|
Publications about Prior
Result of the query in the list of publications :
2 Articles |
1 - Higher-Order Active Contour Energies for Gap Closure. M. Rochery and I. H. Jermyn and J. Zerubia. Journal of Mathematical Imaging and Vision, 29(1): pages 1-20, September 2007. Keywords : Gap closure, Higher-order, Active contour, Shape, Prior, Road network.
@ARTICLE{Rochery07,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher-Order Active Contour Energies for Gap Closure}, |
year |
= |
{2007}, |
month |
= |
{September}, |
journal |
= |
{Journal of Mathematical Imaging and Vision}, |
volume |
= |
{29}, |
number |
= |
{1}, |
pages |
= |
{1-20}, |
url |
= |
{http://dx.doi.org/10.1007/s10851-007-0021-x}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Rochery07.pdf}, |
keyword |
= |
{Gap closure, Higher-order, Active contour, Shape, Prior, Road network} |
} |
Abstract :
One of the main difficulties in extracting line networks from images, and in particular road networks from remote sensing images, is the existence of interruptions in the data caused, for example, by occlusions. These can lead to gaps in the extracted network that do not correspond to gaps in the real network. In this paper, we describe a higher-order active contour energy that in addition to favouring network-like regions, includes a prior term penalizing networks containing ‘nearby opposing extremities’, thereby making gaps in the extracted network less likely. The new energy term causes such extremities to attract one another during gradient descent. They thus move towards one another and join, closing the gap. To minimize the energy, we develop specific techniques to handle the high-order derivatives that appear in the gradient descent equation. We present the results of automatic extraction of networks from real remote-sensing images, showing the ability of the model to overcome interruptions. |
|
2 - Higher Order Active Contours. M. Rochery and I. H. Jermyn and J. Zerubia. International Journal of Computer Vision, 69(1): pages 27--42, August 2006. Keywords : Active contour, Shape, Higher-order, Prior, Road network.
@ARTICLE{mr_ijcv_06,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher Order Active Contours}, |
year |
= |
{2006}, |
month |
= |
{August}, |
journal |
= |
{International Journal of Computer Vision}, |
volume |
= |
{69}, |
number |
= |
{1}, |
pages |
= |
{27--42}, |
url |
= |
{http://dx.doi.org/10.1007/s11263-006-6851-y}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_mr_ijcv_06.pdf}, |
keyword |
= |
{Active contour, Shape, Higher-order, Prior, Road network} |
} |
Abstract :
We introduce a new class of active contour models that
hold great promise for region and shape modelling, and
we apply a special case of these models to the
extraction of road networks from satellite and aerial
imagery. The new models are arbitrary polynomial
functionals on the space of boundaries, and thus
greatly generalize the linear functionals used in
classical contour energies. While classical energies
are expressed as single integrals over the contour,
the new energies incorporate multiple integrals, and
thus describe long-range interactions between
different sets of contour points. As prior terms, they
describe families of contours that share complex
geometric properties, without making reference to any
particular shape, and they require no pose estimation.
As likelihood terms, they can describe multi-point
interactions between the contour and the data. To
optimize the energies, we use a level set approach.
