|
Publications about Indexation
Result of the query in the list of publications :
2 Conference articles |
1 - Indexing Satellite Images with Features Computed from Man-Made Structures on the Earth’s Surface. A. Bhattacharya and M. Roux and H. Maitre and I. H. Jermyn and X. Descombes and J. Zerubia. In Proc. International Workshop on Content-Based Multimedia Indexing, Bordeaux, France, June 2007. Keywords : Indexation, Road network, Semantic, Retrieval, Feature statistics.
@INPROCEEDINGS{Bhattacharya07a,
|
author |
= |
{Bhattacharya, A. and Roux, M. and Maitre, H. and Jermyn, I. H. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Indexing Satellite Images with Features Computed from Man-Made Structures on the Earth’s Surface}, |
year |
= |
{2007}, |
month |
= |
{June}, |
booktitle |
= |
{Proc. International Workshop on Content-Based Multimedia Indexing}, |
address |
= |
{Bordeaux, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Bhattacharya07a.pdf}, |
keyword |
= |
{Indexation, Road network, Semantic, Retrieval, Feature statistics} |
} |
Abstract :
Indexing and retrieval from remote sensing image databases relies on the extraction of appropriate information from the data about the entity of interest (e.g. land cover type) and on the robustness of this extraction to nuisance variables. Other entities in an image may be strongly correlated with the entity of interest and their properties can therefore be used to characterize this entity. The road network contained in an image is one example. The properties of road networks vary considerably from one geographical environment to another, and they can therefore be used to classify and retrieve such environments. In this paper, we define several such environments, and classify them with the aid of geometrical and topological features computed from the road networks occurring in them. The relative failure of network extraction methods in certain types of urban area obliges us to segment such areas and to add a second set of geometrical and topological features computed from the segmentations. To validate the approach, feature selection and SVM linear kernel classification are performed on the feature set arising from a diverse image database. |
|
2 - Computing statistics from a graph representation of road networks in satellite images for indexing and retrieval. A. Bhattacharya and I. H. Jermyn and X. Descombes and J. Zerubia. In Proc. compImage, Coimbra, Portugal, October 2006. Keywords : Road network, Indexation, Semantic, Retrieval, Feature statistics.
@INPROCEEDINGS{bhatta_compimage06,
|
author |
= |
{Bhattacharya, A. and Jermyn, I. H. and Descombes, X. and Zerubia, J.}, |
title |
= |
{Computing statistics from a graph representation of road networks in satellite images for indexing and retrieval}, |
year |
= |
{2006}, |
month |
= |
{October}, |
booktitle |
= |
{Proc. compImage}, |
address |
= |
{Coimbra, Portugal}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_bhatta_compimage06.pdf}, |
keyword |
= |
{Road network, Indexation, Semantic, Retrieval, Feature statistics} |
} |
Abstract :
Retrieval from remote sensing image archives relies on the
extraction of pertinent information from the data about the entity of interest (e.g. land cover type), and on the robustness of this extraction to nuisance variables (e.g. illumination). Most image-based characterizations are not invariant to such variables. However, other semantic entities in the image may be strongly correlated with the entity of interest and their properties can therefore be used to characterize this entity. Road networks are one example: their properties vary considerably, for example, from urban to rural areas. This paper takes the first steps towards classification (and hence retrieval) based on this idea. We study the dependence of a number of network features on the class of the image ('urban' or 'rural'). The chosen features include measures of the network density, connectedness, and `curviness'. The feature distributions of the two classes are well separated in feature space, thus providing a basis for retrieval. Classification using kernel k-means confirms this conclusion. |
|
top of the page
Technical and Research Report |
1 - Indexing and retrieval in multimedia libraries through parametric texture modeling using the 2D Wold decomposition. R. Stoica and J. Zerubia and J.M. Francos. Research Report 3594, Inria, December 1998. Keywords : Markov Fields, Texture, Segmentation, Indexation.
@TECHREPORT{stoica98,
|
author |
= |
{Stoica, R. and Zerubia, J. and Francos, J.M.}, |
title |
= |
{Indexing and retrieval in multimedia libraries through parametric texture modeling using the 2D Wold decomposition}, |
year |
= |
{1998}, |
month |
= |
{December}, |
institution |
= |
{Inria}, |
type |
= |
{Research Report}, |
number |
= |
{3594}, |
url |
= |
{https://hal.inria.fr/inria-00073085}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/73085/filename/RR-3594.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/30/85/PS/RR-3594.ps}, |
keyword |
= |
{Markov Fields, Texture, Segmentation, Indexation} |
} |
Résumé :
Ce rapport présente une méthode paramétrique permettant de faire de l'indexati- on et de la recherche dans une base de données multimédia. L'indexation (étiquetage) et la recherche de données multimédia sont réalisées grâce à la modélisation paramétrique de textures qui se trouvent dans les images de la base de données. Les textures sont caracterisées par des paramètres qui servent d'indices pour la recherche dans la base de données. Afin de pouvoir identifier les différentes régions texturées d'une image et estimer les paramètres correspondants, un algorithme de segmentation-estimatio- n est proposé dans ce rapport, qui fait appel à une décomposition de Wold 2D pour le modèle de texture et à un modèle markovien pour l'étiquetage. L'indexation nécessite de définir une distance entre les images. Une nouvelle distance, inspirée de la distance de Kullback, est décrite dans ce rapport. Elle utilise les paramètres estimés correspondants au modèle 2D de chaque texture. Les résultats obtenus relativement à la segmentation et à l'indexatio- n sont proches de ceux obtenus par un opérateur humain. |
Abstract :
This paper presents a parametric method for indexing and retrieval of multimedia data in digital libraries. %Indexing (labeling) and retrieval %of multimedia data, based on the properties %of the imagery components of the stored data record, are derived. Indexing (labeling) and retrieval of the multimedia data are performed using parametric modeling of the textured segments found in the data imagery components. The estimated parametric models of the textured segments serve as their indices, and hence as indices of the entire image, as well as of the multimedia record which the image is part thereof. To achieve the ability to identify textured image regions and estimate their parameters, a joint segmentation-estimation algorithm that combines the 2-D Wold decomposition based texture model with a Markovian labeling process, is derived. Ordering and indexing of images require a definition of a distance measure between images. Using the framework of the Kullback distance between probability distributions, a new rigorous distance measure between textures is derived. The distance between any two textured image segments is evaluated using their estimated parametric models. The proposed segmentation, distance evaluation, and indexing methods are shown to produce comparable results to those obtained by a human viewer. |
|
top of the page
These pages were generated by
|