|
Publications about Bimodal
Result of the query in the list of publications :
4 Conference articles |
1 - Nonlinear models for the statistics of adaptive wavelet packet coefficients of texture. J. Aubray and I. H. Jermyn and J. Zerubia. In Proc. European Signal Processing Conference (EUSIPCO), Florence, Italy, September 2006. Keywords : Texture, Adaptive, Wavelet packet, Nonlinear, Bimodal, Statistics.
@INPROCEEDINGS{aubray_eusipco06,
|
author |
= |
{Aubray, J. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Nonlinear models for the statistics of adaptive wavelet packet coefficients of texture}, |
year |
= |
{2006}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. European Signal Processing Conference (EUSIPCO)}, |
address |
= |
{Florence, Italy}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_aubray_eusipco06.pdf}, |
keyword |
= |
{Texture, Adaptive, Wavelet packet, Nonlinear, Bimodal, Statistics} |
} |
Abstract :
Probabilistic adaptive wavelet packet models of
texture pro- vide new insight into texture structure
and statistics by focus- ing the analysis on
significant structure in frequency space. In very
adapted subbands, they have revealed new bimodal
statistics, corresponding to the structure inherent to
a texture, and strong dependencies between such
bimodal sub- bands, related to phase coherence in a
texture. Existing models can capture the former but
not the latter. As a first step to- wards modelling
the joint statistics, and in order to simplify earlier
approaches, we introduce a new parametric family of
models capable of modelling both bimodal and unimodal
subbands, and of being generalized to capture the
joint statistics. We show how to compute MAP estimates
for the adaptive basis and model parameters, and apply
the models to Brodatz textures to illustrate their
performance. |
|
2 - Multimodal statistics of adaptive wavelet packet coefficients: experimental evidence and theory. R. Cossu and I. H. Jermyn and J. Zerubia. In Proc. Physics in Signal and Image Processing, Toulouse, France, January 2005. Keywords : Bimodal, Statistics, Wavelet packet, Adaptive, Texture.
@INPROCEEDINGS{cossu_psip05,
|
author |
= |
{Cossu, R. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Multimodal statistics of adaptive wavelet packet coefficients: experimental evidence and theory}, |
year |
= |
{2005}, |
month |
= |
{January}, |
booktitle |
= |
{Proc. Physics in Signal and Image Processing}, |
address |
= |
{Toulouse, France}, |
pdf |
= |
{http://www-sop.inria.fr/members/Ian.Jermyn/publications/Cossu05psip.pdf}, |
keyword |
= |
{Bimodal, Statistics, Wavelet packet, Adaptive, Texture} |
} |
Abstract :
In recent work, it was noted that although the subband histograms
for standard wavelet coefcients take on a generalized
Gaussian form, this is no longer true for wavelet packet
bases adapted to a given texture. Instead, three types of subband
statistics are observed: Gaussian, generalized Gaussian,
and interestingly, in some subbands, bi- or multi-modal histograms.
Motivated by this observation, we provide additional
experimental conrmation of the existence of multimodal
subbands, and provide a theoretical explanation for
their occurrence. The results reveal the connection of such
subbands with the characteristic structure in a texture, and
thus confirm the importance of such subbands for image modelling
and applications. |
|
3 - Texture discrimination using multimodal wavelet packet subbands. R. Cossu and I. H. Jermyn and J. Zerubia. In Proc. IEEE International Conference on Image Processing (ICIP), Singapore, October 2004. Keywords : Bimodal, Adaptive, probabilistic, Wavelet packet, Texture.
@INPROCEEDINGS{cossu_icip04,
|
author |
= |
{Cossu, R. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Texture discrimination using multimodal wavelet packet subbands}, |
year |
= |
{2004}, |
month |
= |
{October}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Singapore}, |
pdf |
= |
{http://www-sop.inria.fr/members/Ian.Jermyn/publications/Cossu04icip.pdf}, |
keyword |
= |
{Bimodal, Adaptive, probabilistic, Wavelet packet, Texture} |
} |
Abstract :
The subband histograms of wavelet packet bases adapted to individual
texture classes often fail to display the leptokurtotic behaviour
shown by the standard wavelet coefcients of `natural'
images. While many subband histograms remain leptokurtotic
in adaptive bases, some subbands are Gaussian. Most interestingly,
however, some subbands show multimodal behaviour, with
no mode at zero. In this paper, we provide evidence for the existence
of these multimodal subbands and show that they correspond
to narrow frequency bands running throughout images of the texture.
They are thus closely linked to the texture's structure. As
such, they seem likely to possess superior descriptive and discriminative
power as compared to unimodal subbands. We demonstrate
this using both Brodatz and remote sensing images. |
|
4 - Texture analysis using probabilistic models of the unimodal and multimodal statistics of adaptative wavelet packet coefficients. R. Cossu and I. H. Jermyn and J. Zerubia. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Montreal, Canada, May 2004. Keywords : Bimodal, Adaptive, Wavelet packet, Texture, Gaussian mixture, Statistics.
@INPROCEEDINGS{cossu04a,
|
author |
= |
{Cossu, R. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Texture analysis using probabilistic models of the unimodal and multimodal statistics of adaptative wavelet packet coefficients}, |
year |
= |
{2004}, |
month |
= |
{May}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
address |
= |
{Montreal, Canada}, |
pdf |
= |
{http://www-sop.inria.fr/members/Ian.Jermyn/publications/Cossu04icassp.pdf}, |
keyword |
= |
{Bimodal, Adaptive, Wavelet packet, Texture, Gaussian mixture, Statistics} |
} |
Abstract :
Although subband histograms of the wavelet coefficients of
natural images possess a characteristic leptokurtotic form,
this is no longer true for wavelet packet bases adapted to
a given texture. Instead, three types of subband statistics
are observed: Gaussian, leptokurtotic, and interestingly, in
some subbands, multimodal histograms. These subbands
are closely linked to the structure of the texture, and guarantee
that the most probable image is not flat. Motivated by
these observations, we propose a probabilistic model that
takes them into account. Adaptive wavelet packet subbands
are modelled as Gaussian, generalized Gaussian, or a constrained
Gaussian mixture. We use a Bayesian methodology,
finding MAP estimates for the adaptive basis, for subband
model selection, and for subband model parameters.
Results confirm the effectiveness of the proposed approach,
and highlight the importance of multimodal subbands for
texture discrimination and modelling. |
|
top of the page
These pages were generated by
|