The forces derived from the new energies are non-local
however, thus necessitating an extension of standard
level set methods. Networks are a shape family of
great importance in a number of applications,
including remote sensing imagery. To model them, we
make a particular choice of prior quadratic energy
that describes reticulated structures, and augment it
with a likelihood term that couples the data at pairs
of contour points to their joint geometry. Promising
experimental results are shown on real images. |
|
top of the page
PhD Thesis and Habilitation |
1 - New higher-order active contour models, shape priors, and multiscale analysis: their application to road network extraction from very high resolution satellite images. T. Peng. PhD Thesis, Universite de Nice Sophia Antipolis, November 2008. Keywords : Higher-order active contour, Phase Field, Prior, Multiresolution, Road network, Very high resolution. Copyright :
@PHDTHESIS{Peng08d,
|
author |
= |
{Peng, T.}, |
title |
= |
{New higher-order active contour models, shape priors, and multiscale analysis: their application to road network extraction from very high resolution satellite images}, |
year |
= |
{2008}, |
month |
= |
{November}, |
school |
= |
{Universite de Nice Sophia Antipolis}, |
pdf |
= |
{http://tel.archives-ouvertes.fr/tel-00349768/fr/}, |
keyword |
= |
{Higher-order active contour, Phase Field, Prior, Multiresolution, Road network, Very high resolution} |
} |
Résumé :
L'objectif de cette thèse est de développer et de valider des approches robustes d'extraction semi-automatique de réseaux routiers en zone urbaine dense à partir d'images satellitaires optiques à très haute résolution (THR). Nos modèles sont fondés sur une modélisation par champs de phase des contours actifs d'ordre supérieur (CAOS). Le probléme est difficile pour deux raisons principales : les images THR sont intrinsèquement complexes, et certaines zones des réseaux peuvent prendre une topologie arbitraire. Pour remédier à la complexité de l'information contenue dans les images THR, nous proposons une modélisation statistique multi-résolution des données ainsi qu'un modèle multi-résolution contraint a priori. Ces derniers permettent l'intégration des résultats de segmentation de résolution brute et de résolution fine. De plus, dans le cadre particulier de la mise à jour de réseaux routiers, nous présentons un modèle de forme a priori spécifique, dérivé d'une ancienne carte numérique issue d'un SIG. Ce terme spécifique a priori équilibre l'effet de la connaissance a priori générique apportée par le modèle de CAOS, qui décrit la forme géométrique générale des réseaux routiers. Cependant, le modèle classique de CAOS souffre d'une limitation importante : la largeur des branches du réseau est contrainte à d'être similaire au maximum du rayon de courbure des branches du réseau, fournissant ainsi un modèle non satisfaisant dans le cas de réseaux aux branches droites et étroites ou aux branches fortement incurvées et larges. Nous résolvons ce problème en proposant deux nouveaux modèles : l'un contenant un terme additionnel, nonlocal, non-linéaire de CAOS, et l'autre contenant un terme additionnel, nonlocal, linéaire de CAOS. Ces deux termes permettent le contrôle séparé de la largeur et de la courbure des branches, et fournissent une meilleure prolongation pour une même largeur. Le terme linéaire a plusieurs avantages : d'une part il se calcule plus efficacement, d'autre part il peut modéliser plusieurs largeurs de branche simultanément. Afin de remédier à la difficulté du choix des paramètres de ces modèles, nous analysons les conditions de stabilité pour une longue barre d'une largeur donnée décrite par ces énergies, et montrons ainsi comment choisir rigoureusement les paramètres des fonctions d'énergie. Des expériences sur des images satellitaires THR et la comparaison avec d'autres modèles démontrent la supériorité de nos modèles. |
Abstract :
The objective of this thesis is to develop and validate robust approaches for the semi-automatic extraction of road networks in dense urban areas from very high resolution (VHR) optical satellite images. Our models are based on the recently developed higher-order active contour (HOAC) phase field framework. The problem is difficult for two main reasons: VHR images are intrinsically complex and network regions may have arbitrary topology. To tackle the complexity of the information contained in VHR images, we propose a multiresolution statistical data model and a multiresolution constrained prior model. They enable the integration of segmentation results from coarse resolution and fine resolution. Subsequently, for the particular case of road map updating, we present a specific shape prior model derived from an outdated GIS digital map. This specific prior term balances the effect of the generic prior knowledge carried by the HOAC model, which describes the geometric shape of road networks in general. However, the classical HOAC model suffers from a severe limitation: network branch width is constrained to be similar to maximum network branch radius of curvature, thereby providing a poor model of networks with straight narrow branches or highly curved, wide branches. We solve this problem by introducing two new models: one with an additional nonlinear nonlocal HOAC term, and one with an additional linear nonlocal HOAC term. Both terms allow separate control of branch width and branch curvature, and furnish better prolongation for the same width, but the linear term has several advantages: it is more efficient from a computational standpoint, and it is able to model multiple widths simultaneously. To cope with the difficulty of parameter selection of these models, we analyze the stability conditions for a long bar with a given width described by these energies, and hence show how to choose rigorously the parameters of the energy functions. Experiments on VHR satellite images and comparisons with other approaches demonstrate the superiority of our models. |
|
top of the page
5 Conference articles |
1 - A Phase Field Model Incorporating Generic and Specific Prior Knowledge Applied to Road Network Extraction from VHR Satellite Images. T. Peng and I. H. Jermyn and V. Prinet and J. Zerubia and B. Hu. In Proc. British Machine Vision Conference (BMVC), Warwick, UK, September 2007. Keywords : Road network, Very high resolution, Higher-order, Active contour, Shape, Prior.
