked point process, RJMCMC, Simulated Annealing, Stochastic EM (SEM)} |
} |
|
top of the page
Technical and Research Report |
1 - An adaptive simulated annealing cooling schedule for object detection in images. M. Ortner and X. Descombes and J. Zerubia. Research Report 6336, INRIA, October 2007. Keywords : Image procressing, Shape extraction, Spatial point process, Simulated Annealing, Adaptive cooling schedule.
@TECHREPORT{Ortner-Descombes,
|
author |
= |
{Ortner, M. and Descombes, X. and Zerubia, J.}, |
title |
= |
{An adaptive simulated annealing cooling schedule for object detection in images}, |
year |
= |
{2007}, |
month |
= |
{October}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6336}, |
url |
= |
{https://hal.inria.fr/inria-00181764}, |
pdf |
= |
{https://hal.inria.fr/inria-00181764}, |
keyword |
= |
{Image procressing, Shape extraction, Spatial point process, Simulated Annealing, Adaptive cooling schedule} |
} |
|
top of the page
These pages were generated by
|