|
Publications about Dictionary
Result of the query in the list of publications :
Article |
1 - Dictionary-Based Stochastic Expectation-Maximization for SAR Amplitude Probability Density Function Estimation. G. Moser and J. Zerubia and S.B. Serpico. IEEE Trans. Geoscience and Remote Sensing, 44(1): pages 188-200, January 2006. Keywords : SAR Images, Stochastic EM (SEM), Dictionary. Copyright : IEEE
@ARTICLE{moser_ieeetgrs_05,
|
author |
= |
{Moser, G. and Zerubia, J. and Serpico, S.B.}, |
title |
= |
{Dictionary-Based Stochastic Expectation-Maximization for SAR Amplitude Probability Density Function Estimation}, |
year |
= |
{2006}, |
month |
= |
{January}, |
journal |
= |
{IEEE Trans. Geoscience and Remote Sensing}, |
volume |
= |
{44}, |
number |
= |
{1}, |
pages |
= |
{188-200}, |
url |
= |
{http://dx.doi.org/10.1109/TGRS.2005.859349}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/inria-00561369/en/}, |
keyword |
= |
{SAR Images, Stochastic EM (SEM), Dictionary} |
} |
Abstract :
In remotely sensed data analysis, a crucial problem is represented by the need to develop accurate models for the statistics of the pixel intensities. This paper deals with the problem of probability density function (pdf) estimation in the context of synthetic aperture radar (SAR) amplitude data analysis. Several theoretical and heuristic models for the pdfs of SAR data have been proposed in the literature, which have been proved to be effective for different land-cover typologies, thus making the choice of a single optimal parametric pdf a hard task, especially when dealing with heterogeneous SAR data. In this paper, an innovative estimation algorithm is described, which faces such a problem by adopting a finite mixture model for the amplitude pdf, with mixture components belonging to a given dictionary of SAR-specific pdfs. The proposed method automatically integrates the procedures of selection of the optimal model for each component, of parameter estimation, and of optimization of the number of components by combining the stochastic expectation–maximization iterative methodology with the recently developed “method-of-log-cumulants” for parametric pdf estimation in the case of nonnegative random variables. Experimental results on several real SAR images are reported, showing that the proposed method accurately models the statistics of SAR amplitude data. |
|
top of the page
Conference article |
1 - High resolution SAR-image classification by Markov random fields and finite mixtures. G. Moser and V. Krylov and S.B. Serpico and J. Zerubia. In Proc. of SPIE (IS&T/SPIE Electronic Imaging 2010), Vol. 7533, pages 753308, San Jose, USA, January 2010. Keywords : SAR image classification, Dictionary, amplitude probability density, Stochastic EM (SEM), Markov random field, copula. Copyright : SPIE
@INPROCEEDINGS{moserSPIE2010a,
|
author |
= |
{Moser, G. and Krylov, V. and Serpico, S.B. and Zerubia, J.}, |
title |
= |
{High resolution SAR-image classification by Markov random fields and finite mixtures}, |
year |
= |
{2010}, |
month |
= |
{January}, |
booktitle |
= |
{Proc. of SPIE (IS&T/SPIE Electronic Imaging 2010)}, |
volume |
= |
{7533}, |
pages |
= |
{753308}, |
address |
= |
{San Jose, USA}, |
url |
= |
{http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=776565}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/inria-00442348/en/}, |
keyword |
= |
{SAR image classification, Dictionary, amplitude probability density, Stochastic EM (SEM), Markov random field, copula} |
} |
Abstract :
In this paper we develop a novel classification approach for high and very high resolution polarimetric synthetic aperture radar (SAR) amplitude images. This approach combines the Markov random field model to Bayesian image classification and a finite mixture technique for probability density function estimation. The finite mixture modeling is done via a recently proposed dictionary-based stochastic expectation maximization approach for SAR amplitude probability density function estimation. For modeling the joint distribution from marginals corresponding to single polarimetric channels we employ copulas. The accuracy of the developed semiautomatic supervised algorithm is validated in the application of wet soil classification on several high resolution SAR images acquired by TerraSAR-X and COSMO-SkyMed. |
|
top of the page
Technical and Research Report |
1 - High resolution SAR-image classification. V. Krylov and J. Zerubia. Research Report 7108, INRIA, November 2009. Keywords : SAR image classification, Dictionary, amplitude probability density, Stochastic EM (SEM), Markov random field, copula. Copyright : INRIA/ARIANA, 2009
@TECHREPORT{RR-7108,
|
author |
= |
{Krylov, V. and Zerubia, J.}, |
title |
= |
{High resolution SAR-image classification}, |
year |
= |
{2009}, |
month |
= |
{November}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{7108}, |
url |
= |
{http://hal.archives-ouvertes.fr/inria-00433036/en/}, |
pdf |
= |
{http://hal.archives-ouvertes.fr/docs/00/44/81/40/PDF/RR-7108.pdf}, |
keyword |
= |
{SAR image classification, Dictionary, amplitude probability density, Stochastic EM (SEM), Markov random field, copula} |
} |
Résumé :
Dans ce rapport, nous proposons une nouvelle approche pour la classification des images de type Radar à Synthèse d’Ouverture (RSO) haute résolution. Cette approche combine la méthode des champs Markoviens (MRF) pour la classification bayésienne et un modèle de mélange fini pour l’estimation des densités de probabilité. Ce modèle de mélange fini est realisé grace à une approche fondée sur une espérance-maximisation stochastique, à partir d'un dictionnaire, pour l’estimation des densités de probabilité d’amplitude. Cette approche semi-automatique est étendue au cas important des images RSO avec plusieurs polarisations, en utilisant des copulas pour modéliser les distributions jointes. Des résultats expérimentaux, sur plusieurs images RSO réelles (Dual-Pol TerraSAR-X et Single-Pol COSMO-SkyMed), pour la classification de zones humides, sont présentés pour montrer l’efficacité de l’algorithme proposé. |
Abstract :
In this report we propose a novel classification algorithm for high and very high resolution synthetic aperture radar (SAR) amplitude images that combines the Markov random field approach to Bayesian image classification and a finite mixture technique for probability density function estimation. The finite mixture modeling is done by dictionary-based stochastic expectation maximization amplitude histogram estimation approach. The developed semiautomatic algorithm is extended to an important case of multi-polarized SAR by modeling the joint distributions of channels via copulas. The accuracy of the proposed algorithm is validated for the application of wet soil classification on several high resolution SAR images acquired by TerraSAR-X and COSMO-SkyMed. |
|
top of the page
These pages were generated by
|