@INPROCEEDINGS{Peng07a,
|
author |
= |
{Peng, T. and Jermyn, I. H. and Prinet, V. and Zerubia, J. and Hu, B.}, |
title |
= |
{A Phase Field Model Incorporating Generic and Specific Prior Knowledge Applied to Road Network Extraction from VHR Satellite Images}, |
year |
= |
{2007}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. British Machine Vision Conference (BMVC)}, |
address |
= |
{Warwick, UK}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Peng07a.pdf}, |
keyword |
= |
{Road network, Very high resolution, Higher-order, Active contour, Shape, Prior} |
} |
Abstract :
We address the problem of updating road maps in dense urban areas by extracting the main road network from a very high resolution (VHR) satellite image. Our model of the region occupied by the road network in the image is innovative. It incorporates three different types of prior geometric knowledge: generic boundary smoothness constraints, equivalent to a standard active contour prior; knowledge of the geometric properties of road networks (i.e. that they occupy regions composed of long, low-curvature segments joined at junctions), equivalent to a higher-order active contour prior; and knowledge of the road network at an earlier date derived from GIS data, similar to other ‘shape priors’ in the literature. In addition, we represent the road network region as a ‘phase field’, which offers a number of important advantages over other region modelling frameworks. All three types of prior knowledge prove important for overcoming the complexity of geometric ‘noise’ in VHR images. Promising results and a comparison with several other techniques demonstrate the effectiveness of our approach. |
|
2 - A Novel Representation for Riemannian Analysis of Elastic Curves in R^n. S. Joshi and E. Klassen and A. Srivastava and I. H. Jermyn. In Proc. IEEE Computer Vision and Pattern Recognition (CVPR), Minneapolis, USA, June 2007. Keywords : Shape, Metric, Geodesic, Prior.
@INPROCEEDINGS{Joshi07a,
|
author |
= |
{Joshi, S. and Klassen, E. and Srivastava, A. and Jermyn, I. H.}, |
title |
= |
{A Novel Representation for Riemannian Analysis of Elastic Curves in R^n}, |
year |
= |
{2007}, |
month |
= |
{June}, |
booktitle |
= |
{Proc. IEEE Computer Vision and Pattern Recognition (CVPR)}, |
address |
= |
{Minneapolis, USA}, |
url |
= |
{http://dx.doi.org/10.1109/CVPR.2007.383185}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2007_Joshi07a.pdf}, |
keyword |
= |
{Shape, Metric, Geodesic, Prior} |
} |
Abstract :
We propose an efficient representation for studying shapes of closed curves in R^n. This paper combines the strengths of two important ideas---elastic shape metric and path-straightening methods---and results in a very fast algorithm for finding geodesics in shape spaces. The elastic metric allows for optimal matching of features between the two curves while path-straightening ensures that the algorithm results in geodesic paths. For the novel representation proposed here, the elastic metric becomes the simple L^2 metric, in contrast to the past usage where more complex forms were used. We present the step-by-step algorithms for computing geodesics and demonstrate them with 2-D as well as 3-D examples. |
|
3 - A Higher-Order Active Contour Model for Tree Detection. P. Horvath and I. H. Jermyn and Z. Kato and J. Zerubia. In Proc. International Conference on Pattern Recognition (ICPR), Hong Kong, August 2006. Keywords : Active contour, Gas of circles, Higher-order, Shape, Prior, Tree Crown Extraction.
