|
Publications about MCMC
Result of the query in the list of publications :
Article |
1 - Modèle Paramétrique pour la Reconstruction Automatique en 3D de Zones Urbaines Denses à partir d'Images Satellitaires Haute Résolution. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. Revue Française de Photogrammétrie et de Télédétection (SFPT), 180: pages 4--12, 2005. Keywords : 3D reconstruction, Urban areas, Bayesian approach, MCMC, Satellite images. Copyright : SFPT
@ARTICLE{lafarge_sfpt05,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{Modèle Paramétrique pour la Reconstruction Automatique en 3D de Zones Urbaines Denses à partir d'Images Satellitaires Haute Résolution}, |
year |
= |
{2005}, |
journal |
= |
{Revue Française de Photogrammétrie et de Télédétection (SFPT)}, |
volume |
= |
{180}, |
pages |
= |
{4--12}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2005_lafarge_sfpt05.pdf}, |
keyword |
= |
{3D reconstruction, Urban areas, Bayesian approach, MCMC, Satellite images} |
} |
|
top of the page
PhD Thesis and Habilitation |
1 - Modèles stochastiques pour la reconstruction tridimensionnelle d'environnements urbains. F. Lafarge. PhD Thesis, Ecole des Mines de Paris, October 2007. Keywords : 3D reconstruction, Urban areas, Satellite images, Structural approach, Simulated Annealing, MCMC.
@PHDTHESIS{lafarge_phd07,
|
author |
= |
{Lafarge, F.}, |
title |
= |
{Modèles stochastiques pour la reconstruction tridimensionnelle d'environnements urbains}, |
year |
= |
{2007}, |
month |
= |
{October}, |
school |
= |
{Ecole des Mines de Paris}, |
url |
= |
{http://tel.archives-ouvertes.fr/tel-00179695/en/}, |
keyword |
= |
{3D reconstruction, Urban areas, Satellite images, Structural approach, Simulated Annealing, MCMC} |
} |
Résumé :
Cette thèse aborde le problème de la reconstruction tridimensionnelle de zones urbaines à partir d'images satellitaires très haute résolution. Le contenu informatif de ce type de données est insuffisant pour permettre une utilisation efficace des nombreux algorithmes développés pour des données aériennes. Dans ce contexte, l'introduction de connaissances a priori fortes sur les zones urbaines est nécessaire. Les outils stochastiques sont particulièrement bien adaptés pour traiter cette problématique.
Nous proposons une approche structurelle pour aborder ce sujet. Cela consiste à modéliser un bâtiment comme un assemblage de modules urbains élémentaires extraits d'une bibliothèque de modèles 3D paramétriques. Dans un premier temps, nous extrayons les supports 2D de ces modules à partir d'un Modèle Numérique d' Elévation (MNE). Le résultat est un agencement de quadrilatères dont les éléments voisins sont connectés entre eux. Ensuite, nous reconstruisons les bâtiments en recherchant la configuration optimale de modèles 3D se fixant sur les supports précédemment extraits. Cette configuration correspond à la réalisation qui maximise une densité mesurant la cohérence entre la réalisation et le MNE, mais également prenant en compte des connaissances a priori telles que des lois d'assemblage des modules. Nous discutons enfin de la pertinence de cette approche en analysant les résultats obtenus à partir de données satellitaires (simulations PLEIADES). Des expérimentations sont également réalisées à partir d'images aériennes mieux résolues. |
|
top of the page
Conference article |
1 - An Automatic 3D City Model : a Bayesian Approach using Satellite Images. F. Lafarge and X. Descombes and J. Zerubia and M. Pierrot-Deseilligny. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toulouse, France, May 2006. Note : Copyright IEEE Keywords : 3D reconstruction, Buildings, MCMC, Digital Elevation Model (DEM).
@INPROCEEDINGS{florenticassp06,
|
author |
= |
{Lafarge, F. and Descombes, X. and Zerubia, J. and Pierrot-Deseilligny, M.}, |
title |
= |
{An Automatic 3D City Model : a Bayesian Approach using Satellite Images}, |
year |
= |
{2006}, |
month |
= |
{May}, |
booktitle |
= |
{Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
address |
= |
{Toulouse, France}, |
note |
= |
{Copyright IEEE}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_florenticassp06.pdf}, |
keyword |
= |
{3D reconstruction, Buildings, MCMC, Digital Elevation Model (DEM)} |
} |
|
top of the page
Technical and Research Report |
1 - Hierarchical finite-state modeling for texture segmentation with application to forest classification. G. Scarpa and M. Haindl and J. Zerubia. Research Report 6066, INRIA, INRIA, France, December 2006. Keywords : Texture, Segmentation, Co-occurrence matrix, Structural approach, MCMC, Synthesis.
@TECHREPORT{scarparr06,
|
author |
= |
{Scarpa, G. and Haindl, M. and Zerubia, J.}, |
title |
= |
{Hierarchical finite-state modeling for texture segmentation with application to forest classification}, |
year |
= |
{2006}, |
month |
= |
{December}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{6066}, |
address |
= |
{INRIA, France}, |
url |
= |
{https://hal.inria.fr/inria-00118420}, |
keyword |
= |
{Texture, Segmentation, Co-occurrence matrix, Structural approach, MCMC, Synthesis} |
} |
Abstract :
In this research report we present a new model for texture representation which is particularly well suited for image analysis and segmentation. Any image is first discretized and then a hierarchical finite-state region-based model is automatically coupled with the data by means of a sequential optimization scheme, namely the Texture Fragmentation and Reconstruction (TFR) algorithm. The TFR algorithm allows to model both intra- and inter-texture interactions, and eventually addresses the segmentation task in a completely unsupervised manner. Moreover, it provides a hierarchical output, as the user may decide the scale at which the segmentation has to be given. Tests were carried out on both natural texture mosaics provided by the Prague Texture Segmentation Datagenerator Benchmark and remote-sensing data of forest areas provided by the French National Forest Inventory (IFN). |
|
top of the page
These pages were generated by
|