@INPROCEEDINGS{horvath_icpr06,
|
author |
= |
{Horvath, P. and Jermyn, I. H. and Kato, Z. and Zerubia, J.}, |
title |
= |
{A Higher-Order Active Contour Model for Tree Detection}, |
year |
= |
{2006}, |
month |
= |
{August}, |
booktitle |
= |
{Proc. International Conference on Pattern Recognition (ICPR)}, |
address |
= |
{Hong Kong}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/2006_horvath_icpr06.pdf}, |
keyword |
= |
{Active contour, Gas of circles, Higher-order, Shape, Prior, Tree Crown Extraction} |
} |
Abstract :
We present a model of a ‘gas of circles’, the ensemble
of regions in the image domain consisting of an
unknown number of circles with approximately fixed
radius and short range repulsive interactions, and
apply it to the extraction of tree crowns from aerial
images. The method uses the re- cently introduced
‘higher order active contours’ (HOACs), which
incorporate long-range interactions between contour
points, and thereby include prior geometric
information without using a template shape. This makes
them ideal when looking for multiple instances of an
entity in an image. We study an existing HOAC model
for networks, and show via a stability calculation
that circles stable to perturbations are possible
for constrained parameter sets. Combining this prior
energy with a data term, we show results on aerial
imagery that demonstrate the effectiveness of the
method and the need for prior geometric knowledge. The
model has many other potential applications. |
|
4 - New Higher-order Active Contour Energies for Network Extraction. M. Rochery and I. H. Jermyn and J. Zerubia. In Proc. IEEE International Conference on Image Processing (ICIP), Genoa, Italy, September 2005. Keywords : Gap closure, Shape, Prior, Higher-order, Active contour.
@INPROCEEDINGS{rochery_icip05,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{New Higher-order Active Contour Energies for Network Extraction}, |
year |
= |
{2005}, |
month |
= |
{September}, |
booktitle |
= |
{Proc. IEEE International Conference on Image Processing (ICIP)}, |
address |
= |
{Genoa, Italy}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/rochery_icip05.pdf}, |
keyword |
= |
{Gap closure, Shape, Prior, Higher-order, Active contour} |
} |
Abstract :
Using the framework of higher-order active contours, we present a new quadratic em continuation energy for the extraction of line networks (e.g. road, hydrographic, vascular) in the presence of occlusions. Occlusions create gaps in the data that frequently translate to gaps in the extracted network. The new energy penalizes earby opposing extremities of the network, and thus favours the closure of the gaps created by occlusions. Nearby opposing extremities are identified using a
sophisticated interaction between pairs of points on the contour. This new model allows the extraction of fully connected networks, even though occlusions violate common assumptions about the homogeneity of the
interior, and high contrast with the exterior, of the network. We present experimental results on real aerial images that demonstrate the effectiveness of the new model for network extraction tasks. |
|
5 - Higher Order Active Contours and their Application to the Detection of Line Networks in Satellite Imagery. M. Rochery and I. H. Jermyn and J. Zerubia. In Proc. IEEE Workshop Variational, Geometric and Level Set Methods in Computer Vision, at ICCV, Nice, France, October 2003. Keywords : Higher-order, Active contour, Shape, Road network, Segmentation, Prior.
@INPROCEEDINGS{Rochery03a,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher Order Active Contours and their Application to the Detection of Line Networks in Satellite Imagery}, |
year |
= |
{2003}, |
month |
= |
{October}, |
booktitle |
= |
{Proc. IEEE Workshop Variational, Geometric and Level Set Methods in Computer Vision}, |
address |
= |
{at ICCV, Nice, France}, |
pdf |
= |
{ftp://ftp-sop.inria.fr/ariana/Articles/rochery_vlsm03.pdf}, |
keyword |
= |
{Higher-order, Active contour, Shape, Road network, Segmentation, Prior} |
} |
Abstract :
We present a novel method for the incorporation of shape information
into active contour models, and apply it to the extraction
of line networks (e.g. road, water) from satellite imagery.
The method is based on a new class of contour energies.
These energies are quadratic on the space of one-chains
in the image, as opposed to classical energies, which are linear.
They can be expressed as double integrals on the contour,
and thus incorporate non-trivial interactions between
different contour points. The new energies describe families
of contours that share complex geometric properties, without
making reference to any particular shape. Networks fall
into such a family, and to model them we make a particular
choice of quadratic energy whose minima are reticulated.
To optimize the energies, we use a level set approach. The
forces derived from the new energies are non-local however,
thus necessitating an extension of standard level set methods.
Promising experimental results are obtained using real
images. |
|
top of the page
Technical and Research Report |
1 - Higher Order Active Contours. M. Rochery and I. H. Jermyn and J. Zerubia. Research Report 5656, INRIA, France, August 2005. Keywords : Active contour, Higher-order, Road network, Shape, Prior.
@TECHREPORT{RR_5656,
|
author |
= |
{Rochery, M. and Jermyn, I. H. and Zerubia, J.}, |
title |
= |
{Higher Order Active Contours}, |
year |
= |
{2005}, |
month |
= |
{August}, |
institution |
= |
{INRIA}, |
type |
= |
{Research Report}, |
number |
= |
{5656}, |
address |
= |
{France}, |
url |
= |
{https://hal.inria.fr/inria-00070352}, |
pdf |
= |
{https://hal.inria.fr/file/index/docid/70352/filename/RR-5656.pdf}, |
ps |
= |
{https://hal.inria.fr/docs/00/07/03/52/PS/RR-5656.ps}, |
keyword |
= |
{Active contour, Higher-order, Road network, Shape, Prior} |
} |
Résumé :
Nous introduisons une nouvelle classe de contours actifs qui offre des perspectives intéressantes pour la modélisation des régions et des formes, et nous appliquons un cas particulier de ces modèles à l'extraction de réseaux linéiques dans des images satellitaires et aériennes. Les nouveaux modèles sont des fonctionnelles polynômiales arbitraires sur l'espace des contours, et généralisent ainsi les fonctionnelles linéaires utilisées dans les modèles classiques de contours actifs. Alors que les fonctionnelles classiques s'écrivent avec de simples intégrales sur le contour, les nouvelles énergies sont définies comme des intégrales multiples, décrivant ainsi des interactions de longue portée entre les différents ensembles de points du contour. Utilisées comme des termes d'a priori, les fonctionnelles décrivent des familles de contours aux propriétés géométriques complexes, sans faire référence à une forme spécifique et sans nécessiter l'estimation de la position. Utilisées comme des termes d'attache aux données, elles permettent de décrire des interactions multi-points entre le contour et les données. Afin de minimiser ces énergies, nous adoptons la méthodologie des courbes de niveau. Les forces dérivées des énergies sont cependant non locales, et nécessitent une extension des méthodes de courbes de niveau standard. Les réseaux sont une famille de formes d'une grande importance dans de nombreuses applications et en particulier en télédétection. Pour les modéliser, nous faisons un choix particulier d'énergie quadratique qui décrit des structures branchées et nous ajoutons un terme d'attache aux données qui lie les données et la géométrie du contour au niveau des paires de points du contour. Des résultats d'extraction prometteurs sont montrés sur des images réelles. |
Abstract :
We introduce a new class of active contour models that hold great promise for region and shape modelling, and we apply a special case of these models to the extraction of road networks from satellite and aerial imagery. The new models are arbitrary polynomial functionals on the space of boundaries, and thus greatly generalize the linear functionals used in classical contour energies. While classical energies are expressed as single integrals over the contour, the new energies incorporate multiple integrals, and thus describe long-range interactions between different sets of contour points. As prior terms, they describe families of contours that share complex geometric properties, without making reference to any particular shape, and they require no pose estimation. As likelihood terms, they can describe multi-point interactions between the contour and the data. To optimize the energies, we use a level set approach. The forces derived from the new energies are non-local however, thus necessitating an extension of standard level set methods. Networks are a shape family of great importance in a number of applications, including remote sensing imagery. To model them, we make a particular choice of prior quadratic energy that describes reticulated structures, and augment it with a likelihood term that couples the data at pairs of contour points to their joint geometry. Promising experimental results are shown on real images. |
|
top of the page
These pages were generated by
|